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Abstract

Rapid acquisition of magnetic resonance (MR) images via reconstruction from undersam-
pled k-space data has the potential to greatly decrease MRI scan time on existing medical
hardware. To this end, iterative image reconstruction based on the technique of compressed
sensing has become the method choice for many researchers [1]. However, while conventional
compressed sensing relies on random measurements from a discrete Fourier transform, actual
MR scans often suffer from off-resonance effects and thus generate data by way of a non-Fourier
operator [2]. Correcting for these effects requires that one employs more sophisticated image
reconstruction methods and introduces computational bottlenecks that are not encountered in
standard compressed sensing.

In this work, we demonstrate how one may accelerate the convergence of algorithms for
solving the image reconstruction problem,

argmin J(p) subject to Ap = s (1)
p

by opting for a regularization of the form:
J(p) = [Vpl+v|Fpl (2)

when F' is a tight frame and A is only approximately a Fourier transform. In our experiments,
reconstructing field-corrected MR images with the hybrid regularization of eq. (2) provides a
speedup of roughly one order of magnitude when compared with an approach based solely on
total-variation and may produce higher quality images than an approach based solely on tight
frames.

1 Introduction

While the problem of image reconstruction in magnetic resonance imaging (MRI) has a long his-
tory, the techniques employed usually assume the static magnetic field is homogeneous and the
applied magnetic-field gradients are unidirectional with constant magnitude [3]. In recent years,
the prospects of generating MRI images using portable sensors have been explored [4] [5]. Although
some efforts have focused on generating remote homogeneous fields [6], most portable sensors are

*rcompton@math.ucla.edu



single-sided and characterized by inhomogeneous fields [7] [8]. The inhomogeneous field can be
used to select a slice for imaging [4]. In other instances, so-called “shimming” radio-frequency
(RF) pulses have been used to prepare the spins and impart a phase that compensates for the
effects of an inhomogeneous field [9] [10] [11]. In the limit of low magnetic fields, the magnetic-field
gradients are no longer unidirectional according to Maxwell’s equations in the absence of a rotating-
wave approximation. MRI is still feasible with the use of coherent averaging techniques [12] [13],
oscillating fields [14] or spatial shimming [15]. Each of these techniques have limitations. For coher-
ent averaging and RF shimming techniques, the stroboscopic sequences required are not practical
for in wvivo use because of RF heating and the short T5 relaxation times in tissues. In this article,
we treat the problem of image reconstruction in high-field MRI, in the presence of inhomogeneous
static and gradient magnetic fields. The direct reconstruction (as opposed to the use of compen-
sating techniques) may be the preferred approach in clinical applications, where rapid imaging is
required.

The most general MRI reconstruction problem assumes no rotating-wave approximation. Spins
precess about a field B (x,t) which may include time-dependent gradients. Its direction and mag-
nitude may be a function of space. Because of the time-dependence of the local field, the rotations
are non-commutative and a time-ordered product must be used to describe its effect. For spin
I = 1/2, the rotations are described by the spin operators I; = 0;/2, i = x,y, z, where o; are the
Pauli matrices. The rotation operator is written in terms of Dyson time-ordering T:

Ux,t) = Tty J3 e Ba (x,6)+1, By (x,t)+ 1. Bz (x,t)] dt

The initial state of the nuclear magnetization density can be expressed as p(x) = I p,(x)+1,py(x)+
L.p.(x). It is evolved in time according to the unitary transformation p(x, T) = UT(x, T)p(x)U (x, T).
Detection is done along a given axis defined by a field B (x). Neglecting relaxation effects, the
NMR signal is therefore proportional to the volume integral of the Hilbert space trace (Tr):

(0= [ TUBLGOL + By ()T, + Bro (LI (x. 60U (. )] (3)

The image reconstruction problem consists of solving for the magnetization distribution p(x) by
measuring s(t) at different times ¢ while time-modulating the gradients.

If a strong static magnetic field is applied, only the components of the magnetic field gradients
parallel to the static magnetic field are preserved. The perpendicular components of the gradient
fields rapidly average to zero. This rotating-wave approximation leads to a local magnetic field
whose direction remains fixed. Only its magnitude can change with time. Therefore, time-ordered
rotations are no longer needed. The signal equation reduces to a simpler expression:

S(t) _ / p(x)e—z(x)te—%rik(t)xdx (4)
\%

where s(t;) is the recorded signal, z(x) describes the off-resonance effects (imaginary part). Relax-
ation effects can be included in z(x) (real part). The magnetization density, p(x), is a scalar-valued
field. The goal of MRI reconstruction is to solve for the proton density map, p(x), in the signal
equation. The k-space coordinates, k(t), which are defined by the applied gradients, are known only
on a nonuniform and possibly undersampled grid [16]. The gradients are assumed to be uniform.
For a 2D slice, V is a subset of R2.

A n-point discretization of the physical space integral at m different values of ¢ leads to the
m X n linear system



s=Ap (5)
with system matrix
Aij _ efz(xj‘)tief%rik(ti)-x]' ) (6)
Efficiently inverting the linear system (5) in a way that produces high quality images is central to
MRI.

With conventional MRI methods the background field is assumed perfectly homogeneous and
the phase accrual due to off resonant frequency, e ?(3)%  is then ignored. Here, A becomes a Fourier
encoding matrix and image reconstruction may be accomplished by directly inverting A or, in the
event that our system is underdetermined, solving a regularized inverse problem using methods
from compressed sensing [17]. Regularization terms based on total variation [1], wavelets [18], and
shearlets [19] have been successful. In the more general case of parallel imaging these regularizations
still provide quality images [20].

While simple computationally, failing to accommodate for off-resonance effects often leads to
blurring and image distortion in many types of MR scans. These effects are often due to abrupt
spatial variations in the magnetic susceptibility of biological tissues being imaged. Near interfaces
between regions of different susceptibility, the static background field, By, is perturbed by an
additional, weaker, magnetic field, AB(x), whose strength is proportional to the strength of the
background field and a function depending on the tissue, i.e. AB(x) = xm(x)Bo [21]. The final
background field, By + AB(x), thus varies in space.

The value of y,, is often small (for grey matter, y,, ~ 8.97 x 107¢ [21]). However, new
developments in MRI technology are leading to stronger By fields where the off-resonance effects
are more substantial [22]. In ultra-high field MRI (i.e. > 7 T), static field inhomogeneities place
notable limitations on the images a device can produce [22].

Standard examples of images corrupted by off-resonance effects are found in cranial MRI scans
near air/tissue interfaces. Here, the differences in magnetic susceptibility between air and water are
responsible for the creation of the perturbing field [23]. The situation occurs again when imaging
regions containing gray/white matter boundaries [21]. As a result, correcting for off-resonance
effects is of specific importance for surgical planning near the nasal sinuses, auditory canals, and
cerebral cortex [24] [25].

Nonstandard examples occur when imaging patients who use hair products containing iron
oxide or cobalt particles [26]. Proper maintenance of “twists” or “dreadlocks” mandates that hair
is saturated with beeswax (or colored beeswax) near the scalp in order to prevent essential knots
from coming undone. Magnetization of the hair product leads to strong static field inhomogeneities
and thus highly distorted images. A similar effect occurs when scanning patients wearing colored
eye makeup [27].

To compensate for these distortions, we first note that the off-resonance factor, e~ in
the image model eq. (4) is multiplied with the proton density map in k-space. This leads to a
convolution in physical space. The reconstruction problem thus involves deconvolution in addition
to Fourier decoding.

We focus on the case where e > is known beforehand (i.e. non-blind deconvolution). There
is a large and growing body of work aimed at determining z(x). Current methods make use of
many ideas that overlap with techniques used in general image processing. Some examples include
determination of a field map via MAP estimation [28] as well as [1-penalized optimization [29].

Knowing the field map, however, does not immediately provide one with a prescription for high
quality image formation as the matrix

z(x)t’

x)t

Ejj = e 2t (7)



is often so large that storage is impossible on most modern desktops [30]. As an example, to
produce a 512 x 512 image the (dense) E matrix takes on dimensions 5122 x 5122, Storing E in
32-bit floating point precision requires 256GB of space. Consequently, directly forming the system
matrix, A, is infeasible for practical image sizes and some form of operator compression must be
employed in the reconstruction procedure [31] [32].

Once a procedure to apply E is known and k-space has been fully sampled one may reconstruct
p using a variety of techniques [33] [34] [35]. Non-iterative approaches for field correction, such
as the conjugate phase methods of [36], [37] and [38] are fast and commonly used. However, in
recent years, iterative approaches based on regularization have come into favor as they ignore this
assumption and produce higher quality images. The drawback to iterative methods tends to be an
increase in computational cost [31].

One unexpected advantage of iterative reconstruction methods is the almost exact overlap they
have with the recent and prolific theory of compressed sensing. As a result, recent years have seen
tremendous progress in fast algorithms for iterative reconstruction [39]. The canonical problem in
both methods is:

argmin J(p) subject to Ap = s (8)
p
where J represents some form of sparsity promoting regularization.

Traditional iterative image reconstruction methods are known to be very reliable when a large
amount of k-space has been acquired [32]. In the absence of off-resonance effects, it is known
from compressed sensing that exact image reconstruction is possible from extremely undersampled
k-space data [17].

In this work, we propose solutions when these two issues are combined, providing a method
for image recovery with a generalized operator when k-space is undersampled. Furthermore, we
introduce a regularization term based on framelets [40] and establish a significant reduction in
computational cost when this term is included.

2 Method

2.1 Low-rank inhomogeneity correction

Before we can successfully carry out any iterative solution procedure we must first be able to apply
our system matrix. Writing A as the pointwise matrix product,

A=EoF 9)

we can see that a low-storage approximation to E will yield an approximation to A which fits in
memory as the Fourier operator requires no storage.
Given a target rank, r, we construct a low-rank approximation to the off-resonance matrix,

E ~ BC (10)



where B € R™*" and C € R™" are thin. Now,

sio= > Ayp (11)
j=1

m

= ZEU o ]:ijpj (12)
Jj=1
m T

~ Z Z BilClj}'ijpj (].3)
Jj=11=1

rom

= > > BaCiyFip (14)

=1 j=1

= > Ba> FiiCip; (15)
=1 j=1
leading to,
A~ Z diag(B.;))Fdiag(Cy.)) (16)
=1

where diag(B.;)) and diag(C(;)) are diagonal matrices with entries taken from the /th column and
row of B and C, respectively. Provided that the singular values of F decay quickly enough that the
low-rank approximation eq. (10) is valid, we may rapidly apply A with little storage overhead using
eq. (16). It turns out that this is indeed the case for empirically observed field maps [41]. As the
inhomogeneities become stronger, higher rank approximations are needed to accurately describe E.

When working with nonuniformly or undersampled k-space data we only need to replace the
Fourier matrix with a discrete nonuniform Fourier transform operator (NUFFT) of type 2 [42]. In
which case we write

A~ ZB;QCZ. (17)
=1

2.2 Forming the approximation

For the matrix decomposition, £ ~ BC, several methods can be found in recent literature on MRI
reconstruction [41] [43] [44] [45] [46]. The common foundation on which all these methods are built
is approximation of the exponential,

e 20 % N " By (18)
=1

Strategies for forming eq. (18) can be split into roughly two camps: those that focus on functional
approximations of the form

e = S (D)) (19)
=1

and those that treat the decomposition as a general low-rank matrix approximation problem.

Matrix-based approaches typically lead to the most accurate approximations for a given rank,
but require substantial computational overhead as the matrix, F/, must be examined in full. Recent
developments in randomized algorithms originating within the numerical linear algebra community
may somewhat alleviate this burden [47] [48] [49].



2.2.1 Interpolative Decompositions

For a purely algebraic approach to the decomposition, we introduce a recently developed matrix
factorization [50]:

Definition 1 (Interpolative Decomposition). Let E' € R™*™ have rank at most r. The decomposi-
tion
Enxn = BerCan (20)

where the columns of B make up a subset of the columns of E, and each entry in C had magnitude
at most two, is referred to as the interpolative decomposition of E.

Thus, we form an approximation to £ using a bounded linear combination of a few columns of
E. The existence of an interpolative decomposition for |C;;|< 1 is established in [51]. Computation
of such a C, however, turns out to be N P-hard [52].

Computing an interpolative decomposition is fairly straightforward when a capable linear al-
gebra library is available. Difficulties may arise when one does not have access to a pivoted-QR
decomposition or any linear system solvers.

Algorithm 1: Interpolative Decomposition for low-rank F.
Form QnxrRrxnllpxn = Enxn via a pivoted-Q R decomposition [53]
Define err and Trx(n—r) by (er'r ‘ Trx(n—l)) = Rrxn
ComPUte By = anrsrxr
Compute Cr><n = (1r><r | (Sil)rXTTrx(n—r)) Ipxn

The columns of B are a subset of the columns of E since they are determined by multiplying
) with columns of the R matrix found in the QR decomposition of E. The matrix S is small in
our applications (e.g. S € R10*10) 5o that the inversion is easily computed.

The decomposition in algorithm 1 is exact when the rank of E is exactly r. In the general
setting, where E is high-rank and we seek a low-rank approximation, we have the estimate for each
r:

||En><n - BanCanHS, Or41 (21)

where 0,41 is the r + 1st greatest singular value of E [54].

For matrix compression tasks, we premultiply £ with a Gaussian random matrix, G € R"*™,
before factoring [50]. Applying E to a small random matrix allows us to work in a reduced subspace
which approximates the range of E. Only one read of E is needed to form the product. When a few
buffer vectors are added to G (leading to G € RP*™ with p > r) the accuracy of this approximation
is notably improved. Sharp bounds on the error eq. (21) are a topic of current research [49].

Algorithm 2: Randomized Interpolative Decomposition for rank-r approximation to E.

Compute Ypxn = GpxnEnxn for an integer p > r

Form Zpy,Crxn = Yrxn using algorithm 1

The columns of Z correspond to columns of Y. That is, for j =1...] we can find 47 ...7
such that the jth column of Z is the i;th column of Y. Form B,,, by selecting columns
i1 ...1 from E,xn-
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Figure 1: Relative error, log (W) , for varying rank approximations using a partial SVD (blue)

and randomized interpolative decompositions (red). The field map is 64 x 64 leading to a 4096 x 4096
E matrix. Machine precision is 107!%. High accuracy approximations at low rank are possible with a
single pass over the data.

2.2.2 Functional decompositions

An alternative way to form the approximation eq. (10) is by explicitly approximation the exponen-
tial in the form of eq. (19). Standard approaches begin by selecting a subset of points uniformly
from either the time or “frequency” domain [44].

Segmenting in the time domain is accomplished by first choosing a set of points {fl}le and a
single value, Z, to approximate the field map. One then has the formulas

By = by(t;)e " (22)
Clj — e—(z(xj)—é)fz‘ (23)

Interpolating functions, b;(t), are used to evaluate the coefficients between each pair of #;. The
method used to interpolate the time domain has a large effect on the accuracy of this approach.
Current methods favor a “min-max” approach [32].

Selecting z = 0 corresponds to standard unidirectional interpolation of the function e~
Choosing an optimal Z improves accuracy when the #; are fixed in advance, optimizing the #; can
lead to situations where the choice of Z is irrelevant [30]. A comparison of many currently available
methods for approximations of the form eq. (19) can be found in [41].

z(x)t.

2.3 Restricted isometry constraints

A difficulty with the corrected system arises when we attempt to make the extreme reductions
in k-space data that were suggested in the original compressed sensing literature. The modified
system matrix obeys uncertainty properties differing from the pure Fourier case and no longer have
the same guarantees on exact signal reconstruction [55].

Recall the concept of a restricted isometry constant, §
smallest number such that

A

&, of a matrix A for an integer s as the

(1= )llellp< Azl (1+ 68|27 (24)



where s is the number of nonzero entries in . When such a constant exists A is said to satisfy
the restricted isometry property. This property guarantees exact image reconstruction from vastly
undersampled k-space with overwhelmingly high probability. In the case of an undersampled Fourier
matrix, much work has been devoted to showing that 69 is small [56].

In our corrected system, we can infer that each term in the sum eq. (18) has less than ideal
isometric properties by examining

1 BiGCiz||2 < || Bill[|GCi| |2 (25)
< max(by)(1 + 07) max(c;)||z |2 (26)
i J

By combining eq. (26) with the analogous lower bound a crude estimate for the restricted isometry
constant for an r = 1 correction to our inhomogeneity can be found

5;91901 < min (1 — min(b;) min(cg;) + min(by) mjn(clj)ég, 1 — max(b;;) max(c;)
i j i j i j (27)

+ max(by) max(c;;)d7
i J

Larger values of r increase the corresponding isometry constants and as a result more samples
are required for accurate image recovery than in the pure Fourier case. Smaller values of r result
in poorer approximations to the correction matrix. In this work, we choose r such that E is well
approximated and accept that more k-space samples must be acquired.

While the restricted isometry constant is independent of the reconstruction technique, the fact
that our problem has suboptimal isometric properties has influenced our choice of regularization.
Framelets, like wavelets, give high-quality image decompositions using a multiscale basis. However,
unlike wavelets, framelet bases are redundant and allow more accurate image representations than
possible with orthogonal wavelet bases. These particular redundant basis elements have high order
vanishing moments, which should explain the accuracy, even near discontinuities [57]. Total vari-
ation is well-known for its ability to remove noise and preserve edges [58]. We compensate for a
poor restricted isometry constant by incorporating substantial information about image structure
into our regularization.

2.4 Sparse recovery via [1 minimization

We propose a reduction in scan time by appealing to the theory of compressed sensing, downsam-
pling our Fourier matrix uniformly at random and accounting for the missing data with sparsity
promoting regularization.

While MR images are not sparse in the image domain, they are sparse in an appropriately
chosen transform domain [1]. Representation of images in bases of wavelets, and by extension,
framelets yield sparse collections of coefficients [40]. Similarly, reconstruction methods based on
the total variation norm well as its nonlocal counterpart have been shown to accurately reproduce
detailed images from sparse frequency data [59].

We advocate a composite of total variation and framelet regularization,

J(p) = [Vpl+v|Fp| (28)

where the first term is a total variation norm and F' is the discrete framelet decomposition [40]. The
total variation term enhances edges in our reconstructed image while the inclusion of the framelet



term allows us to reconstruct smooth images. The parameter v is chosen by the user and controls
the relative impotance of edges versus smoothness in the sought after image.

It has been found previously that hybrid regularization based on wavelets often improves image
quality [39]. Our framelet based regularization extends this work to redundant orthogonal bases
where natural images can be represented more accurately.

2.5 Split Bregman iterations for image recovery

Our image is the solution to the constrained optimization eq. (1) which we solve with the Split
Bregman method of [39]. We begin by converting the constrained optimization into a sequence of
unconstrained problems via Bregman iteration:

min, |Vp|+v|Fp|l+5[Ap — s*||>

—N—
VS
Pl
+ +
_
(.

where the parameter p affects the convergence rate and is chosen by the user [60]. Typical values
of p range between 0.5 and 1. High values of u better enforce the constraint at each iteration but
have the drawback that the p**! update becomes harder to solve [39]. Alternately updating p*
and s* produces a sequence, p¥, known to converge to the solution of the constrained optimization
problem, p [61] .

Updating s* is straightforward. Minimization of the unconstrained step in eq. (29) is done by
introducing auxiliary variables, d, = V;p, d, = V,p, and w = Fp, allowing us to rewrite our ok
update in the equivalent split form

P = min | V|4l +£] Ap — 52 (30)
: (de, dy) = (Vap, Vyp)
subject to{ w— Fp (31)

This constrained optimization is then converted to a sequence of unconstrained problems via a
second Bregman iteration leading us to the following algorithm:

Algorithm 3: Split Bregman iteration for constrained optimization
Initialize: p° = A's, and d) = d) = w® =b) =b) =b), =0
while | ApF — s||3> tol do

for i =1 to nypner do

pF = min, §[|Ap — s**+3|d5 — Vaup — 05|75 1d5 — Vap — 5P+ [w* — Fp — b |12

d" = shrink(Veptt + b5 1/0)

d¥T = shrink(VypF Tt + b8, 1/))

whtt = shrink(Fp*+t + bk v/7)

et = b (Vo — )

b’;jJrl — bl; + (vykarl _ dl;+1)

ot = bl 4 (Fp1 — k)

end

shHl = gk g Aphtl

end

Here, the function shrink comes from the wavelet literature and is defined as

shrink(€,a) = émax(]f\—a, 0). (32)



The constants A and ~ are chosen by the user and affect the convergence rate.

Computationally, the p**1 update is the most expensive part of our algorithm by a wide margin.
The speed of our image reconstruction is determined by how fast we can solve this minimization.
In the purely Fourier case, an analytic solution exists leading to a notably fast algorithm [39]. We
have no such formula for the generalized A we work with and instead rely on iterations of the
conjugate gradient method to update p**1.

By differentiating with respect to p and setting the result to zero we find our p**! update as
the solution to:

(WA A+ AVLV, + A 4 yF F) "L = rhs” (33)
where
rhs® = pAtsk £ AV (¥ — b)) + AVE 4+ F (w — by). (34)
Making use of the identities V!V = —A and F'F = I, gives the system
(LAPA — AN +AT) " = rhs® (35)

which we solve with conjugate gradient iterations.
A major advantage of our hybrid regularizer is now apparent. Consider the system resulting
from a regularization based only on total variation (ie v = 0),

(WALA — AN) PP = rhsh, (36)
Denoting maximal and minimal eigenvalues of the matrix in eq. (36) by Amax and Apin, we can write
the condition number of our hybrid regularized system as

Amax + Y < Amax
>\min + v )‘min

(37)
notably speeding our updates.

2.6 Remarks on convergence

The convergence of algorithm 3 has been established in [62]. There, an equivalence between the
Split-Bregman algorithm and the alternating direction method of multipliers (ADMM) is estab-
lished allowing us to guarantee convergence of algorithm 3 by appealing to the vast literature on
convergence results for ADMM [63].

The convergence rate for ADMM is known to be linear [64] while the conjugate-gradient method
used in our updates converges superlinearly [65]. While altering the parameters in our regularization
(i.e. increase v ) could potentially slow the convergence of ADMM, the superlinear benefit we get
from a faster-converging conjugate-gradient iteration more than makes up for this.

Due to our low-rank inhomogeneity correction, the image reconstruction problem we are solve is
only an approximation to our physical model of MR signal acquisition. For a given rank, r, denote
the rank-r approximate image reconstruction problem by

, [
Pr(p) = min|Vp|+v|Fpl+5 [ Arp — 5" (38)
With the exact image reconstruction problem as
: 0
P(p) = min|Vpl+v|Fpl+3[|Ap — " (39)

It is not clear that P,(p) — P(p), however, work has been done in [57] establishing that this
is indeed the case. Empirical evidence from the biomedical engineering community as well as the
simulations in section 3 further justify the use of our matrix approximation [30] [31] [32].
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(a) 128x128 Shepp-Logan phantom (b) Simulated field map, z(x) (values range
between —15 and 15 Hz)

(c¢) Phantom reconstruction without field (d) Magnitude of difference between fig. 2a
map correction and fig. 2¢

Figure 2: Phantom and simulated field map data used in experiments.

3 Numerical Results

Our hybrid reconstruction method is compared against three alternate approaches: uncorrected
nonuniform-FFT, field corrected total variation regularization, and field corrected framelet regu-
larization.

The nonuniform Fourier transforms are computed with the min-max method of [30] using 6
points of interpolation. Piecewise linear B-spline framelets [40] are the framelet of choice. An open
source implementation of the framelet transformation is available at
http://www.math.ucla.edu/ jegilles/BregmanCookbook.html.

The majority of our computation time is spent in the FFT as each application of A requires only
FFTs and diagonal matrix multiplication. High quality, scalable, parallel FFT implementations
are readily available [66] and our algorithm thus adapts naturally to parallel architectures.

Numerical experiments were run in 64-bit Matlab on twelve cores of a dual hex core system
compromised of two 2.67 GHz Intel Xeon CPUs with 12 MB of level 2 cache each and 50 GB of
RAM.

In every image reconstruction experiment we fixed p = 0.5. When a total variation term was
present we set A = 0.5. When a framelet term was present we set v = 5.0. The rank of the low-rank
approximation to F is fixed at 10 and computed using a randomized interpolative decomposition.

In our three-dimensional experiment we set 4 =1, A = 0.5, and v = 5.0. We approximated FE
with rank a 6 approximation computed using time interpolation.
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(a) TV (b) Framelet
(c) Hybrid, v =1 (d) Hybrid, v = .01

Figure 3: Comparison of phantom reconstructions from 20% data. All experiments were stopped after
3000 applications of A, independent of convergence. Average computation time was 88.35 seconds. The
phantom is exactly piecewise constant and thus amenable to total variation regularization. However,
the poor conditioning of eq. (36) prevents us from reaching the desired image in time. The highest
quality image is fig. 3d, likely due to the facts that total variation is a good fit for the phantom and the
positive v allows us to optimize fast.
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Figure 4: Errors during reconstruction of phantom. In the first two rows, errors are recorded for each
application of A. We note that hybrid methods attain roughly the same numerical accuracy as framelet
based methods. However, visual inspection of fig. 3d suggests that methods penalizing total variation
result in a higher quality image here. In fig. 4c and fig. 4d we see that the framelet term allows us to
execute more outer iterations before the iteration limit is reached.
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(a) 128x128 clean axial MRI (b) 256x256 noisy sagittal MRI

(¢) Field map used with fig. 5a, values (d) Field map used with fig. 5b, values
range from —15 to 15 Hz. range from —15 to 15 Hz.

Figure 5: Exact images and field maps used in experiments.

14



(a) TV (b) Framelet

(c) Hybrid, v =1 (d) Hybrid, v = .01

Figure 6: Comparison of image reconstructions from 40% data. All experiments were stopped after
3000 applications of A. Average computation time was 535.69 seconds. Total variation has removed
noise but has blurred important features. The framelet based regularization in fig. 6b produced the
highest quality image here.
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(a) TV (b) Framelet

(c) Hybrid, v =1 (d) Hybrid, v = .01

Figure 7: Comparison of image reconstructions from 40% data. All experiments were stopped after
10000 applications of A. Average computation time was 1767.2 seconds. Total variation has had time
to produce a more detailed image than in fig. 6a. The regularizations involving framelets have produced
similiar images.
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For two-dimensional datasets, we used a Shepp-Logan phantom (cf. fig. 2 and fig. 5a) and the
standard Matlab MRI data set as our clean images. To validate our method on realistic and noisy
data, we obtained a sagittal MRI of the head courtesy of Dr. Rohan Dharmakumar from Mount
Sinai Hospital (cf. fig. 5).

For our three-dimensional dataset we used a T1-weighted volume scan of a healthy 22 year
old male taken on a Brucker BioSpin at 4.3T with 128x128x128 resolution obtained from the
LONI Image Database at https://ida.loni.ucla.edu (cf. fig. 9). We retrospectively undersampled
k-space uniformly down to 40% before our volume reconstruction experiment. For the hybrid
regularization in three dimensions, we used a Haar wavelet term. While it is known that Haar
wavelets are suboptimal for MRI reconstruction [20], a three dimensional framelet library is not yet
available. Even with a suboptimal regularization, the additional term speeds computation enough
that a Hybrid regularization still outperforms the total variation regularization, fig. 10.

Model field maps were obtained by scaling a smoothed and noisy image to values comparable
with empirically observed maps [2]. In practice, the complete field map is often unattainable and
one must estimate it from multiple scans [67]. For each experiment, two acquisitions at echo times
differing by A; = 2msec were simulated to produce images:

Y1 =p+o01 (40)
yo =e*81 ) 4 gy (41)

allowing us to obtain an estimate for the field map:

z2(x) = Arg(y1y2)/ A (42)

For all imaging experiments the same background field was used, the estimate, however, was re-
computed for each image.In our volume reconstruction experiment we stacked the background field
image along the z-axis and repeated the procedure in eq. (42).

Plotting errors per iteration in fig. 4c and fig. 4d we see that total variation is the most efficient
per outer loop iteration. This suggests that total variation alone may be advisable when the p*+!
update can be done analytically. However, when the number of matrix multiplications is taken into
account, total variation is outperformed by other regularization strategies (cf. fig. 8 and fig. 3).
When the data contains noise reconstruction is more difficult (cf. fig. 6 and fig. 7).

4 Conclusion

We have presented an efficient and fast-converging algorithm for MRI image reconstruction in
the presence of inhomogeneous fields. This requires knowledge of the k-space trajectory and field
inhomogeneity profile. The latter could be obtained in real time using By mapping techniques. The
former is prescribed by the imaging pulse sequence. The technique should be applicable to the class
of problems where the signal is a linear function of the spin density, s = Ap, and the matrix A can be
decomposed into inhomogeneity and spatial encoding matrices. We note that the case of low-field
MRI, the signal equation (3) is also of the form s = Ap, where A can be separated into encoding
and inhomogeneity matrices. One difference is that computational overhead is increased due to
the requirement for computing products of non-commutative rotation matrices. A more important
difference is that the encoding matrix is no longer of type NUFFT. It is unclear at this stage if such
non-NUFFT matrices would lead to convergence of our algorithm. Further investigations would be
needed.
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NUFFT TV Framelet Hybrid, v =1

Figure 8: Clean brain image reconstruction. Rows correspond to downsample factors of 66%, 40%,
29% and 22%. All iterative methods were stopped after 3000 applications of A. Average reconstruction
time was 147.83 seconds.
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(a) Exact (b) Field map, values range from —15 to
15 Hz.

Figure 9: Exact data used in volume reconstruction experiment. The volume dataset size was
128x128x128. Field map values range from —15 to 15 Hz, alpha mapping in fig. 9b has been reduced to
make the most distorted parts of the volume visible.

(a) TV (b) Hybrid, v =1

Figure 10: Volume reconstruction of a brain scan at 40% undersampling. All iterative methods are
stopped after 5500 applications of A. Average computation time was 2981.13 seconds. The average
number of applications of A required to update p**! was 124.22 when a total variation regularizer was
used. This was reduced to 9.79 with the hybrid method.
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