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Abstract. In this work, we study a convex relaxation approach to partithe
spatially continuous image domain into multiple regiongmminimal total perime-
ter. Its corresponding model over a discrete image graph,sticalled Potts
model, can be addressed approximately by graph-cut hasegbansion, which
often generate visible metrication artifacts, hence irhpae accuracy of im-
age segmentation. Existing convex relaxation formulatioithe Potts model, in
the spatially continuous setting, use the total-variabiesed energy functionals
which directly encode the isotropic perimeter costs andepitight partitioning
without such metrication errors. These formulations ama@gous to the multi-
way 'min-cut’ problems over graphs. In this paper, we pr@p@sovel continuous
convex optimization model in the form of flow maximizatiow;salled the con-
tinuous max-flow model, and demonstrate its duality to adsteshconvex relax-
ation formulation of the Potts model. The proposed contisumax-flow model
leads to a new variational perspective of the studied imaggtioning problem.
In addition, its flow-maximization formulation directlydes to a new and fast
max-flow based algorithm which has great numerical advastagvoids extra
computational load to enforce the pixelwise simplex caistr which is the es-
sential step in previous approaches, and naturally all@xsliel computing over
different labels. Practical experiments show its signiftoautperformance over
the previous state of the art convex optimization approadbehe continuous
Potts model, in terms of efficiency and quality.

1 Introduction

To label an image domain pixelwise with the giverliscrete labels,, ... [,,, subject

to some optimization criterion, gives rise to an effectigeltto model many practi-
cal problems in image processing and computer vision [3#juthph Markov Random
Fields (MRF). Potts model [37] corresponds to one speckd cd such Markov Ran-
dom Field (MRF) over the image graph [29], which computesgtaph partition with

the minimal total perimeter of the one-label (constantjaerg. It does not favor any
particular order of the labels, in comparison to anotheiilammodel introduced by
Ishikawa [21] which partitions the image graph with mukiginearly ordered labels
(overlapped to each other). The MRF-based energy functiopgsed by Potts model
is the sum of the unary potential defined on each graph nodthanshirwise potential
given on each graph edge. It is typically NP hard; only therapimate algorithms are



available: for example, via-expansion or-3 swap [5] and some LP relaxations [25,
38]. For the special case withlabels, the resulting-1 optimization problem can be
solved exactly and globally by graph cuts [17], provided thl&the pairwise poten-
tials are sub-modular [24]. A significant disadvantage efgnaph-based approach to
Potts model is that the computation results are often biagete discrete image grid,
which introduces visible metrication errors. Such visuaéfacts can be largely re-
duced by either adding more neighboring nodes [4, 23] onapplhigh-order cliques
[22]. However, both of them amounts to a great increase ofpetation complexities
and memory load.

Parallel to the developments of graph-based approacheatienal methods have
been proposed to tackle the same Potts model over a spatallinuous configuration,
which properly avoid the metrication errors along with tligcdete image graph. In this
regard, the level-set method introduces the most directhamaral way to encode the
piecewise constant labeling functions used in Potts mdtdelelated computation pro-
vides an efficient way to resolve the partitions with a suid-gccuracy, see e.g. [33, 10,
7] and also the piecewise constant level-set method (PCLUSMBO0]. Unfortunately,
the level-set method is essentially formulated in a nonvermanner, for which com-
putation often gets stuck in a local minima and its resulhhiglepends on the given
initial conditions.

In contrast, the convex relaxation approaches, e.g. [336148, 2, 27], initially for-
mulate Potts model by solving a convex optimization prohlerhere assigning an
unique label to each pixel is encoded by the pixel-wise séxpbnstraint and the min-
imization of the total perimeter is formulated by the sumatét-variation functions. In
comparison to the level-set method, such convex optintimdiased methods achieve
great advantages in numerics such that fast and reliabdgitgs can be easily ob-
tained through standard convex optimization theories38ice the strict mathematical
proof of the exactness of the convex relaxation approadmgmonconvex Potts model
is still open and argued [8], its computation result can drdyaccepted as suboptimal.
One can still claim the convex relaxation method gives atgmiwhich is close to the
exact global minimum [28]. Practical experiments confirrties.

In this paper, we study the convex relaxation approach tdPtités problem for-
mulated in the spatially continuous settings, which is &laltledconvex relaxed Potts
model In [44,27], such convex optimization problem is solvededtty through the
minimization over the: labeling functions, for which extra computation cost igaat
duced to explore the pointwise simplex constraint at earfation. In this regard, Bae
et al [2] proposed an equivalent dual model and its assacit®othing formulation
based on the maximum entropy regularization, which effetitiavoids the extra step to
handle simplex constraint at each pixel and leads to a magpler numerical scheme.
In this work, we investigate theonvex relaxed Potts modalthe manner of primal-dual
and propose the novel continuous max-flow model. It carriesvaflow-maximization
theory which is dual to theonvex relaxed Potts modélo the best of our knowledge,
none of previous works introduces such a max-flow theory ¢oRbtts problem. On
the other hand, the minimum cut of a graph is often studied@mputed over its
dual maximal flow formulation; most efficient algorithms aBgh-cuts were designed
and explained in such a flow maximization manner [11]. FotdfPobdel which results



in computing the 'multi-way cut’, the graph-based optintiaa methods, such as-
expansion, also work by performing the max-flow algoritheratively. With respect
to this, we show the proposed continuous max-flow schemeetcattivex relaxed Potts
modelis also different from the standard max-flow approachess Wairk extends our
previous conference proceeding paper [42].

1.1 Contributions
We summarize our main contributions as follows:

— We propose a novel continuous max-flow formulation to thevesmelaxed Potts
model over a continuous image domain. We show that the pesposntinuous
max-flow model and the convex relaxed Potts model are eauntval dual to each
other, hence the convex relaxed Potts problem can be cothphuteugh tackling
the corresponding max-flow problem.

— Mathematical analysis on the continuous max-flow modeldetada new inter-
pretation of partitioning the given image domain into npltiregions under the
variational perspective. By this, the essential connastizetween 'flow saturation’
and 'cut’ are revealed.

— The proposed continuous max-flow model directly resultsiewa multiplier-based
max-flow algorithm based on the standard convex optimindtieory. The numer-
ical advantages of the continuous max-flow based algorithen previous works
are generalized as follows: first, it avoids the extra priges onto the pixelwise
simplex constraint within each outer iteration as in [44; Zbmpared to [2, 26],
it exactly solves (8) without any smoothing procedure; inlitidn, it is globally
optimized based on an efficient and reliable multiplierdazasax-flow algorithm,
in contrast to the projected-gradient method [8, 35] whaswergence may suffer
from uncareful step-sizes and result in a sub-optima.

— Experiments show a faster convergence rate, abdues, than [44, 27]. In addi-
tion, the proposed max-flow based algorithm has a parafiefiendly framework
over labeling functions which can be easily implementedasutlerated on mod-
ern computing platforms, e.g. GPU.

2 Previous Works: Convex Relaxation Approaches

In this section, we first introduce theonvex relaxed Potts modahd review previ-
ous convex relaxation approaches. To motivate the contimuatax-flow model to the
convex relaxed Potts modele also revisit the recent studies on the duality of the con-
tinuous max-flow and min-cut formulations, proposed in 40,

2.1 Convex Relaxed Potts Model

The Potts model originates from the statistical physic$ &id its spatially continuous
version can be stated by partitioning the continuous imageain {2 into n disjoint
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subdomaing f2;}_, based on the following optimization criterion:

min li,x)dr + « o1, 1
{QNIE;L/<> >l00 ®
st U, 2, =02; N =0, Vk#I (2)

where|0(2;| measures the perimeter of each disjoint subdonfiaini = 1...n; the
functionp(l;,z),i = 1...n, evaluates the cost of assigning the labéb the specified
positionz € (2 and the positivex > 0 gives the trade-off between the two terms.
Obviously, Potts model (1) favors the labeling with 'tightbundaries. As a special
case, the piecewise constant Mumford-Shah functional eamboded, in terms of (1),
by p(l;, x) = |I(z) — I;|? wherel; .. .1, are the given grayvalue constants.
Letu;(z),s = 1...n, denote the indicator function of the disjoint subdom&in

i.e.
1, € (2 .
ui(x) == {0 ;¢Qi , t=1...n. 3)

The perimeter of each disjoint subdomaincan be evaluated by
02 = [ 1Vulde, i=1..n. @
2

In view of (3) and (4), the Potts model (1) can then be rewritis

(mel?01}z {uZ p(l;,x) +a|Vuz|}dx s.t. ;uz =1,Vzen (5

where the constraints an(x),i = 1...n, in (5) just corresponds to the condition (2),
i.e. each image pixel can be assigned to one and only on region

Clearly, the Potts model (5) is nonconvex due to the binanfigaration of each
functionw;(z) € {0,1}. Theconvex relaxed Potts modeias proposed, where such
binary constraints were relaxed to the convex intej@al] and approximates (5) by the
reduced convex optimization problem [8, 27, 2]:

i i(@) p(li, ) d Vu;| d 6
151611512/911 xx+a2/|u|:c (6)

whereS is the convex constrained setwfx) := (u1(z), ..., un(x)):
S = {u(@) | (i (@),...,u(@)) € Ay, Yo € 2}, (7)
A is the simplex set, i.e.
forvVz € {2, Zuz(x) =1; w(x)e[0,1], i=1...n.
i=1

The computation result of the convex relaxed Potts modddii@s an approximate
solution to the multi-terminal 'cut’ problem (5), i.e. th@®s model.



Previous Works In [44], Zach et al introduced an alternating optimizatippeoach to
solve (6) in a numerically splitting way:

un;lenSZ/ vi(x) p(l;, x) do +—||u—v|| + aZ/ |Vu;| dz .

Within each iteration, two sequential sub-steps are takeaadkle the total-variation
term and explore the pointwise simplex constraintespectively. Obviously, whef
takes a value small enough, the above convex optimizatioloigm well approximates
the convex relaxed Potts model (6).

In [27], a Douglas-Rachford splitting algorithm was propds$o solve a quite simi-
lar problem as (6), for which a variant of the total-variatterm is considered:

/ \/|Vu1(x)|2 o+ |V, (2)* de.
2

As in [44], the proposed splitting procedure involves areoldop with two sequential
steps: the first step solves a total-variation minimizapowblem iteratively until con-
vergence, while the second step projects the current ealtdithe pixel-wise simplex
constraint sef. In [26] Nestorov’s algorithm was applied, however thisalthm does

not solve the problem exactly, only within a suboptimalituind.

In[8, 35], the authors introduced another convex relaxdtiesed on a multi-layered
configuration, which was shown to be tighter. More complerstaints on the dual
variablep were given to avoid multiple countings. The number of caxists grow
guadratically inn instead of linearly, which complicates computation. Iniéidd, an
iterative primal-dual projected-gradient scheme wasiagpb achieve the minimum.

In contrast to [44,27,8,35], Bae at al [2] proposed not tediy tackle the la-
beling function of the convex relaxed Potts problem (6), dmlte its equivalent dual
formulation:

sup {min (p(ly,z) +divps ... p(lp,z) +divp, ) } dx. (8)
Pi€Ca

where the functiondiv p;, i = 1...n, correspond to the total-variation terms under
the primal-dual perspective and the convexGgtis defined as

Co = {p| lIplloe £, pulon=0}. (9)

Once the optimal functions;(z), i = 1...n, are resolved, the labeling functions
u;(z),7=1...n, can be simply recovered by

. [ 1ifk=argmin=1 ., p(l;,z)+ divp}(x)
up(x) = {0 otherwise ' (10)

provided the above argmin is unique.It was further shownZjyHat the non-smooth
dual function of (8) can be well approximated by the maxiri@aof a smooth energy
function, i.e.

sup / { log Z exp lepl } dz , (12)

pi€Cx



wheres > 0 is the smoothness parameter. Such a smooth dual model (irDamhes
(8) with an additional maximum-entropy regularization @ad be solved efficiently by
the simple and reliable algorithmic scheme due to its snresth and convexity.

2.2 Continuous Max-Flow and Min-Cut Model

Now we introduce the recent study of the continuous max-flovdeh proposed by
Yuan et al [40, 39], to image segmentation, i.e. the contisumin-cut problem. Yuan
et al proved that the proposed continuous max-flow model & ttuthe continuous
min-cut problem studied in [32, 6]. Such duality is directijgalogous to the classical
theory of max-flow and min-cut [14]:

Given the continuous image domatihand two terminals: the sourseand the sink
t (see the figure (a) of Fig. 1), linkandt to each image pixet € (2. We assume that
for eachz € (2, there are three types of flows: the source flar) € R directed from
the sources to z, the sink flowp;(z) € R directed fromz to the sinks and the spatial
flow field p(z) € R? aroundz. The three flow fields are constrained by the capacities:

ps(®) < Cs(x), p(x) < Ci(x), |p(z)| < Cz); VeeR. (12)
In addition, forvz € 2, all flows are balanced, i.e. the flow conservation condition
(pt —ps +divp)(z) =0, aexe . (13)

Then, the continuous max-flow formulation is given by maxiimgj the total flow
from the source:

sup / ps dx (14)
Ps,pPt,p J 2
subject to flow constraints (12) and (13).

Yuan et al [40, 39] proved that such continuous max-flow m¢tié¢) is equivalent
to the continuous min-cut problem proposed in [32, 6]:

min /(1—u)Cde+/ uCtdx—i-/ C(x) |Vu| dz. (15)
u(z)€0,1] Jo 0 0

Actually, the two convex models (15) and (14) are dual to esbbr: in the continuous
max-flow model (14), the labeling functiom(xz) works as the multiplier to the flow
conservation condition (13). Moreover, an efficient andht#é multiplier-based max-
flow algorithm can be built up through (14).

Based on the works [40, 39], Bae et al [1] further developedrdicuous max-flow
approach to the continuous cut problem for multiple limparidered labels. Its theory
corresponds to the study of multi-layered graph-cut deesddy Ishikawa [21].

3 Continuous Max-Flow Model

Motivated by the works [40, 39, 1], we propose and study a nemticuous max-flow

approach to the convex relaxed Potts model (6). In this@ectve first introduce the

novel continuous max-flow model and its associated flow candigons in the spatially

continuous setting. We show its equivalence to the invatgi)convex relaxed Potts
model (6) under a new variational perspective.



3.1 Flow-Maximization Configuration and Model

@

Fig. 1. (a) Continuous settings of max-flow with two labels; (b) Goabus configuration of max-
flow with n labels.

Spatially Continuous Configurations Now we define the spatially continuous config-
uration of the max-flow model with n labels, see figure (b) af. A

1. n copiesf2;, i = 1...n, of the image domait? are given in parallel;

2. For each position € (2, the source flow;(z) tries to stream from the source
to x at each copy2;, i = 1...n, of 2. The source flow fielgs(z) is the same for
eachf2;,i =1...n,i.e.ps(x) isuniqueforall2;,i =1...n;

3. For each position € 2, the sink flowp;(z), i = 1...n, is directed fromr at £2;
to the sinkt. In contrast to the source flow field (x), then sink flow fieldsp; (),

i =1...n, mostly are different from each other;

4. The spatial flow fieldg;(z), ¢ = 1...n, are defined within each copy;, i =

1...n. They may also be different from each other.

Continuous Max-Flow Model Based on such spatially contiuous settings, we give the
capacity and conservation constraints on flows, which andasi as (12) and (13): for
flows p;(x) andg; (z) at eache € {2, as follows:

lg: ()| < Ci(x), pi(z) < plli,z), i=1...n, Vo€ (16)

(divgi—ps+pi)(z) =0, i=1...n, aexec . a7)

Note: there is no constraint on the source flow functiofx).
Therefore, we propose the respective continuous max-flodemover all the flow

functionsp;(z), p(z) = (p1(x),...,pn(z)) andq(z) = (g1 (x),...,qn(x)), as fol-
lows:

sup {P(ps,p,q) = /stdz} (18)

Ps,pP,q



subject to the flow constraints (16) and (17).

In the following section, we introduce the equivalent mads#lthe continuous max-
flow formulation (18). We show its equivalent dual model istjthe convex relaxed
Potts model (6) provide@'(z) = « is constant.

Preliminary Remarks and Connections The continuous max-flow model (18) tries to
perform the maximization of the total source flpa(x) over the whole image domain
2 subject to certain flow capacity and conservation conditidris easy to notice that
at the same place of each(2;, i = 1...n, in view of the flow conservation condition
(17), we have

ps(x) = divg(x) + pi(x), i=1...n. (19)

Observe the righthand of (19) and the flow capacity condsa@jiven in (16)p,(z) is
thus constrained and should be consistent to alhtfiew configurations ofliv ¢; (z) +
pi(z),i=1...n, atz. It naturally boils down to

ps(x) = min (le Q1(~”C) +p1($€), oy div Qn(x) +pn(x)) , Yz e (20)
In this regard, we can prove

Proposition 1. The proposed continuous max-flow modd) is equivalent to

sup / {min (p(l1, ) + div g1 (2), ..., p(ly, z) + divgn(z)) } dz. (21)
lgi ()| <Ci(x)

Proof. Following the result (20), the continuous max-flow model)(&&n be equally
reformulated by

sup /{min(pl(x)+divq1(x),...7pn( ) + div gn(z)) } da

p(z),q(x)

subject to the flow capacity constraints (16).
Given A(z) := (Mi(z),...,A\n(z)) € S whereS denotes the piecewise simplex
constraint (7), the above formulation can then be rewrigten

su mln/ {Z)\ x) + div g;(z ))}dw (22)

p(z), q(w) Alz)

Then it is easy to see that the maximization opgr) < p(l;,z), ¢ = 1...n,is
consistent to the constrainfx) € S. By simple variation computations ovefz) and
A(z), (22) just amounts to (21).

The result (21) of Prop. (1) simply discovers the nonsmoaihl anodel (8) pro-
posed by [2], whelt”; (z) = « are constant.

In addition, observing the conclusion (20), we can regahéamage copy(?;,
i = 1...n, together with the constrained sink flow fielfz:) and the spatial flow field
qi(z) given in (16), as a "filter'F; whose filtering capacity at € {2 is constrained
by div ¢;(x) + p;(z) along with (16), i.e. the passing source flpw(x) at eachr does



not overflow the minimal flow allowed by the ‘filter’ configurations. Then one can
explain the continuous max-flow model (18) such that all ther§ F;, i = 1,...,n,
are layered one by one and the source flair) tries to pass such a stack of such
filters’ in one time. It is obvious thaps(z) is bottlenecked by the minimum capacity
of div ¢;(z) + pi(x),i = 1...n. In such a filter’ configuration, (18) aims to maximize
the total flow passing through this filter’ set.

3.2 Equivalent Primal-Dual Formulation

By the introdution of the multiplier functions;(x), i = 1...n, to then flow conserva-
tion equalities (17), then we have the equivalent primatdoodel of (18) as follows:

sup inf {E(ps,p,q;u) = /ps dr + Z/ Ui(diVQi—ps+pi)dx} (23)
2 S/

Ps,p,q Y

st pi(z) < plli,z), @) < Ci(z); i=1...n

whereu(z) := (u1(x), ..., uy(x)).
Rearranging the energy functidi(p,, p, ¢; ©) of (23), we have

E(ps,p,q;u) = /Q {Q=>uw)ps + > wipi + > uidivg}dz  (24)
=1 =1 =1

For the primal-dual model (23), the conditions of the mininteorem (see e.g.,
[12] Chapter 6, Proposition 2.4) are all satisfied. Thaths, ¢onstraints of flows are
convex, and the energy function is linear in both the muéipk and the flow functions
ps, p andg, hence convex |.s.c. for fixadand concave u.s.c. for fixad, p andq. This
confirms the existence of at least one saddle point, see 312t hlso follows that the
min and max operators of the primal-dual model (23) can l¢hianged, i.e.

sup {inf E(ps,p,q;u)} = inf { sup E(ps,p,q;u)}. (25)
ps,p,q U U ps,p,q

3.3 Equivalent Dual Formulation

Now we investigate the optimization of (23) by the min-maderas the righthand side
of (25), i.e. we first maximizé(ps, p, q; u) over the flow function®, p andq then
minimize over the multiplier functiom. We show that this leads to the equivalent dual
model of the continuous max-flow formulation (18), i.e.

n

mujn {D(u) = Z (/_QU,L(I) p(l;, x)dx + /901(56) | V] dI)} (26)

i=1

s.t. Zul(z) =1, wz)>0.
i=1



Optimization of Flow Functions p, g and ps In order to optimize the flow function
p(x) in (24), let us consider the following maximization problem

flg) = supp-q. (27)
p<C

wherep, ¢ andC are scalars.

Wheng < 0, p can be chosen to be a negative infinity value in order to maedmi
the valuep - ¢, i.e. f(q) = +oo. In consequence, we must haye 0 so as to make the
function f(¢) meaningful. Observe now that

{ if ¢ =0, thenp < C andf(q) reaches the maximuth (28)

if ¢ > 0, thenp = C andf(q) reaches the maximum- C
By virtue of (28), we can equally expregéq) by
fle) =q¢-C, ¢=0. (29)
Applying (27) and (29) to the maximization & (ps, p, ¢; u) of (24) over the sink

flowsp;(x),i =1...n, we have

sup /uipid:c :/ui(z)p(li,a:)da:, ui(x) > 0,i=1,...,n. (30)
2 2

pi(z)<p(li,x)

For the maximization over the spatial flow functiopge), i = 1, ..., n, itis well-
known [15] that
sup / u; div g; doe = / Ci(z) |Vu;| dz . (31)
lgi (2)|<Ci(x) /2 i)

Furthermore, observe the source flow functjgiiz) is unconstrained, the maxi-
mization of (24) ovep, simply leads to

1= ui(x) =0, Voeg. (32)
1=1

By the results of (32), (30) and (31), it is easy to concluag the maximization of
the primal-dual model (24) over flow functiops, p andq boils down to its equivalent
dual model (26). Therefore, we have

Proposition 2. The continuous max-flow moddl8), the primal-dual mode{23) and
the dual mode{26) are equivalent to each other, i.e.

(18) <= (23) < (26).

The proof of Prop. 2 follows by the above statements.
In this work, we focus on the case whéh(z) = a, Vo € 2 andi = 1,...,n.
Obviously,

Proposition 3. WhenC;(z) = «, Vo € 2 andi = 1...n, the dual mode(26)
amounts to theonvex relaxed Potts model (jence, in this case,

continuous max-flow modgél8) <= convex relaxed Potts mod@) .

Its proof simply follows by Prop. 2, which is omitted here.



3.4 Variational Perspective of Flows and Cuts

Through the above analytical procedures, we can build upiatianal perspective of
flows and cuts, which recovers conceptions and terminasagged in graph-cuts.

Consider the maximization problem (27), for any fixgdet some optimagh* max-
imize ¢ - p overp < C. By means of variations, if sughi* < C strictly, its variation
directly leads ta; = 0 since the variatiop can be both negative and positive. On the
other hand, fop* = C, its variation under the constraipt< C' givesép < 0, then we
must havey > 0.

In terms of graph-cuts, some maximum flpi(e) < C(e), over the edge € €&,
just means the considered flgie) does not reach its maximum or capaditye) along
the edge:, i.e. 'unsaturated’; which results the so-called 'cut’ ptree edge-.

In the same manner, for the maximum sink flow functigiiz), : = 1...n, itis
easy to see that when the flpi(x) < p(l;, z) at somer € (2, i.e. 'unsaturated’, we
must haveu;(z) = 0, i.e.u;(x)p} (z) = 0. This means that at the positian the flow
p;(x) has no contribution to the energy function and the flggx), from € 2; to the
sink ¢, can be 'cut’ off from the energy function of (23). On the athand, in view of
(10), the indicator functiom;(z) = 0 definitely means the positianis not labeled as
l;.

For the spatial flowg;(x),i =1...n, let

Cry = {ai(@) | |gi(x)| < Ci(x), n-qilog =0} .

Observe that
sup /uz(x) divg;(z)dx = sup /ql(x) Vu;(z)de, (33)
G €CL,, J 2 pECTy J 02

the extremum of the righthand in (33) just indicates the radroone-based condition
[18] of Vu} (), i.e.

Vui € Nei (47), (34)
fori=1...n.
Then we simply have:
if Vul(x) #0, then |¢/(z)| = Ci(x) , (35a)
if gl (2)] < Ci(x), then Vui(z) =0. (35b)

In other words, at some locationse 2 whereVu! (z) # 0, the spatial flowy ()
is 'saturated’ (35a), i.dg; (x)| = C;(x); at some locations € (2 whereg} (z)| < «
is not saturated, we must hava:! (z) = 0, i.e. no variances of;(z) aroundz, and
therefore the 'cut’ does not appear around the spatial doatai.

4 Multiplier-Based Max-Flow Algorithm

Observe that the energy function of the primal-dual mod8) (st gives the La-
grangian function of the continuous max-flow model (18) vehefx),i = 1...n, are



the corresponding multiplier functions to the flow conséinraequalities (17). Now we
introduce our multiplier-based max-flow algorithm, whichbiased on the augmented
lagrangian method [3]. In this respect, we define the augaddraigrangian function

Le(ps, p,q,u) = /psdw + Z ug, div g; — ps + pi) Zl\dqu ps +pill?
i=1 i=1

wherec > 0.
By the standard augmented Lagrangian method, each iter@tibe algorithm can
then be generalized as follows:

— Optimize spatial flowsg;, i = 1...n, by fixing other variables:

gttt = argH nltllax — Hdlvql +pk —ph— uf/cH2 , (36)
q
which can be solved by Chambolle’s projection algorithm [9]

— Optimize sink flowsp;, ¢ = 1...n, by fixing other variables

c . 2
pf"'l :=arg  max —3 sz + div qf+1 —p]; — uf/cH , (37)

pi(z)<p(li,x)
which can be computed at eacte (2 in a closed form.
— Optimize the source flow, and update multipliers;,i =1...n

n
Pt = argmax /() ps dz — gz Ips — (0 + divgf ) +ul/e|” . (38)

k+1
Uy

=uf —c(divgitt — it + phtty). (39)
Both (38) and (39) can be obtained in the closed form.

Consider the above numerical steps, it is easy to see thawvth#ows ¢; andp;,
1 = 1...n, computed by (36) and (37) can be handled independentlyafch &bel
i. Hence, (36) and (37) can be implemented in a parallel wageGuch two steps
are finished, the source flops () and the labeling functions;(x), i = 1...n, are
updated. Obviously, such parallelism naturally origisdtem the configuration shown
in Fig. 1.

4.1 Fast Linearized Max-Flow Based Algorithm

Actually, the sub-step (36) at each iteration can be solneani inexact manner, i.e.
without solving the Chambolle-projection exactly whichirme-consuming. Now, we
consider the minimizaion problem

qf+1( ) := arg mm Hdlvql DfH2 (40)
lgi (z)|<a
whereD¥(z) = (p¥ + u¥/c — pF)(x) fori = 1...n. We propose a linearized solver

which just performs a S|mple prOJecuon—gradlent step t® pinoposed problem (40)

such that
¢t = qf — yV(divef — DF) (41)
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wherey is the step-size and its maximum value depends on the laigest-value of the
matrix V div after discretization. In this work, we apply the mimetic f&difference
method [20, 19] over the regular image grid [41, 43], and #éngdst eigen-value of the
resulting matrixV div is just1/8. Hence we applyy < 1/4 in the following exper-
iments, i.e. two times of the largest eigen-value, in ordecdnstruct a nonexpansive
operator for the proposed iterative updating step (42} @f), ¢ = 1...n. Similar lin-
earized solver appeared in the recent study of the Bregrpétti®) algorithm [16],
which results in a fast solver to the continuous min-cut prob(15).

In this regard, we propose the fast linearized max-flow baggotithm as Alg. 4.1,
where every substep at each iteration only performs onelsiogmputation.

Algorithm 1 Multiplier-Based Maximal Potts Flow Algorithm

Set the starting valugs: (), p* (), ¢* (z) andu’(z), letk = 1 and startk-th iteration, which
includes the following steps, till convergence:

Updateg;, i = 1...n, by fixing other variables
¢t =qf — yV(divg - DY), (42)

whereDj (z) = (p¥ +uf/c — pf)(z)fori=1...n.

Updatep;, i = 1...n, by solving the substep (37) which results in
pi 7 (x) = min (p(li, z), F (z))

whereFF (z) = (p* + uf /e — div ") (x) forfori = 1...n;

Updatep; by solving the substep (38)

P @) = (L4 e ) GH@) me,

whereGF (z) = (pit! + div gl — uf)(x)/cfori=1...n.

7 1

Update multiplieras;, i = 1,...,n, by

ui ™ =i —e(divg T =it )

% %

Letk = k + 1 return to thek + 1 iteration till converge.

5 Experiments

In this section, we first make experiments to validate thgpsed continuous max-
flow algorithm, i.e. Alg. 4.1, for its associated parametdtisgs and convergence. We
then show its significant outperformance over other statagtafonvex optimization ap-
proaches. In comparison to graph-cuts, e.g. alpha-expartbie studied convex relax-
ation model comes with the important advantage of rotatiowariance, which means
that metrication errors are properly avoided. The qualitthe relaxation approach (6)



has been evaluated extensively in [44, 27, 2] where its oigpaance over the state of
art methods from discrete optimization, e.g. alpha exmanand alpha-beta swap [5]
has been shown for effectively minimizing the Pott’'s enedy experiments in this
work are made on a Windows desktop with the intel CPU i7-92662Z5Hz) and the
NVidia GPU Tesla C1060.

5.1 Algorithm Validations

For the proposed Alg. 4.1, there are two parameters: thesizep and the augmented
parameter. In view of (39), the update of the labeling functiap(z),i = 1...n, at
each iteration gives us an appropriate criterion of corsecg

S Je(divgftt — pitt 4 phth)|
n |02

which evaluates the avarage change of the labeling funftioeach pixelk: and each
label. In the following experiments, we apply to be less than some small positive
value as the convergence criterion.

We make labeling experiments in this part with the same inmaige (see Fig.
2(a) and Fig. 2(b) for the input and ground-truth imagesyrkata termg(l;, z) =
|[I(x) — l;|P, i = 1...4, are used, wheré&(x) andl;, i« = 1...4, take the triple RGB
values ang = 1.

In this respect, we make labeling experiments of the inpagjen(see Fig. 2(a) and
Fig. 2(b) for the input and ground-truth images) togethehwarious step-size =
0.1,0.11,...,0.18 and the fixed augmented parametet 0.25. We sete, < 5 x 1074
as the stopping criterion. When> 0.18, the proposed algorithm fails to achieve con-
vergence withir800 iterations and more than one updating;afi = 1...n, for each
iteration are required to obtain a faster convergence.IThét detailed results in terms
of the total number of iterations and computation time. Bigl) shows their respective
convergence graph with log-log illustration. Clearly, wttae step-size takes values
betweerd.1 and0.17, Alg. 4.1 performs very similarly and obtains convergend@iv
about35 iterations.

To evaluate Alg. 4.1 with various settings of the augment@meter, we make
experiments for the same input along with= 0.1, 0.25, 0.4, 0.55, 0.7, 0.85, 1, 2, 3
and the fixed step-size = 0.17. We sete, < 5 x 10~ as the stopping criterion. Tab.
2 list detailed results in terms of the total number of itienaé and computation time.
Fig. 2(e) shows their respective convergence graph witHdggllustration. Clearly,
when the augmented parametéakes values betweénl and0.85, Alg. 4.1 converges
relatively faster and obtains convergence witliniterations. In Fig. 2(e), the bolded
black line shows the convergence result (fastest) ©f0.25 and the bolded green line
shows the convergence result (slowest} ef 3.

€q —

5.2 Comparisons to Other Approaches

Examples are given in Figure 3, where we have used the Mur8beh data term
p(li,z) = |I(x) — 4;]%,i = 1,...,n. As we see, equally good solutions as alpha expan-
sion are produced, but without the metrication artifacts.



(©

(d) (e)

Fig. 2. (a) Input Image, (b) Ground-truth Image (c) Computationues(x) with v = 0.17 and
¢ = 0.55, (d) Convergence results associated to different stepssittings ofy, (e) Convergence
results associated to different settings of the augmerdeahpeter.

In contrast to the minimization approach of Zach et. al. [#48 proposed algorithm
can be proved to converge by classical optimization theoiide Douglas-Rachford
splitting approach given in [27] can also be proved to cogegbut we experienced that
our approach was more efficient than both these approachesinfier problem has
the same complexity for all approaches, since it is domihbiethe process of itera-
tively solve a tv minimization problem. However, in contrés [44, 27] our approach
avoids iterative projections to the convex getaind consequently require much less
outer iterations. Convergence is reached for a wide rangfeeobuter 'step-size’. To
measure converge, we find a good estimate of the final edeérdyy solving the prob-
lem with 10000 outer iterations. The energy precision aatten k is then measured
bye = EkE?*E* . For the three images (see Fig. 2), different precisiane taken and
the total number of iterations to reach convergence is at@dlj see Tab 3: clearly, our
method is about times faster than the Douglas-Rachford-splitting [27¢ #pproach

in [44] is even slower and failed to reach such a low precision




Table 1. Validation for the step-size whenc = 0.25

vy 0.100.11§0.120.130.140.150.160.170.18
Iter. 36|35(35|34|34|34|34|34|195
Time (sec.)0.910.850.840.820.800.820.82/0.814.63

Table 2. Validation for the augmented parametavhens = 0.18

c 0.1/0.250.4|0.550.7|0.85 1 | 2 | 3
Iter. 37(134(34(38[39|40|42|63]|83
Time (sec.)0.930.820.820.920.940.97/1.011.522.02

6 Conclusions

In this paper, we introduced and investigated a novel cantis max-flow model which
is dual to a convex relaxation of Potts problem, and resuitetinew variational per-

spective of flows and cuts in the spatially continuous coméijan and properly recov-
ered close connections between flows and cuts. Moreovegritparison to previous
efforts which are trying to compute the optimal labelingdtions in a direct way, we

proposed a new multiplier-based max-flow algorithm. Thenradvantages of such
max-flow based algorithm are: it avoids extra computatiawl e explicitly explore the

pointwise simplex constraint, each flow function is updategisimple way; in addition,

its numerical scheme contains a natural parallel framewehich can be easily accel-
erated by the modern parallel computation hardware, e.gl. Glamerical experiments
showed it outperformed state of art approaches in termsalftgand efficiency.
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Braine < 107° Flowere <10~" | Beare <10 "
Zach et al [44] fail to reach such a precision
Lellmann et al [27] 421 iter. 580 iter. 535 iter.
Proposed algorithm 88 iter. 147 iter. 133 iter.

Table 3. Comparisons between algorithms: Zach et al [44], Lellma2if] pnd the proposed
max-flow algorithm: for the three images (see Fig. 2), défemprecisiore are taken and the total
number of iterations to reach convergence is evaluated.



Fig. 3. Each row (from left to right): the input image, result by Alpha expansion with 8 neigh-
bors, result by the proposed max-flow approach. For the arpat in 1st row (inpainting in gray
area),« = 0.03 andn = 3; 2nd row,a = 0.04 andn = 4, 3rd row,a = 0.047 andn = 10; 4th
row, « = 0.02 andn = 8.
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