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Abstract. In this work, we study a convex relaxation approach to partition the
spatially continuous image domain into multiple regions with minimal total perime-
ter. Its corresponding model over a discrete image graph, the so-called Potts
model, can be addressed approximately by graph-cut basedα-expansion, which
often generate visible metrication artifacts, hence impact the accuracy of im-
age segmentation. Existing convex relaxation formulations of the Potts model, in
the spatially continuous setting, use the total-variationbased energy functionals
which directly encode the isotropic perimeter costs and prefer tight partitioning
without such metrication errors. These formulations are analogous to the multi-
way ’min-cut’ problems over graphs. In this paper, we propose a novel continuous
convex optimization model in the form of flow maximization, so-called the con-
tinuous max-flow model, and demonstrate its duality to a standard convex relax-
ation formulation of the Potts model. The proposed continuous max-flow model
leads to a new variational perspective of the studied image partitioning problem.
In addition, its flow-maximization formulation directly leads to a new and fast
max-flow based algorithm which has great numerical advantages: avoids extra
computational load to enforce the pixelwise simplex constraint, which is the es-
sential step in previous approaches, and naturally allows parallel computing over
different labels. Practical experiments show its significant outperformance over
the previous state of the art convex optimization approaches to the continuous
Potts model, in terms of efficiency and quality.

1 Introduction

To label an image domain pixelwise with the givenn discrete labelsl1, . . . ln, subject
to some optimization criterion, gives rise to an effective tool to model many practi-
cal problems in image processing and computer vision [34] through Markov Random
Fields (MRF). Potts model [37] corresponds to one special case of such Markov Ran-
dom Field (MRF) over the image graph [29], which computes thegraph partition with
the minimal total perimeter of the one-label (constant) regions. It does not favor any
particular order of the labels, in comparison to another similar model introduced by
Ishikawa [21] which partitions the image graph with multiple linearly ordered labels
(overlapped to each other). The MRF-based energy function proposed by Potts model
is the sum of the unary potential defined on each graph node andthe pairwise potential
given on each graph edge. It is typically NP hard; only the approximate algorithms are



available: for example, viaα-expansion orα-β swap [5] and some LP relaxations [25,
38]. For the special case with2 labels, the resulting0-1 optimization problem can be
solved exactly and globally by graph cuts [17], provided that all the pairwise poten-
tials are sub-modular [24]. A significant disadvantage of the graph-based approach to
Potts model is that the computation results are often biasedby the discrete image grid,
which introduces visible metrication errors. Such visual artefacts can be largely re-
duced by either adding more neighboring nodes [4, 23] or applying high-order cliques
[22]. However, both of them amounts to a great increase of computation complexities
and memory load.

Parallel to the developments of graph-based approaches, variational methods have
been proposed to tackle the same Potts model over a spatiallycontinuous configuration,
which properly avoid the metrication errors along with the discrete image graph. In this
regard, the level-set method introduces the most direct andnatural way to encode the
piecewise constant labeling functions used in Potts model.Its related computation pro-
vides an efficient way to resolve the partitions with a sub-grid accuracy, see e.g. [33, 10,
7] and also the piecewise constant level-set method (PCLSM)[31, 30]. Unfortunately,
the level-set method is essentially formulated in a non-convex manner, for which com-
putation often gets stuck in a local minima and its result highly depends on the given
initial conditions.

In contrast, the convex relaxation approaches, e.g. [32, 44, 36, 8, 2, 27], initially for-
mulate Potts model by solving a convex optimization problem, where assigning an
unique label to each pixel is encoded by the pixel-wise simplex constraint and the min-
imization of the total perimeter is formulated by the sum of total-variation functions. In
comparison to the level-set method, such convex optimization based methods achieve
great advantages in numerics such that fast and reliable algorithms can be easily ob-
tained through standard convex optimization theories [3].Since the strict mathematical
proof of the exactness of the convex relaxation approach to the nonconvex Potts model
is still open and argued [8], its computation result can onlybe accepted as suboptimal.
One can still claim the convex relaxation method gives a solution which is close to the
exact global minimum [28]. Practical experiments confirmedthis.

In this paper, we study the convex relaxation approach to thePotts problem for-
mulated in the spatially continuous settings, which is alsocalledconvex relaxed Potts
model. In [44, 27], such convex optimization problem is solved directly through the
minimization over then labeling functions, for which extra computation cost is intro-
duced to explore the pointwise simplex constraint at each iteration. In this regard, Bae
et al [2] proposed an equivalent dual model and its associated smoothing formulation
based on the maximum entropy regularization, which effectively avoids the extra step to
handle simplex constraint at each pixel and leads to a much simpler numerical scheme.
In this work, we investigate theconvex relaxed Potts modelin the manner of primal-dual
and propose the novel continuous max-flow model. It carries anew flow-maximization
theory which is dual to theconvex relaxed Potts model. To the best of our knowledge,
none of previous works introduces such a max-flow theory to the Potts problem. On
the other hand, the minimum cut of a graph is often studied andcomputed over its
dual maximal flow formulation; most efficient algorithms of graph-cuts were designed
and explained in such a flow maximization manner [11]. For Potts model which results



in computing the ’multi-way cut’, the graph-based optimization methods, such asα-
expansion, also work by performing the max-flow algorithm iteratively. With respect
to this, we show the proposed continuous max-flow scheme to theconvex relaxed Potts
modelis also different from the standard max-flow approaches. This work extends our
previous conference proceeding paper [42].

1.1 Contributions

We summarize our main contributions as follows:

– We propose a novel continuous max-flow formulation to the convex relaxed Potts
model over a continuous image domain. We show that the proposed continuous
max-flow model and the convex relaxed Potts model are equivalent or dual to each
other, hence the convex relaxed Potts problem can be computed through tackling
the corresponding max-flow problem.

– Mathematical analysis on the continuous max-flow model leads to a new inter-
pretation of partitioning the given image domain into multiple regions under the
variational perspective. By this, the essential connections between ’flow saturation’
and ’cut’ are revealed.

– The proposed continuous max-flow model directly results in anew multiplier-based
max-flow algorithm based on the standard convex optimization theory. The numer-
ical advantages of the continuous max-flow based algorithm over previous works
are generalized as follows: first, it avoids the extra projections onto the pixelwise
simplex constraint within each outer iteration as in [44, 27]; compared to [2, 26],
it exactly solves (8) without any smoothing procedure; in addition, it is globally
optimized based on an efficient and reliable multiplier-based max-flow algorithm,
in contrast to the projected-gradient method [8, 35] whose convergence may suffer
from uncareful step-sizes and result in a sub-optima.

– Experiments show a faster convergence rate, about4 times, than [44, 27]. In addi-
tion, the proposed max-flow based algorithm has a parallelism-friendly framework
over labeling functions which can be easily implemented andaccelerated on mod-
ern computing platforms, e.g. GPU.

2 Previous Works: Convex Relaxation Approaches

In this section, we first introduce theconvex relaxed Potts modeland review previ-
ous convex relaxation approaches. To motivate the continuous max-flow model to the
convex relaxed Potts model, we also revisit the recent studies on the duality of the con-
tinuous max-flow and min-cut formulations, proposed in [40,1].

2.1 Convex Relaxed Potts Model

The Potts model originates from the statistical physics [37] and its spatially continuous
version can be stated by partitioning the continuous image domainΩ into n disjoint



subdomains{Ωi}ni=1 based on the following optimization criterion:

min
{Ωi}n

i=1

n
∑

i=1

∫

Ωi

ρ(li, x) dx+ α

n
∑

i=1

|∂Ωi| (1)

s.t. ∪n
i=1 Ωi = Ω ; Ωk ∩Ωl = ∅ , ∀k 6= l (2)

where|∂Ωi| measures the perimeter of each disjoint subdomainΩi, i = 1 . . . n; the
functionρ(li, x), i = 1 . . . n, evaluates the cost of assigning the labelli to the specified
positionx ∈ Ω and the positiveα > 0 gives the trade-off between the two terms.
Obviously, Potts model (1) favors the labeling with ’tight’boundaries. As a special
case, the piecewise constant Mumford-Shah functional can be encoded, in terms of (1),
by ρ(li, x) = |I(x)− li|p wherel1 . . . ln are the given grayvalue constants.

Let ui(x), i = 1 . . . n, denote the indicator function of the disjoint subdomainΩi,
i.e.

ui(x) :=

{

1 , x ∈ Ωi

0 , x /∈ Ωi
, i = 1 . . . n . (3)

The perimeter of each disjoint subdomainΩi can be evaluated by

|∂Ωi| =

∫

Ω

|∇ui| dx , i = 1 . . . n . (4)

In view of (3) and (4), the Potts model (1) can then be rewritten as

min
ui(x)∈{0,1}

n
∑

i=1

∫

Ω

{

ui(x)ρ(li, x) + α |∇ui|
}

dx , s.t.
n
∑

i=1

ui(x) = 1 , ∀x ∈ Ω (5)

where the constraints onui(x), i = 1 . . . n, in (5) just corresponds to the condition (2),
i.e. each image pixel can be assigned to one and only on region.

Clearly, the Potts model (5) is nonconvex due to the binary configuration of each
functionui(x) ∈ {0, 1}. The convex relaxed Potts modelwas proposed, where such
binary constraints were relaxed to the convex interval[0, 1] and approximates (5) by the
reduced convex optimization problem [8, 27, 2]:

min
u∈S

n
∑

i=1

∫

Ω

ui(x) ρ(li, x) dx + α

n
∑

i=1

∫

Ω

|∇ui| dx (6)

whereS is the convex constrained set ofu(x) := (u1(x), . . . , un(x)):

S = {u(x) | (u1(x), . . . , un(x)) ∈ △+ , ∀x ∈ Ω } , (7)

△+ is the simplex set, i.e.

for ∀x ∈ Ω ,

n
∑

i=1

ui(x) = 1 ; ui(x) ∈ [0, 1] , i = 1 . . . n .

The computation result of the convex relaxed Potts model (6)gives an approximate
solution to the multi-terminal ’cut’ problem (5), i.e. the Potts model.



Previous Works In [44], Zach et al introduced an alternating optimization approach to
solve (6) in a numerically splitting way:

min
u,v∈S

n
∑

i=1

∫

Ω

vi(x) ρ(li, x) dx +
1

2θ
‖u− v‖2 + α

n
∑

i=1

∫

Ω

|∇ui| dx .

Within each iteration, two sequential sub-steps are taken to tackle the total-variation
term and explore the pointwise simplex constraintS respectively. Obviously, whenθ
takes a value small enough, the above convex optimization problem well approximates
the convex relaxed Potts model (6).

In [27], a Douglas-Rachford splitting algorithm was proposed to solve a quite simi-
lar problem as (6), for which a variant of the total-variation term is considered:

∫

Ω

√

|∇u1(x)|
2
+ . . .+ |∇un(x)|

2
dx .

As in [44], the proposed splitting procedure involves an outer loop with two sequential
steps: the first step solves a total-variation minimizationproblem iteratively until con-
vergence, while the second step projects the current solution to the pixel-wise simplex
constraint setS. In [26] Nestorov’s algorithm was applied, however this algorithm does
not solve the problem exactly, only within a suboptimality bound.

In [8, 35], the authors introduced another convex relaxation based on a multi-layered
configuration, which was shown to be tighter. More complex constraints on the dual
variablep were given to avoid multiple countings. The number of constraints grow
quadratically inn instead of linearly, which complicates computation. In addition, an
iterative primal-dual projected-gradient scheme was applied to achieve the minimum.

In contrast to [44, 27, 8, 35], Bae at al [2] proposed not to directly tackle the la-
beling function of the convex relaxed Potts problem (6), butsolve its equivalent dual
formulation:

sup
pi∈Cα

∫

Ω

{

min ( ρ(l1, x) + div p1 . . . ρ(ln, x) + div pn )
}

dx . (8)

where the functionsdiv pi, i = 1 . . . n, correspond to the total-variation terms under
the primal-dual perspective and the convex setCα is defined as

Cα = {p | ‖p‖∞ ≤ α , pn|∂Ω = 0 } . (9)

Once the optimal functionsp∗i (x), i = 1 . . . n, are resolved, the labeling functions
ui(x), i = 1 . . . n, can be simply recovered by

u∗
k(x) =

{

1 if k = argmini=1...n ρ(li, x) + div p∗i (x)
0 otherwise

. (10)

provided the above argmin is unique.It was further shown by [2] that the non-smooth
dual function of (8) can be well approximated by the maximization of a smooth energy
function, i.e.

sup
pi∈Cλ

−s

∫

Ω

{

log

n
∑

i=1

exp(
−fi − div pi

s
)
}

dx , (11)



wheres > 0 is the smoothness parameter. Such a smooth dual model (11) approaches
(8) with an additional maximum-entropy regularization andcan be solved efficiently by
the simple and reliable algorithmic scheme due to its smoothness and convexity.

2.2 Continuous Max-Flow and Min-Cut Model

Now we introduce the recent study of the continuous max-flow model, proposed by
Yuan et al [40, 39], to image segmentation, i.e. the continuous min-cut problem. Yuan
et al proved that the proposed continuous max-flow model is dual to the continuous
min-cut problem studied in [32, 6]. Such duality is directlyanalogous to the classical
theory of max-flow and min-cut [14]:

Given the continuous image domainΩ and two terminals: the sources and the sink
t (see the figure (a) of Fig. 1), links andt to each image pixelx ∈ Ω. We assume that
for eachx ∈ Ω, there are three types of flows: the source flowps(x) ∈ R directed from
the sources to x, the sink flowpt(x) ∈ R directed fromx to the sinkt and the spatial
flow field p(x) ∈ R

2 aroundx. The three flow fields are constrained by the capacities:

ps(x) ≤ Cs(x) , pt(x) ≤ Ct(x) , |p(x)| ≤ C(x) ; ∀x ∈ Ω . (12)

In addition, for∀x ∈ Ω, all flows are balanced, i.e. the flow conservation condition

(pt − ps + div p)(x) = 0 , a.e.x ∈ Ω . (13)

Then, the continuous max-flow formulation is given by maximizing the total flow
from the sources:

sup
ps,pt,p

∫

Ω

ps dx (14)

subject to flow constraints (12) and (13).
Yuan et al [40, 39] proved that such continuous max-flow model(14) is equivalent

to the continuous min-cut problem proposed in [32, 6]:

min
u(x)∈[0,1]

∫

Ω

(1− u)Cs dx+

∫

Ω

uCt dx+

∫

Ω

C(x) |∇u| dx . (15)

Actually, the two convex models (15) and (14) are dual to eachother: in the continuous
max-flow model (14), the labeling functionu(x) works as the multiplier to the flow
conservation condition (13). Moreover, an efficient and reliable multiplier-based max-
flow algorithm can be built up through (14).

Based on the works [40, 39], Bae et al [1] further developed a continuous max-flow
approach to the continuous cut problem for multiple linearly ordered labels. Its theory
corresponds to the study of multi-layered graph-cut developed by Ishikawa [21].

3 Continuous Max-Flow Model

Motivated by the works [40, 39, 1], we propose and study a new continuous max-flow
approach to the convex relaxed Potts model (6). In this section, we first introduce the
novel continuous max-flow model and its associated flow configurations in the spatially
continuous setting. We show its equivalence to the investigated convex relaxed Potts
model (6) under a new variational perspective.



3.1 Flow-Maximization Configuration and Model

(a) (b)

Fig. 1. (a) Continuous settings of max-flow with two labels; (b) Continuous configuration of max-
flow with n labels.

Spatially Continuous Configurations Now we define the spatially continuous config-
uration of the max-flow model with n labels, see figure (b) of Fig. 1:

1. n copiesΩi, i = 1 . . . n, of the image domainΩ are given in parallel;
2. For each positionx ∈ Ω, the source flowps(x) tries to stream from the sources

to x at each copyΩi, i = 1 . . . n, of Ω. The source flow fieldps(x) is the same for
eachΩi, i = 1 . . . n, i.e.ps(x) is unique for allΩi, i = 1 . . . n;

3. For each positionx ∈ Ω, the sink flowpi(x), i = 1 . . . n, is directed fromx atΩi

to the sinkt. In contrast to the source flow fieldps(x), then sink flow fieldspi(x),
i = 1 . . . n, mostly are different from each other;

4. The spatial flow fieldsqi(x), i = 1 . . . n, are defined within each copyΩi, i =
1 . . . n. They may also be different from each other.

Continuous Max-Flow Model Based on such spatially contiuous settings, we give the
capacity and conservation constraints on flows, which are similar as (12) and (13): for
flowspi(x) andqi(x) at eachx ∈ Ω, as follows:

|qi(x)| ≤ Ci(x) , pi(x) ≤ ρ(li, x) , i = 1 . . . n , ∀x ∈ Ω; (16)

(

div qi − ps + pi
)

(x) = 0 , i = 1 . . . n , a.e.x ∈ Ω. (17)

Note: there is no constraint on the source flow functionps(x).
Therefore, we propose the respective continuous max-flow model, over all the flow

functionsps(x), p(x) := (p1(x), . . . , pn(x)) andq(x) := (q1(x), . . . , qn(x)), as fol-
lows:

sup
ps,p,q

{

P (ps, p, q) :=

∫

Ω

ps dx
}

(18)



subject to the flow constraints (16) and (17).
In the following section, we introduce the equivalent models of the continuous max-

flow formulation (18). We show its equivalent dual model is just the convex relaxed
Potts model (6) providedC(x) = α is constant.

Preliminary Remarks and Connections The continuous max-flow model (18) tries to
perform the maximization of the total source flowps(x) over the whole image domain
Ω subject to certain flow capacity and conservation conditions. It is easy to notice that
at the same placex of eachΩi, i = 1 . . . n, in view of the flow conservation condition
(17), we have

ps(x) = div qi(x) + pi(x) , i = 1 . . . n . (19)

Observe the righthand of (19) and the flow capacity constraints given in (16),ps(x) is
thus constrained and should be consistent to all then flow configurations ofdiv qi(x)+
pi(x), i = 1 . . . n, atx. It naturally boils down to

ps(x) = min
(

div q1(x) + p1(x), . . . , div qn(x) + pn(x)
)

, ∀x ∈ Ω . (20)

In this regard, we can prove

Proposition 1. The proposed continuous max-flow model(18) is equivalent to

sup
|qi(x)|≤Ci(x)

∫

Ω

{

min
(

ρ(l1, x) + div q1(x), . . . , ρ(ln, x) + div qn(x)
)}

dx . (21)

Proof. Following the result (20), the continuous max-flow model (18) can be equally
reformulated by

sup
p(x),q(x)

∫

Ω

{

min
(

p1(x) + div q1(x), . . . , pn(x) + div qn(x)
)}

dx

subject to the flow capacity constraints (16).
Givenλ(x) := (λ1(x), . . . , λn(x)) ∈ S whereS denotes the piecewise simplex

constraint (7), the above formulation can then be rewrittenas

sup
p(x),q(x)

min
λ(x)

∫

Ω

{

n
∑

i=1

λi(x)
(

pi(x) + div qi(x)
)

}

dx . (22)

Then it is easy to see that the maximization overpi(x) ≤ ρ(li, x), i = 1 . . . n, is
consistent to the constraintλ(x) ∈ S. By simple variation computations overp(x) and
λ(x), (22) just amounts to (21).

The result (21) of Prop. (1) simply discovers the nonsmooth dual model (8) pro-
posed by [2], whenCi(x) = α are constant.

In addition, observing the conclusion (20), we can regard each image copyΩi,
i = 1 . . . n, together with the constrained sink flow fieldpi(x) and the spatial flow field
qi(x) given in (16), as a ’filter’Fi whose filtering capacity atx ∈ Ω is constrained
by div qi(x) + pi(x) along with (16), i.e. the passing source flowps(x) at eachx does



not overflow the minimal flow allowed by then ’filter’ configurations. Then one can
explain the continuous max-flow model (18) such that all the filtersFi, i = 1, . . . , n,
are layered one by one and the source flowps(x) tries to pass such a stack of such
’filters’ in one time. It is obvious thatps(x) is bottlenecked by the minimum capacity
of div qi(x) + pi(x), i = 1 . . . n. In such a ’filter’ configuration, (18) aims to maximize
the total flow passing through this ’filter’ set.

3.2 Equivalent Primal-Dual Formulation

By the introdution of the multiplier functionsui(x), i = 1 . . . n, to then flow conserva-
tion equalities (17), then we have the equivalent primal-dual model of (18) as follows:

sup
ps,p,q

inf
u

{

E(ps, p, q;u) :=

∫

Ω

ps dx +
n
∑

i=1

∫

Ω

ui(div qi − ps + pi) dx
}

(23)

s.t. pi(x) ≤ ρ(ℓi, x) , |qi(x)| ≤ Ci(x) ; i = 1 . . . n

whereu(x) := (u1(x), . . . , un(x)).
Rearranging the energy functionE(ps, p, q;u) of (23), we have

E(ps, p, q;u) =

∫

Ω

{

(1 −
n
∑

i=1

ui) ps +

n
∑

i=1

ui pi +

n
∑

i=1

ui div qi
}

dx (24)

For the primal-dual model (23), the conditions of the minimax theorem (see e.g.,
[12] Chapter 6, Proposition 2.4) are all satisfied. That is, the constraints of flows are
convex, and the energy function is linear in both the multiplier u and the flow functions
ps, p andq, hence convex l.s.c. for fixedu and concave u.s.c. for fixedps, p andq. This
confirms the existence of at least one saddle point, see [12, 13]. It also follows that the
min and max operators of the primal-dual model (23) can be interchanged, i.e.

sup
ps,p,q

{

inf
u

E(ps, p, q;u)
}

= inf
u

{

sup
ps,p,q

E(ps, p, q;u)
}

. (25)

3.3 Equivalent Dual Formulation

Now we investigate the optimization of (23) by the min-max order as the righthand side
of (25), i.e. we first maximizeE(ps, p, q;u) over the flow functionsps, p andq then
minimize over the multiplier functionu. We show that this leads to the equivalent dual
model of the continuous max-flow formulation (18), i.e.

min
u

{

D(u) :=

n
∑

i=1

(

∫

Ω

ui(x) ρ(ℓi, x) dx +

∫

Ω

Ci(x) |∇ui| dx
)}

(26)

s.t.
n
∑

i=1

ui(x) = 1 , ui(x) ≥ 0 .



Optimization of Flow Functions p, q and ps In order to optimize the flow function
p(x) in (24), let us consider the following maximization problem

f(q) = sup
p≤C

p · q . (27)

wherep, q andC are scalars.
Whenq < 0, p can be chosen to be a negative infinity value in order to maximize

the valuep · q, i.e.f(q) = +∞. In consequence, we must haveq ≥ 0 so as to make the
functionf(q) meaningful. Observe now that

{

if q = 0 , thenp ≤ C andf(q) reaches the maximum0
if q > 0 , thenp = C andf(q) reaches the maximumq · C

. (28)

By virtue of (28), we can equally expressf(q) by

f(q) = q · C , q ≥ 0 . (29)

Applying (27) and (29) to the maximization ofE(ps, p, q;u) of (24) over the sink
flowspi(x), i = 1 . . . n, we have

sup
pi(x)≤ρ(li,x)

∫

Ω

uipi dx =

∫

Ω

ui(x)ρ(li, x) dx , ui(x) ≥ 0 , i = 1, . . . , n . (30)

For the maximization over the spatial flow functionsqi(x), i = 1, . . . , n, it is well-
known [15] that

sup
|qi(x)|≤Ci(x)

∫

Ω

ui div qi dx =

∫

Ω

Ci(x) |∇ui| dx . (31)

Furthermore, observe the source flow functionps(x) is unconstrained, the maxi-
mization of (24) overps simply leads to

1−
n
∑

i=1

ui(x) = 0 , ∀x ∈ Ω . (32)

By the results of (32), (30) and (31), it is easy to conclude that the maximization of
the primal-dual model (24) over flow functionsps, p andq boils down to its equivalent
dual model (26). Therefore, we have

Proposition 2. The continuous max-flow model(18), the primal-dual model(23) and
the dual model(26)are equivalent to each other, i.e.

(18) ⇐⇒ (23) ⇐⇒ (26).

The proof of Prop. 2 follows by the above statements.
In this work, we focus on the case whenCi(x) = α, ∀x ∈ Ω andi = 1, . . . , n.

Obviously,

Proposition 3. WhenCi(x) = α, ∀x ∈ Ω and i = 1 . . . n, the dual model(26)
amounts to theconvex relaxed Potts model (6). Hence, in this case,

continuous max-flow model(18) ⇐⇒ convex relaxed Potts model(6) .

Its proof simply follows by Prop. 2, which is omitted here.



3.4 Variational Perspective of Flows and Cuts

Through the above analytical procedures, we can build up a variational perspective of
flows and cuts, which recovers conceptions and terminologies used in graph-cuts.

Consider the maximization problem (27), for any fixedq, let some optimalp∗ max-
imize q · p overp ≤ C. By means of variations, if suchp∗ < C strictly, its variation
directly leads toq = 0 since the variationδp can be both negative and positive. On the
other hand, forp∗ = C, its variation under the constraintp ≤ C givesδp < 0, then we
must haveq > 0.

In terms of graph-cuts, some maximum flowp∗(e) < C(e), over the edgee ∈ E ,
just means the considered flowp(e) does not reach its maximum or capacityC(e) along
the edgee, i.e. ’unsaturated’; which results the so-called ’cut’ over the edgee.

In the same manner, for the maximum sink flow functionp∗i (x), i = 1 . . . n, it is
easy to see that when the flowp∗i (x) < ρ(li, x) at somex ∈ Ω, i.e. ’unsaturated’, we
must haveui(x) = 0, i.e.ui(x)p

∗
i (x) = 0. This means that at the positionx, the flow

pi(x) has no contribution to the energy function and the flowpi(x), fromx ∈ Ωi to the
sink t, can be ’cut’ off from the energy function of (23). On the other hand, in view of
(10), the indicator functionui(x) = 0 definitely means the positionx is not labeled as
li.

For the spatial flowsq∗i (x), i = 1 . . . n, let

Ci
TV := {qi(x) | |qi(x)| ≤ Ci(x) , n · qi|∂Ω = 0 } .

Observe that

sup
qi∈Ci

TV

∫

Ω

ui(x) div qi(x) dx = sup
p∈Cα

TV

∫

Ω

qi(x)∇ui(x) dx , (33)

the extremum of the righthand in (33) just indicates the normal cone-based condition
[18] of ∇u∗

i (x), i.e.
∇u∗

i ∈ NCi

TV

(q∗i ) , (34)

for i = 1 . . . n.
Then we simply have:

if ∇u∗
i (x) 6= 0 , then |q∗i (x)|= Ci(x) , (35a)

if |q∗i (x)|< Ci(x) , then ∇u∗
i (x) = 0 . (35b)

In other words, at some locationsx ∈ Ω where∇u∗
i (x) 6= 0, the spatial flowq∗i (x)

is ’saturated’ (35a), i.e.|q∗i (x)| = Ci(x); at some locationsx ∈ Ω where|q∗i (x)| < α
is not saturated, we must have∇u∗

i (x) = 0, i.e. no variances ofu∗
i (x) aroundx, and

therefore the ’cut’ does not appear around the spatial domain atx.

4 Multiplier-Based Max-Flow Algorithm

Observe that the energy function of the primal-dual model (23) just gives the La-
grangian function of the continuous max-flow model (18) whereui(x), i = 1 . . . n, are



the corresponding multiplier functions to the flow conservation equalities (17). Now we
introduce our multiplier-based max-flow algorithm, which is based on the augmented
lagrangian method [3]. In this respect, we define the augmented Lagrangian function

Lc(ps, p, q, u) =

∫

Ω

ps dx +

n
∑

i=1

〈ui, div qi − ps + pi〉 −
c

2

n
∑

i=1

‖div qi − ps + pi‖
2

wherec > 0.
By the standard augmented Lagrangian method, each iteration of the algorithm can

then be generalized as follows:

– Optimize spatial flowsqi, i = 1 . . . n, by fixing other variables:

qk+1
i := arg max

‖qi‖
∞

≤α
−
c

2

∥

∥div qi + pki − pks − uk
i /c

∥

∥

2
, (36)

which can be solved by Chambolle’s projection algorithm [9].
– Optimize sink flowspi, i = 1...n, by fixing other variables

pk+1
i := arg max

pi(x)≤ρ(li,x)
−
c

2

∥

∥pi + div qk+1
i − pks − uk

i /c
∥

∥

2
, (37)

which can be computed at eachx ∈ Ω in a closed form.
– Optimize the source flowps and update multipliersui, i = 1 . . . n

pk+1
s := argmax

ps

∫

Ω

ps dx−
c

2

n
∑

i=1

∥

∥ps − (pk+1
i + div qk+1

i ) + uk
i /c

∥

∥

2
, (38)

uk+1
i =uk

i − c (div qk+1
i − pk+1

s + pk+1
i ) . (39)

Both (38) and (39) can be obtained in the closed form.

Consider the above numerical steps, it is easy to see that thetwo flows qi andpi,
i = 1 . . . n, computed by (36) and (37) can be handled independently for each label
i. Hence, (36) and (37) can be implemented in a parallel way. Once such two steps
are finished, the source flowps(x) and the labeling functionsui(x), i = 1 . . . n, are
updated. Obviously, such parallelism naturally originates from the configuration shown
in Fig. 1.

4.1 Fast Linearized Max-Flow Based Algorithm

Actually, the sub-step (36) at each iteration can be solved in an inexact manner, i.e.
without solving the Chambolle-projection exactly which istime-consuming. Now, we
consider the minimizaion problem

qk+1
i (x) := arg min

|qi(x)|≤α

∥

∥div qi −Dk
i

∥

∥

2
(40)

whereDk
i (x) = (pks + uk

i /c − pki )(x) for i = 1 . . . n. We propose a linearized solver
which just performs a simple projection-gradient step to the proposed problem (40)
such that

qk+1
i := qki − γ∇(div qki −Dk

i ) (41)



whereγ is the step-size and its maximum value depends on the largesteigen-value of the
matrix∇ div after discretization. In this work, we apply the mimetic finite-difference
method [20, 19] over the regular image grid [41, 43], and the largest eigen-value of the
resulting matrix∇ div is just 1/8. Hence we applyγ ≤ 1/4 in the following exper-
iments, i.e. two times of the largest eigen-value, in order to construct a nonexpansive
operator for the proposed iterative updating step (42) ofqi(x), i = 1 . . . n. Similar lin-
earized solver appeared in the recent study of the Bregman-Splitting algorithm [16],
which results in a fast solver to the continuous min-cut problem (15).

In this regard, we propose the fast linearized max-flow basedalgorithm as Alg. 4.1,
where every substep at each iteration only performs one simple computation.

Algorithm 1 Multiplier-Based Maximal Potts Flow Algorithm

Set the starting valuesp1s(x), p
1(x), q1(x) andu1(x), let k = 1 and startk-th iteration, which

includes the following steps, till convergence:

– Updateqi, i = 1 . . . n, by fixing other variables

qk+1

i = qki − γ∇(div qki −Dk

i ) , (42)

whereDk

i (x) = (pks + uk

i /c− pki )(x) for i = 1 . . . n.
– Updatepi, i = 1 . . . n, by solving the substep (37) which results in

pk+1

i (x) = min
(

ρ(li, x), F
k

i (x)
)

whereF k

i (x) = (pks + uk

i /c− div qk+1

i
)(x) for for i = 1 . . . n;

– Updateps by solving the substep (38)

pk+1
s (x) = (1 + c

n
∑

i=1

Gk

i (x))/n c ,

whereGk

i (x) = (pk+1

i
+ div qk+1

i
− uk

i )(x)/c for i = 1 . . . n.
– Update multipliersui, i = 1, . . . , n, by

uk+1

i = uk

i − c (div qk+1

i − pk+1
s + pk+1

i ) ;

– Let k = k + 1 return to thek + 1 iteration till converge.

5 Experiments

In this section, we first make experiments to validate the proposed continuous max-
flow algorithm, i.e. Alg. 4.1, for its associated parameter settings and convergence. We
then show its significant outperformance over other state ofart convex optimization ap-
proaches. In comparison to graph-cuts, e.g. alpha-expansion, the studied convex relax-
ation model comes with the important advantage of rotational invariance, which means
that metrication errors are properly avoided. The quality of the relaxation approach (6)



has been evaluated extensively in [44, 27, 2] where its outperformance over the state of
art methods from discrete optimization, e.g. alpha expansion and alpha-beta swap [5]
has been shown for effectively minimizing the Pott’s energy. All experiments in this
work are made on a Windows desktop with the intel CPU i7-920 (2.66 GHz) and the
NVidia GPU Tesla C1060.

5.1 Algorithm Validations

For the proposed Alg. 4.1, there are two parameters: the step-sizeγ and the augmented
parameterc. In view of (39), the update of the labeling functionui(x), i = 1 . . . n, at
each iteration gives us an appropriate criterion of convergence

ǫa =

∑n
i=1

∣

∣c (div qk+1
i − pk+1

s + pk+1
i )

∣

∣

n |Ω|

which evaluates the avarage change of the labeling functionfor each pixelx and each
label. In the following experiments, we applyǫa to be less than some small positive
value as the convergence criterion.

We make labeling experiments in this part with the same inputimage (see Fig.
2(a) and Fig. 2(b) for the input and ground-truth images). Four data termsρ(li, x) =
|I(x) − li|

p, i = 1 . . . 4, are used, whereI(x) andli, i = 1 . . . 4, take the triple RGB
values andp = 1.

In this respect, we make labeling experiments of the input image (see Fig. 2(a) and
Fig. 2(b) for the input and ground-truth images) together with various step-sizeγ =
0.1, 0.11, . . . , 0.18 and the fixed augmented parameterc = 0.25. We setǫa < 5× 10−4

as the stopping criterion. Whenγ > 0.18, the proposed algorithm fails to achieve con-
vergence within300 iterations and more than one updating ofqi, i = 1 . . . n, for each
iteration are required to obtain a faster convergence. Tab.1 list detailed results in terms
of the total number of iterations and computation time. Fig.2(d) shows their respective
convergence graph with log-log illustration. Clearly, when the step-sizeγ takes values
between0.1 and0.17, Alg. 4.1 performs very similarly and obtains convergence within
about35 iterations.

To evaluate Alg. 4.1 with various settings of the augmented parameterc, we make
experiments for the same input along withc = 0.1, 0.25, 0.4, 0.55, 0.7, 0.85, 1, 2, 3
and the fixed step-sizeγ = 0.17. We setǫa < 5 × 10−4 as the stopping criterion. Tab.
2 list detailed results in terms of the total number of iterations and computation time.
Fig. 2(e) shows their respective convergence graph with log-log illustration. Clearly,
when the augmented parameterc takes values between0.1 and0.85, Alg. 4.1 converges
relatively faster and obtains convergence within40 iterations. In Fig. 2(e), the bolded
black line shows the convergence result (fastest) ofc = 0.25 and the bolded green line
shows the convergence result (slowest) ofc = 3.

5.2 Comparisons to Other Approaches

Examples are given in Figure 3, where we have used the Mumford-Shah data term
ρ(ℓi, x) = |I(x)− ℓi|2, i = 1, ..., n. As we see, equally good solutions as alpha expan-
sion are produced, but without the metrication artifacts.



(a) (b) (c)

(d) (e)

Fig. 2. (a) Input Image, (b) Ground-truth Image (c) Computation Result u(x) with γ = 0.17 and
c = 0.55, (d) Convergence results associated to different step-size settings ofγ, (e) Convergence
results associated to different settings of the augmented parameterc.

In contrast to the minimization approach of Zach et. al. [44], the proposed algorithm
can be proved to converge by classical optimization theories. The Douglas-Rachford
splitting approach given in [27] can also be proved to converge, but we experienced that
our approach was more efficient than both these approaches. The inner problem has
the same complexity for all approaches, since it is dominated by the process of itera-
tively solve a tv minimization problem. However, in contrast to [44, 27] our approach
avoids iterative projections to the convex setS and consequently require much less
outer iterations. Convergence is reached for a wide range ofthe outer ’step-size’c. To
measure converge, we find a good estimate of the final energyE∗ by solving the prob-
lem with 10000 outer iterations. The energy precision at iterationk is then measured
by ǫ = Ek−E∗

E∗
. For the three images (see Fig. 2), different precisionǫ are taken and

the total number of iterations to reach convergence is evaluated, see Tab 3: clearly, our
method is about4 times faster than the Douglas-Rachford-splitting [27], the approach
in [44] is even slower and failed to reach such a low precision.



Table 1.Validation for the step-sizeγ whenc = 0.25

γ 0.100.110.120.130.140.150.160.170.18
Iter. 36 35 35 34 34 34 34 34 195

Time (sec.)0.910.850.840.820.800.820.820.814.63

Table 2.Validation for the augmented parameterc whenβ = 0.18

c 0.1 0.25 0.4 0.55 0.7 0.85 1 2 3
Iter. 37 34 34 38 39 40 42 63 83

Time (sec.)0.930.820.820.920.940.971.011.522.02

6 Conclusions

In this paper, we introduced and investigated a novel continuous max-flow model which
is dual to a convex relaxation of Potts problem, and resultedin a new variational per-
spective of flows and cuts in the spatially continuous configuration and properly recov-
ered close connections between flows and cuts. Moreover, in comparison to previous
efforts which are trying to compute the optimal labeling functions in a direct way, we
proposed a new multiplier-based max-flow algorithm. The main advantages of such
max-flow based algorithm are: it avoids extra computation load to explicitly explore the
pointwise simplex constraint, each flow function is updatedin a simple way; in addition,
its numerical scheme contains a natural parallel framework, which can be easily accel-
erated by the modern parallel computation hardware, e.g. GPU. Numerical experiments
showed it outperformed state of art approaches in terms of quality and efficiency.
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Brain ǫ ≤ 10−5 Flowerǫ ≤ 10−4 Bearǫ ≤ 10−4

Zach et al [44] fail to reach such a precision
Lellmann et al [27] 421 iter. 580 iter. 535 iter.
Proposed algorithm 88 iter. 147 iter. 133 iter.

Table 3. Comparisons between algorithms: Zach et al [44], Lellmann [27] and the proposed
max-flow algorithm: for the three images (see Fig. 2), different precisionǫ are taken and the total
number of iterations to reach convergence is evaluated.



Fig. 3. Each row (from left to right): the input image, result by Alpha expansion with 8 neigh-
bors, result by the proposed max-flow approach. For the experiment in 1st row (inpainting in gray
area),α = 0.03 andn = 3; 2nd row,α = 0.04 andn = 4, 3rd row,α = 0.047 andn = 10; 4th
row,α = 0.02 andn = 8.
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