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Abstract Recent advances in `1 optimization for imag-

ing problems provide promising tools to solve the fun-

damental high-dimensional data classification in ma-

chine learning. In this paper, we extend the main re-

sult of [26], which introduced an exact `1 relaxation of

the Cheeger ratio cut problem for unsupervised data

classification. The proposed extension deals with the

multi-class transductive learning problem, which con-

sists in learning several classes with a set of labels for

each class. Learning several classes (i.e. more than two

classes) simultaneously is generally a challenging prob-

lem, but the proposed method builds on strong results

introduced in imaging to overcome the multi-class issue.

Besides, the proposed multi-class transductive learn-

ing algorithms also benefit from recent fast `1 solvers,

specifically designed for the total variation norm, which
plays a central role in our approach. Finally, experi-

ments demonstrate that the proposed `1 relaxation al-

gorithms are more accurate and robust than standard

`2 relaxation methods s.a. spectral clustering, particu-

larly when considering a very small number of labels for
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each class to be classified. For instance, the mean error

of classification for the benchmark MNIST dataset of

60,000 data in R784 using the proposed `1 relaxation of

the multi-class Cheeger cut is 2.4% when only one label

is considered for each class, while the error of classifica-

tion for the `2 relaxation method of spectral clustering

is 24.7%.

1 Introduction

Partitioning data into sensible groups is a fundamen-

tal problem in machine learning and science in general.

One of the most popular approaches is to find the best

(balanced) cut of a graph representing data, the such as

the normalized cut of Shi and Malik [24] or the Cheeger
ratio cut [9]. However, solving balanced/ratio cut prob-

lems is NP-hard, which has lead people to compute ap-

proximate solutions. The most well-known approach to

approximate the solution of a ratio cut is the spectral

clustering method, which is based on a `2 relaxation of

the original ratio cut. This `2 relaxation reduces to solv-

ing a generalized system of eigenvectors for the graph

Laplacian, then selects the 2nd smallest eigenvector and

finally partitions into two groups by thresholding (this

requires testing multiple thresholds). Different normal-

izations of the graph Laplacian lead to different spectral

clustering methods. These methods often provide good

solutions but can fail on somewhat benign problems;

for example see the two-moons example in Figure 1. In

this case, the relaxation leading to the spectral clus-

tering methods is too weak. A stronger relaxation was

introduced by Bühler and Hein in [7]. They described

the p-spectral clustering method, which considers the

`p relaxation of the Cheeger ratio cut, instead of the

`2 relaxation. They showed that the relaxed solution
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of the p-spectral clustering problem tends asymptoti-

cally to the solution of the Cheeger cut problem when

p→ 1. In [10,26] (also see [25]), it was proved that the

relaxation for p = 1 is actually exact, i.e. the solution

of the `1 relaxation problem provides an exact solution

of the Cheeger cut problem. Unfortunately, there is no

algorithm that guarantees to find global minimizers of

the `1 relaxation problem (we recall that the problem is

NP-hard). However, the experiments in [7,26] showed

that good results can be obtained with these stronger

relaxations; the works [15,3,16] have further strength-

ened the case for `1 relaxation methods and related

ideas, and have charted a new and promising research

direction for improving spectral clustering methods.

In this work, we propose to extend [26]. In partic-

ular, we are interested in extending to the challenging

multi-class ratio cut problem, and adding label infor-

mation to obtain a transductive problem. Standard ap-

proaches for the unsupervised learning problem usually

proceed by recursive two-class clustering. In this pa-

per, we will use results recently introduced in imaging

science to solve the multi-class learning problem. The

papers [28,19,20,8,6,1] have proposed tight approxi-

mations of the solution of the multi-phase image seg-

mentation problem based on `1 relaxation techniques.

The main contribution of this paper is to develop effi-

cient multi-class algorithms for the transductive learn-

ing problem. We will introduce two multi-class algo-

rithms based on the `1 relaxation of the Cheeger cut and

the piecewise constant Mumford/Shah or Potts models

[22,23]. Experiments show that these new multi-class

transductive learning algorithms improve the classifica-

tion results compared to spectral clustering algorithms,

particularly in the case of a very few numbers of labels.

2 Unsupervised data classification with `1

relaxation of the Cheeger cut

2.1 The model

In this section, we recall the main result of [26] and pro-

posed a modified and improved version of the algorithm

introduced there. Let G = (V,E) be a graph where V

is the set of nodes and E is the set of edges weighted by

a function Wij , ∀(ij) ∈ E. A classical method for clus-

tering is to consider the Cheeger minimization problem

[9]:

min
Ω⊂V

Cut(Ω,Ωc)

min(|Ω|, |Ωc|)
(1)

which partitions the set V of points into two sets Ω and

Ωc (the complementary set of Ω in V ). The cut is de-

fined as Cut(Ω,Ωc) :=
∑
i∈Ω,j∈Ωc wij and |.| provides

the number of points in a given set. The Cheeger prob-

lem is NP-hard. However, it was shown in [10], and by

the authors of this paper using a different argument in

[26], that there exists an exact continuous relaxation of

(1) as follows. Let us consider the minimization problem

w.r.t. a function u : V → [0, 1]:

min
u∈[0,1]

||Du||1
||u−m(u)||1

(2)

where ||Du||1 :=
∑
ijWij |ui − uj | is the graph-based

total variation of the function u, m(u) is the median

of u, and ||u − m(u)||1 =
∑
i |ui − m(u)|. If a global

minimizer u? of (2) can be computed, then it can be

shown that this minimizer would be the indicator of

a set Ω? (i.e. u? = 1Ω?) corresponding to a solution

of the NP-hard problem (1). But there is no algorithm

that guarantees to compute global minimizers of (2) as

the problem is non-convex. However, experiments show

that the proposed minimization algorithm in [26], which

we will review below, produces good approximations of

the solution.

Recent advances in `1 optimization offer powerful tools

to design a fast and accurate algorithm to solve the min-

imization problem (2). First, observe that minimizing

(2) is equivalent to:

min
u∈[0,1]

||Du||1
||u||1

s.t. m(u) = 0, (3)

Indeed, the energy is not changed if a constant is added

to u. So it is possible to restrict the minimization prob-

lem to functions u with zero median. Then, the ra-

tio minimization problem (3) can be solved using the

method of Dinkelbach [11] (also used in imaging prob-

lems s.a. [18,17]) which introduces the minimax prob-

lem:

min
u∈[0,1]

max
λ∈R

||Du||1 − λ||u||1 s.t. m(u) = 0. (4)

Then, we consider a standard two-step iterative algo-

rithm:

(i) Fix λ, compute the solution of the constrained min-

imization problem:

un+1 = argmin
u∈[0,1]

||Du||1 − λn||u||1 s.t. m(u) = 0 (5)

(ii) Fix u, compute the solution of the maximization

problem:

λn+1 = argmax
λ∈R

||Dun+1||1 − λ||un+1||1 (6)

For the minimization problem (5), observe that the con-

straint zero median is not linear, but it can be replaced

by the approximate linear constraint
∑
i ui < |V |/2.

Indeed, suppose that ui ∈ {0, 1} then the median of u

is zero if
∑
i ui <

∑
i(1 − ui) which yields to

∑
i ui <

|V |/2. We will consider the notation
−→
1 .u :=

∑
i ui in

the rest of the paper.

In order to deal efficiently with the non-differentiability

of the `1 norm in (6), a splitting approach associated

with an augmented Lagrangian method and the Alter-
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nating Direction Method of Multipliers [13] can be used

along the same lines as [14,4]. Hence, we consider the

constrained minimization problem:

min
u,v∈[0,1],d

||d||1 − λ||v||1

s.t. d = Du, v = u,
−→
1 .v < |V |/2. (7)

whose linear constraints can be enforced with an aug-

mented Lagrangian method as:

(un+1, vn+1, dn+1) = argminu,v∈[0,1],d ||d||1 − λ||v||1
+αd.(d−Du) + rd

2 |d−Du|
2

+αv.(v − u) + rv
2 (v − u)2 + αm.(

−→
1 .v − |V |/2)

αn+1
d = αnd + rd.(d

n+1 −Dun+1)

αn+1
v = αnv + rv.(v

n+1 − un+1)

αn+1
m = max(0, αnm + rm.(

−→
1 .vn+1 − |V |/2))

(8)

Three sub-minimizations need to be solved. The mini-

mization problem w.r.t. u:

min
u

rd
2

∣∣∣Du− (d+
αd
rd

)
∣∣∣2 +

rv
2

(
u− (v +

αv
rv

)
)2

whose solution u? is given by a Poisson problem:

(rv + rdD
TD)u = rdD

T
(
d+

αd
rd

)
+ rv

(
v +

αv
rv

)
(9)

The solution of (9) can be estimated by a few steps of

conjugate gradient descent as D is extremely sparse.

The minimization problem w.r.t. v:

min
v∈[0,1]

−λ||v||1 +
rv
2

(
v − (u− αv

rv
)
)2

+ αm.(
−→
1 .v − |V |/2)

has an analytical solution given by unshrinkage [26] and

truncated into [0, 1]:

v? = Π[0,1]

(
fv +

λ

rv

fv
|fv|

)
, with fv := u− αv

rv
− αm

rv
(10)

To avoid the constant trivial solution, we also apply

the ”renormalization” step: v? ← v?−min(v?)
max(v?)−min(v?) . The

minimization problem w.r.t. d:

min
d
||d||1 +

rd
2

∣∣∣d− (Du− αd
rd

)
∣∣∣2

has also an analytical solution given by shrinkage [12]:

d? = max
(
|fd| −

1

rd
, 0
) fd
|fd|

, with fd := Du− αd
rd

(11)

For the maximization problem (6), the solution is as

follows:

λn+1 =
||Dun+1||1
||un+1||1

(12)

We will consider a steepest gradient descent method

instead of (12) to get a smoother evolution of λn+1:

λn+1 = λn − δλ.
(
λn − ||Du

n+1||1
||un+1||1

)
. (13)

To summarize the algorithm introduced in this section,

we write down the pseudo-code Algorithm 1.

2.2 Experiments

In this section, we demonstrate results using the un-

supervised classification algorithm 1. Figure 1 presents

the well-known two-moon dataset [7]. Each moon has

1, 000 data points in R100. This example shows that the

Algorithm 1 Unsupervised learning with `1 relaxation

of the Cheeger cut

un=0 given by random initialization
while outer loop not converged do
αq=0
d , αq=0

v , αq=0
m ← 0

while inner loop not converged do

un+1,q+1 given by (9)
vn+1,q+1 given by (10)
dn+1,q+1 given by (11)

αq+1
v given by (8)

αq+1
d given by (8)

αq+1
m given by (8)

end while
λn+1 given by (13)

end while

(a) Solution (b) Shi-Malik [24]

(c) Initialization of Algo-
rithm 1

(d) Result of Algorithm 1

Fig. 1 Unsupervised classification of the two-moon dataset.
Each moon has 1, 000 data points in R100. Figure (b) is the re-
sult given by the spectral clustering method of Shi and Malik
[24]. It fails to produce the correct result as the `2 relaxation
is too weak. Figure (d) is the result of the `1 relaxation al-
gorithm and Figure (c) is the random initialization. The pro-
posed algorithm succeeds to compute the correct result. This
also shows that the solution of the `1 relaxation is tighter
than the solution of the `2 relaxation. (Note: it is a color
figure.)

solution of the `1 relaxation is tighter than the solution

of the `2 relaxation (see caption for more details). In

Table 1, we compare quantitatively our algorithm with

the spectral clustering method of Shi and Malik [24] and

the related method of Hein and Bühler in [15], which is

available at http://www.ml.uni-saarland.de/code/ one

SpectralClustering/oneSpectralClustering.html ([16] is

not yet available for comparison). Our method and [15]

outperform the spectral clustering method, and our method

also does slightly better than [15].
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% misclassification
Algorithm 1 1.53

Hein and Bühler [15] 1.61
Spectral clustering [24] 1.75

Table 1 Unsupervised learning for the two-moon dataset. We have made 100 experiments and computed the mean percentage
of misclassification. Note that for each experiment, the initialization were chosen randomly and the same random initialization
was used for Algorithm 1 and [15].

In Figure 2, we apply the standard recursive two-class

partitioning approach to deal with more than two classes.

Figure 2(b) shows the result by spectral clustering and

Figure 2(c) presents the result with our algorithm (see

caption for more details).

On the right hand side of Figure 3, we display a

projection of the MNIST benchmark dataset, available

at http://yann. lecun.com/exdb/mnist/, to 3 dimen-

sions via PCA. This data set consists of 70,000 28 × 28

images of handwritten digits, 0 through 9, usually bro-

ken into a 60000 point training set and a 10000 point

test set; thus the data is presented as 70000 points in

R784). The data was preprocessed by projecting onto 50

principal components. Table 2 compares quantitatively

our algorithm with the spectral clustering method of

Shi and Malik [24] and the related method of Hein and

Bühler in [15]. Our method and [15] outperform the

spectral clustering method, and our method also does

slightly better than [15].

3 Transductive data classification with `1

relaxation of the multi-class Cheeger cut

In this section, we extend the unsupervised two-phase

Cheeger learning algorithm of Section 2 to a transduc-

tive multi-class Cheeger learning algorithm. The most

natural extension of (1) to K classes is as follows:

min
Ω1,...,ΩK

K∑
k=1

Cut(Ωk, Ω
c
k)

min(|Ωk|, |Ωck|)

s.t. ∪Kk=1 Ωk = V and Ωi ∩Ωj = ∅ ∀i 6= j

The previous minimization problem is equivalent to the

following problem:

min
{uk}Kk=1∈{0,1}

K∑
k=1

||Duk||1
||uk −m(uk)||1

s.t.

K∑
k=1

uk(i) = 1 ∀i ∈ V. (14)

The set of minimization used in the above minimiza-

tion problem is not convex because binary functions do

not make a convex set. Thus we consider the following

(a) Solution

(b) Shi-Malik [24]

(c) Our algorithm

Fig. 2 Unsupervised classification for the four-moon dataset.
The standard recursive two-class partitioning approach is ap-
plied. Figure (b) shows the result by spectral clustering [24]
and Figure (c) presents the result with Algorithm 1. Although
our algorithm produces a better result than spectral cluster-
ing, it still fails to compute the solution. When more than
two classes are considered then the quality of the results given
by the recursive algorithm actually strongly depends on the
choice of the initialization. In fact, for most initializations,
the standard recursive two-class partitioning approach will
not be able to give the solution. (Note: it is a color figure.)
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Fig. 3 Projection into a 3D space (via PCA) of the MNIST benchmark dataset. This data set consists of 60,000 28 × 28
images and 10,000 training images (each image is a data point in R784) of handwritten digits, 0 through 9. (Note: it is a color
figure.)

% misclassification
Algorithm 1 11.69

Hein and Bühler [15] 11.70
Spectral clustering [24] 29.88

Table 2 Unsupervised learning for the MNIST dataset. This table compares quantitatively Algorithm 1 with the spectral
clustering method of Shi and Malik [24] and the related method of Hein and Bühler in [15].

relaxation:

min
{uk}Kk=1∈[0,1]

K∑
k=1

||Duk||1
||uk −m(uk)||1

s.t.

K∑
k=1

uk(i) = 1 ∀i ∈ V. (15)

In Section 2, we recall that the continuous `1 relaxation

of the two-phase Cheeger minimization problem is ex-

act, meaning that the (continuous) solution of (2) pro-

vides a (discrete) solution of the original Cheeger prob-

lem (1). We do not know if the `1 relaxation is still exact

when multiple classes are considered, i.e. if the (con-

tinuous) solution of (15) provides a (discrete) solution

of the original multi-class Cheeger problem (14). For

the multi-class Cheeger-based learning problem consid-

ered in this paper, experiments show that the solutions

{uk}Kk=1 are close to binary functions, but there is no

theoretical guarantee of this observation.

As the transductive learning problem is considered here

then a (small) set lk of labels is given for each class Ωk
(i.e. lk ⊂ Ωk) and the following minimization problem

is thus considered:

min
Ω1,...,ΩK

K∑
k=1

Cut(Ωk, Ω
c
k)

min(|Ωk|, |Ωck|)
s.t.

∪Kk=1 Ωk = V and Ωi ∩Ωj = ∅ ∀i 6= j and given {lk}Kk=1

which is equivalent to:

min
{uk}Kk=1∈{0,1}

K∑
k=1

||Duk||1
||uk −m(uk)||1

s.t.

K∑
k=1

uk(i) = 1 ∀i ∈ V and uk(i) =

{
1 if i ∈ lp and k = p

0 if i ∈ lp and k 6= p

and which is relaxed to:

min
{uk}Kk=1∈[0,1]

K∑
k=1

||Duk||1
||uk −m(uk)||1

s.t.

K∑
k=1

uk(i) = 1 ∀i ∈ V and uk(i) =

{
1 if i ∈ lp and k = p

0 if i ∈ lp and k 6= p

We now extend the two-phase algorithm designed in

Section 2 to the multi-phase case:

min
{uk}Kk=1∈[0,1]

max
{λk}Kk=1∈R

K∑
k=1

||Duk||1 − λk||uk||1 s.t.

m(uk) = 0,

K∑
k=1

uk(i) = 1 ∀i ∈ V,

and uk(i) =

{
1 if i ∈ lp and k = p

0 if i ∈ lp and k 6= p

The median constraint is relaxed to
−→
1 .uk < |V |/K. We

again consider a standard two-step iterative algorithm:

(i) Fix λk, compute the solution for the K minimization
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problems:
un+1
k = argmin

uk∈[0,1]
||Duk||1 − λnk ||uk||1 s.t.

m(uk) = 0,

K∑
k=1

uk(i) = 1 ∀i ∈ V,

and uk(i) =

{
1 if i ∈ lp and k = p

0 if i ∈ lp and k 6= p
(ii) Fix uk, compute the solution of the K maximization

problems:

λn+1
k = argmax

λ∈R
||Dun+1

k ||1 − λ||un+1
k ||1 (16)

The minimization problems (16) are solved as follows:

(un+1
k , vn+1

k , dn+1
k ) = argminuk,vk∈[0,1],dk ||dk||1

−λ||vk||1 + αdk.(dk −Duk) + rd
2 |dk −Duk|

2

+αvk.(vk − uk) + rv
2 (vk − uk)2

+αmk.(
−→
1 .vk − |V |/K)

s.t.
∑K
k=1 vk = 1 and

vk(i) =

{
1 if i ∈ lp and k = p

0 if i ∈ lp and k 6= p

αd
n+1
k = αnd + rd.(d

n+1
k −Dun+1

k )

αv
n+1
k = αnv + rv.(v

n+1
k − un+1

k )

αm
n+1
k = max(0, αm

n
k + rm.(

−→
1 .vn+1

k − |V |/K))

(17)

The solution of the minimization problems w.r.t. uk, vk, dk
is the same as the solution given in the previous sec-

tion. Finally, the projection onto the convex simplex set∑K
k=1 vk = 1 is given by [21,28]. Observe that the final

solution {u?k}Kk=1 of (16) is not guaranteed to be binary.

Hence, a conversion step is required to make {u?k}Kk=1

binary. The most natural conversion is as follows:

û?k(i) =

{
1 if k = arg maxp∈{1,...,K} u

?
p(i)

0 otherwise
∀i ∈ V (18)

where {û?k}Kk=1 are binary functions satisfying
∑K
k=1 û

?
k =

1.

To summarize the algorithm introduced in this section,

we write down the pseudo-code Algorithm 2.

Algorithm 2 Transductive learning with `1 relaxation

of the multi-class Cheeger cut

un=0
k given by a few steps of heat diffusion of the indicator

functions of labels
while outer loop not converged do
αd

q=0
k , αv

q=0
k , αm

q=0
k ← 0

while inner loop not converged do

un+1,q+1
k given by (9)

vn+1,q+1
k given by (10) + simplex projection [21,28]

+ labels given by (17)

dn+1,q+1
k given by (11)

αd
q+1
k given by (17)

αvk given by (17)
αm

q=0
k given by (17)

end while
λn+1
k given by (13)

end while

4 Transductive data classification with `1

relaxation of the multi-class

Mumford-Shah-Potts model

In this section, we develop an alternative to the multi-

class Cheeger transductive classification algorithm in-

troduced in the previous section. A successful multi-

phase segmentation algorithm in imaging is the mul-

tiphase piecewise constant Mumford-Shah method [22]

(continuous setting) or the Potts method [23] (discrete

setting). These methods are well suited to solve the

image segmentation problem and the idea in this sec-

tion is to extend them to the transductive learning

problem. Note that the piecewise constant Mumford-

Shah/Potts models have been first implemented with

the level set method [30,27] and the graph cut method

[5]. However, these methods are either too slow, not

optimal, not accurate enough or the memory alloca-

tion can be important. Recent advances in `1 optimiza-

tion algorithms provide efficient tool to solve the piece-

wise constant Mumford-Shah/Potts models [28,19,20,

8,6,1]. These recent improvements will be used to de-

velop an efficient algorithm for the transductive Potts

model:

min
Ω1,...,ΩK

K∑
k=1

Cut(Ωk, Ω
c
k)︸ ︷︷ ︸

'Per(Ωk)

s.t.

∪Kk=1 Ωk = V and Ωi ∩Ωj = ∅ ∀i 6= j and given {lk}Kk=1,

where Per stands for perimeter. The previous minimiza-

tion problem is equivalent to the following problem:

min
{uk}Kk=1∈{0,1}

K∑
k=1

||Duk||1

s.t.

K∑
k=1

uk(i) = 1 ∀i ∈ V,

and uk(i) =

{
1 if i ∈ lp and k = p

0 if i ∈ lp and k 6= p

The set of minimization used in the above minimiza-

tion problem is not convex because binary functions do

not make a convex set. Thus we consider the following

relaxation:

min
{uk}Kk=1∈[0,1]

K∑
k=1

||Duk||1

s.t.

K∑
k=1

uk(i) = 1 ∀i ∈ V,

and uk(i) =

{
1 if i ∈ lp and k = p

0 if i ∈ lp and k 6= p
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The previous minimization problem is solved as:

(un+1
k , vn+1

k , dn+1
k ) = argminuk,vk∈[0,1],dk ||dk||1

+αdk.(dk −Duk) + rd
2 |dk −Duk|

2

+αvk.(vk − uk) + rv
2 (vk − uk)2

s.t.
∑K
k=1 vk = 1 and vk(i) =

{
1 if i ∈ lp and k = p

0 if i ∈ lp and k 6= p

αd
n+1
k = αnd + rd.(d

n+1
k −Dun+1

k )

αv
n+1
k = αnv + rv.(v

n+1
k − un+1

k )
The solution of the minimization problems w.r.t. uk, dk
is the same as the solution given in Section 2. The min-

imization w.r.t. vk is simply given by:

v?k = Π[0,1](fvk) with fvk := uk −
αvk
rv

(19)

and project onto the convex simplex set
∑K
k=1 vk = 1

using [21,28]. Observe that the final solution {u?k}Kk=1 of

(16) is not guaranteed to be binary. Hence, a conversion

step is required to make {u?k}Kk=1 binary. Like in the

previous section, the binary conversion is as follows:

û?k(i) =

{
1 if k = arg maxp∈{1,...,K} u

?
p(i)

0 otherwise
∀i ∈ V (20)

where {û?k}Kk=1 satisfy
∑K
k=1 û

?
k = 1.

To summarize the algorithm introduced in this section,

we write down the pseudo-code Algorithm 3.

Algorithm 3 Transductive learning with `1 relaxation

of multi-class Mumford-Shah-Potts model
un=0
k given by a few steps of heat diffusion of the indicator

functions of labels
αd

n=0
k , αv

n=0
k , αm

n=0
k ← 0

while outer loop not converged do

un+1
k given by (9)

vn+1
k given by (19) + simplex projection [21,28] + labels

given by (17)
dn+1
k given by (11)

αd
n+1
k given by (17)

αv
n+1
k given by (17)

end while

5 Experiments

In this section, we show classification results using the

transductive algorithms developed in sections 3 and 4.

We will work on the four moons and MNIST datasets

described above. For both data sets, we build the weights

matrix using the self-tuning construction of [29]. We use

ten nearest neighbors, and the tenth neighbor deter-

mines the local scale. The universal scaling parameter

is set to 1. For Algorithm 2, we set rd = 10, rv = 100,

rm = 6K/N , where N is the number of data points and

K is the number of classes, and δλ = 0.4. For Algorithm

3, we set rd = 10 and rv = 100. We choose the labeled

points randomly, and fix a number of labeled points

to draw from each class; we repeat each experiment 10

times.

In the Tables 3 and 4 below we compare Algorithm

2 and Algorithm 3 with a spectral transductive learning

method from [2], which uses linear least squares on the

eigenvectors of the normalized Laplacian to estimate

the classes. That is, given the weight matrix W as be-

fore, we set L = I−S−1/2WS−1/2, where S is the diag-

onal matrix with the row sums on the diagonal, that is,

Sii =
∑
jWij . We compute the l + 1 lowest eigenvalue

eigenvectors φ0, ..., φl of L, and form the N × l matrix

Φ = [φ1....φl]; note that as usual we have omitted the

density vector φ0. Each row of Φ corresponds to a data

point. Next we form the matrix Φlab by extracting the

rows of Φ corresponding to the labeled data points. Let

L denote the number of classes, and p be the number of

labeled data points. Given the p×L binary label matrix

Y , we compute

A =
(
ΦTlabΦlab

)−1
ΦTlabY.

To compute the class labels of the unlabeled points, we

set R = ΦA, and let

yj = argmax
i

Rji.

In both experiments, we see that the `1 relaxations

outperform the `2 relaxation method when there are

few labeled examples; and the Cheeger cut outperforms

the Potts for very few labeled examples.

6 Conclusion

The paper introduces new `1 relaxation methods for

the multi-class transductive learning problem. These re-

laxation methods are inspired from recent advances in

imaging science which offer fast, accurate and robust `1

optimization tools which allow to go beyond standard

`2 relaxation methods, i.e. spectral clustering methods.

Experiments demonstrate that the `1 relaxations of the

multi-class Cheeger cut and the Mumford-Shah-Potts

outperform the spectral clustering method, and even

more significantly when a very small number of labels

is considered.
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# labels per class 1 3 6 10 25 50 100 200
Algorithm 2 (Cheeger) 32.38% 2.08% 0.45% 0.46% 0.43% 0.42% 0.42% 0.36%

Algorithm 3 (Mumford-Shah-Potts) 21.59% 9.48% 3.03% 0.5% 0.44% 0.43% 0.39% 0.34%

Spectral clustering [2] 38.99% 11.35% 1.62% 0.63% 0.45% 0.45% 0.39% 0.37%

Table 3 Transductive learning for the four-moon dataset. This table compares the proposed `1 relaxations of the multi-class
Cheeger cut (Algorithm 2) and the Mumford-Shah-Potts (Algorithm 3) with the spectral method of [2] (by selecting the
number l of eigenvectors which minimizes the error). We have tested different numbers of labels (first row of the table) and
for each column we have made 10 experiments and computed the mean percentage of misclassification. For each experiment,
the labeled points were chosen randomly and the same labeled points were used for the multi-class Cheeger cut model, the
Mumford-Shah-Potts model and the spectral method. The `1 relaxations of the multi-class Cheeger cut and the Mumford-
Shah-Potts outperform the spectral method in all cases, significantly so when a very small number of points are labeled. We also
observe that the `1 relaxation of the Cheeger cut seems to do a better job than the `1 relaxation of the Mumford-Shah-Potts
for a very small number of labels, i.e. 3-50, and inversely when the number of labels is larger than 50.

# labels per class 1 5 10 25 50 100 250 All 10,000 labels
Algorithm 2 (Cheeger) 2.43% 2.45% 2.45% 2.42% 2.41% 2.38% 2.35% 1.99%

Algorithm 3 (Mumford-Shah-Potts) 14.32% 2.47% 2.38% 2.40% 2.33% 2.30% 2.26% 1.74%

Spectral clustering [2] 24.78% 8.08% 4.48% 3.11% 2.82% 2.47% 2.44% 2.32%

Table 4 Transductive classification for the MNIST dataset. This table compares the proposed `1 relaxations of the multi-class
Cheeger cut (Algorithm 2) and the Mumford-Shah-Potts (Algorithm 3) with the spectral method of [2] (by selecting the
number l of eigenvectors which minimizes the error). We have tested different numbers of labels (first row of the table) and
for each column we have made 10 experiments and computed the mean percentage of misclassification. For each experiment,
the labeled points were chosen randomly and the same labeled points were used for the multi-class Cheeger cut model, the
Mumford-Shah-Potts model and the spectral method. The `1 relaxations of the multi-class Cheeger cut and the Mumford-
Shah-Potts outperform the spectral clustering method in all cases and significantly so when a very small number of points
are labeled. We also observe that the `1 relaxation of the Cheeger cut seems to do a better job than the `1 relaxation of the
Mumford-Shah-Potts for a very small number of labels, i.e. 1-5, and inversely when the number of labels is larger than 5.
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than the `2 relaxation. (Note: it is a color figure.)
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