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Abstract In this work we analyze and compare two recent variational models for image denoising and improve
their reconstructions by applying a Bregman iteration strategy. One of the standard techniques in image denois-
ing, the ROF-model (cf. [ROF92]), is well known for recovering sharp edges of a signal or image, but also for
producing staircase-like artifacts. In order to overcome these model-dependent deficiencies, total variation modi-
fications that incorporate higher-order derivatives have been proposed (cf. [CL97,BKP10]). These models reduce
staircasing for reasonable parameter choices. However, the combination of derivatives of different order leads to
other undesired side effects, which we shall also highlight in several examples.

The goal of this paper is to analyze capabilities and limitations of the different models and to improve their
reconstructions in quality by introducing Bregman iterations. Besides general modeling and analysis we discuss
efficient numerical realizations of Bregman iterations and modified versions thereof.

Keywords Total Variation Regularization, Higher Order Methods, Staircasing, Exact Solutions, Bregman
Iteration

1 Introduction

Total variation regularization, dating back to the fundamental work of Rudin, Osher, and Fatemi (cf. [ROF92]) has
become a standard technique in image processing. As a precursor of the nowadays omnipresent `1-minimization
techniques, the approach is seeking sparsity of the gradient and is hence particularly successful in producing
blocky images with sharp edges (cartoons).

Compared to other approaches like filtering in some frame system such as wavelets, curvelets, or shearlets,
total variation methods can realize significantly sharper edges and overall more visually pleasing images, but on
the other hand tend to create piecewise-constant images even in regions with smooth transitions of grey or color
values in the original image. The latter artifact, usually called staircasing, is undesirable for some applications such
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as denoising, zooming, inpainting, or deblurring high resolution images or images with a natural gradient such as
those in MRI. Although several improved methods tailored specially for denoising exist (cf. e.g. [BCM05,CS05,
GO08]), total variation approaches still remain of highest importance for image processing and reconstruction,
since unlike others the variational approach can be generalized directly to a variety of imaging tasks. It is hence
important to study properties of total variation and modifications theoretically and numerically, where usually
image denoising with additive Gaussian noise remains the model problem to gain understanding. We shall take
the same route in this paper and consider modified total variation approaches for image denoising, although we
have applications to other imaging problems in mind, which however would shadow the main arguments about
the regularizations by the necessity to introduce and analyze more complicated data fidelities. Hence, we shall
investigate variational problems of the form

u = argmin
u∈dom(J)

{
1
2
‖u− f‖2

L2(Ω)+αJ(u)
}

, (1.1)

for different convex regularization functionals J. A special case of this geneneral denoising scheme is the ROF-
model (cf. [ROF92])

uR = argmin
u∈BV(Ω)

{
1
2
‖u− f‖2

L2(Ω)+αTV(u)
}

, (1.2)

with TV(u) being the total variation of u defined as

TV(u) := sup
p∈C∞

0 (Ω ;Rn)
‖p‖L∞(Ω ;Rn)≤1

∫
Ω

u divp dx , (1.3)

and with BV(Ω) denoting the space of functions u for which TV(u) is finite, i.e.

BV(Ω) =
{

u ∈ L2(Ω) | TV(u)< ∞
}

.

We shall investigate functionals J extending the original idea of total variation regularization, introduced in partic-
ular to cure staircasing effects. Such approaches based on combinations with higher order total variation function-
als have been proposed an investigated recently, in particular the infimal convolution model (cf. [CL97]), denoted
by ICTV, and a generalized total variation model (cf. [SS08,BKP10,SST11]), denoted by GTV, in the following.
These techniques seem to yield visual improvement in some cases, on the other hand there are still some deficien-
cies visible in several examples and a detailed analysis of the models seems to be missing. In this paper we shall
perform a detailed strucural analysis of the ICTV and the GTV model, which highlights some important issues
in both approaches and in particular explains why choosing weighting parameters between TV and higher order
TV is delicate. Our analysis is based on comparing formulations and general properties of the functionals and
associated optimality conditions for variational image denoising on the one hand, and on exact solutions of the
denoising problems, related to eigenfunctions of the regularization functionals, on the other hand. The study of
eigenfunctions allows to highlight what kind of images are favoured in variational methods with different regular-
ization functionals and provides hints on remaining systematic errors of each approach. We also mention that we
shall always work with a fixed parameter α , which we assume to be appropriately chosen. Since our main focus
is to compare the impact of the regularization methods, we can compare minimizers of (1.1) at fixed α and avoid
the discussion of choosing the parameter optimally in dependence of the noise and of asymptotics as α tends to
zero.

As it was well-understood first for total variation regularization and later for all kinds of singular regularization
methods, the systematic errors can be reduced or in some cases even completely eliminated by introducing Breg-
man iterations or inverse scale space methods (cf. [OBG+05,BGOX06]). In the context of the ROF-model, the
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Bregman iteration allows to overcome the loss of contrast while still suppressing noise efficiently. Thus, it seems
natural to try to overcome the deficiencies arising from the incorporation of higher-order differential operators by
Bregmanizing the variational approach. We are going to demonstrate that in combination with higher-order total
variation regularization the Bregman iteration will allow similar improvements and furthermore reduce undesired
slope changes in homogeneous regions.

The paper is organized as follows: First of all we introduce the different models and regularization function-
als, characterize their subdifferentials and provide several estimates between the functionals and the solutions of
the variational problems. Afterwards we focus on exact solutions of the different models in order to highlight
advantages and disadvantages with respect to each other. Subsequently we explain the computational realization
of the different methods and compare computational and analytical results. In the final part of this paper we dis-
cuss Bregman iterations for infimal convolution and generalized total variation regularization. We give a brief
motivation for its use and advantages towards standard regularization. We explain different ways of computational
realization and compare the Bregman-iterated reconstructions with standard reconstructions.

2 Higher-Order TV Functionals and their Roles in BV(Ω)

In the following we discuss some basic properties of the variational denoising scheme (1.1) for three different
regularization functionals corresponding to the different models described in the introduction, namely the higher-
order total variation, the infimal convolution regularization and the generalized total variation regularization. We
verify that - up to a very low-dimensional nullspace - the latter two introduce the same topology as BV and
give estimates between the functional values. Moreover, we discuss the subdifferentials of each functional and the
optimality conditions for the variational denoising problems. Finally we provide estimates between the minimizers
of the different functionals, yielding also insight into sources of difference between them.

2.1 Higher-Order Total Variation (TVl)

A key property of modified total variation regularizations is that higher-order differential operators are incorpo-
rated into the regularizer. Thus, we want to extend the concept of total variation to higher-order derivatives first.
The higher-order total variation regularization TVl (cf. e.g. [Sch98,CMM00]) is defined as

TVl(u) := sup
p∈C∞

0 (Ω ;Syml(Rn))
‖p‖∞≤1

∫
Ω

u divl p dx , (2.1)

with ‖ · ‖∞ denoting the L∞(Ω ;Syml (Rn))-norm, and with Syml (Rn) denoting the space of symmetric l-tensors.
For a definition of symmetric tensor fields we would like to refer to [BG80, Chapter2]; a detailed introduction
of tensor spaces in the context of higher-order total variation methods can be found in [BKP10, Section 2]. Note
that the L∞(Ω ;Syml (Rn))-norm and thus the characterization of dual variables heavily depends on the choice
of the inner tensor-norm. Throughout this work we will focus on the `1-tensor-norm only, leading to anisotropic
total variation methods, which simplifies the analysis in some points. However we note that isotropic versions, i.e.
`2-type norms, are at least of equal interest in practice.
The subdifferential ∂TVl can be characterized as

∂TVl(u) =
{

divl p | p ∈ L∞
0 (Ω ;Syml (Rn)), ‖p‖∞ ≤ 1, 〈u,divl p〉= TVl(u)

}
,

which can be seen by analogous reasoning as in case of the subdifferential of the standard total variation (i.e.
l = 1) described in [Mey01,BO12].
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However, in the following we will focus on the cases l = 1 and l = 2, for which the subdifferentials are

∂TV(u) = {divp | p ∈ L∞(Ω ;Rn), ‖p‖∞ ≤ 1, p ·n = 0 on ∂Ω , 〈u,divp〉= TV(u)} (2.2)

and

∂TV2(u) =
{

div2 p | p ∈ L∞(Ω ;Sym2 (Rn)), ‖p‖∞ ≤ 1, p ·n = 0, and (divp) ·n = 0 on ∂Ω ,

〈u,div2 p〉= TV2(u)
}

,
(2.3)

with n denoting the outer unit normal to the boundary ∂Ω .
Usually, promoting sparsity with respect to one particular higher order derivative is not desirable, e.g. TV 2

promotes piecewise linear solutions. However, combinations of various derivatives have been subject of recent
interest and the higher order total variation as well as the original first-order one are the building blocks of those
approaches. Two particular models for combining the TV and higher order TVl will be presented in the two
upcoming subsections.

2.2 Infimal Convolution Regularization (ICTV)

A regularization approach that has been introduced in the context of total variation denoising by Chambolle and
Lions ([CL97]) is the use of infimal convolutions as regularization functionals. The infimal convolution of two
functionals Φ and Ψ is defined as

(Φ�Ψ)(u) := inf
u=v+w

Φ(v)+Ψ(w) .

Although infimal convolution regularization can be used for very general functionals Φ and Ψ (cf. [BC11]), the
particular interest in this work will lie on the infimal convolution of TV and TV2 and its extensions.

Hence, we define the infimal convolution model (ICTV) concerning TV and TV2, by using of (2.1), as

ICTVβ (u) := (TV�TV2)(u) = inf
u=v+w

(
TV(v)+β TV2(w)

)
(2.4)

= inf
w∈BV2(Ω)

sup
p∈C∞

0 (Ω ;Rn)
‖p‖∞≤1

∫
Ω

(u−w)div(p)dx + β sup
q∈C∞

0 (Ω ;Sym2(Rn)
‖q‖∞≤1

∫
Ω

w div2(q)dx,

where we have abused the notation ‖ ·‖∞ for both the L∞(Ω ;Sym2 (Rn))- as well as the L∞(Ω ;Sym1 (Rn))-norm,
for the sake of brevity. Equation (2.4) can be rewritten to

ICTVβ (u) = sup
p∈C∞

0 (Ω ;Rn)
‖p‖∞≤1

sup
q∈C∞

0 (Ω ;Sym2(Rn)
‖q‖∞≤1

inf
w

∫
Ω

(u−w)div(p)+β w div2(q)dx

with the infimum for w being attained for div(p) = β div2(q). By inserting this relation and by substituting q with
βq we end up with

ICTVβ (u) = sup
p∈C∞

0 (Ω ;Rn)

q∈C∞
0 (Ω ;Sym2(Rn))

‖p‖∞≤1, ‖q‖∞≤1
β div2(q)=div(p)

∫
Ω

u div(p)dx = sup
p∈C∞

0 (Ω ;Rn)

q∈C∞
0 (Ω ;Sym2(Rn))

‖p‖∞≤1, ‖q‖∞≤β

div2(q)=div(p)

∫
Ω

u div2(q)dx . (2.5)
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Using the dual definition it is quite straight-forward to characterize the subdifferential of (2.5) as

∂ ICTVβ (u) =
{

div2q | q ∈ L∞(Ω ;Sym2 (Rn)), p ∈ L∞(Ω ;Rn), ‖q‖∞ ≤ β , ‖p‖∞ ≤ 1,

q ·n = 0, (divq) ·n, p ·n = 0 on ∂Ω ,div2q = divp, 〈u,div2q〉= ICTVβ (u)
}

.
(2.6)

In higher dimensions it has been observed that image reconstruction models with infimal convolution regulariza-
tion do not separate a function into its TV and TV2 structures properly. Consequently, a modified convolution
model has been proposed that we are going to recall in the following subsection.

2.3 Generalized Total Variation (GTV)

Since the infimal convolution of TV and TV2 did not yield the desired optimal separations of piecewise constant
and piecewise linear regions for higher dimensions, modifications of (2.5) have been proposed in [BKP10] and
[SST11]. We follow the definition of [BKP10] based on the dual formulation, while [SST11] discussed a modifi-
cation in the discrete setting for the primal version of (2.5). Under appropriate discretizations of the functional in
[BKP10], called total generalized variation there, both modifications coincide however at least in the case of TV
and TV2.

The functional of [BKP10], which we rather call generalized total variation (GTV) for unification with TV
and ICTV, is defined in the second order case as

GTVβ (u) := sup
q∈C∞

0 (Ω ;Sym2(Rn))
‖q‖∞≤β , ‖div(q)‖∞≤1

∫
Ω

u div2(q) dx . (2.7)

Hence, comparing equation (2.7) with (2.5), the regularization functionals GTVβ (u) and ICTVβ (u) coincide if
the constraint p = div(q) for the dual functions holds.

The subdifferential of (2.7) is very similar to (2.6), with the difference that we have only a single dual variable
and hence, no further equality constraint. The subdifferential reads as follows

∂GTVβ (u) =
{

div2q | q ∈ L∞(Ω ;Sym2 (Rn)), ‖q‖∞ ≤ β , ‖divq‖∞ ≤ 1,

q ·n = 0, (divq) ·n = 0on∂Ω , 〈u,div2q〉= GTVβ (u)
}

.
(2.8)

2.4 Functional Estimates

In this section we compare basic properties of the three versions of total variation TV, ICTVβ , and GTVβ . A first
result obtained from the way the parameter settings are used in the definition of ICTVβ (u) and GTVβ (u) is an
ordering of the functional values:

Lemma 1 (Functional estimates) For functions u in BV(Ω) and for a positive weighting parameter β > 0 the
following estimates hold:

GTVβ (u) ≤ ICTVβ (u) ≤ TV(u) . (2.9)
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Proof The feasible set for the supremum in the definition of GTVβ in (2.7) is smaller than the feasible set in the
definition of ICTVβ in (2.5). In the special case of p = div(q), the definitions coincide. Hence, we obtain

GTVβ (u)≤ ICTVβ (u) .

Moreover, the feasible set for the supremum in the definition of TV(u) includes the feasible set in ICTVβ (u). This
implies

ICTVβ (u)≤ TV(u) .

It seems intuitive that one could expect estimates in the opposite direction using appropriate constants and
appropriate subspaces of BV(Ω). For this sake we first characterize the nullspaces of the functionals:

Lemma 2 (Nullspace) Le u be a function of bounded total variation. Then, the following equivalences hold

(i) TV(u) = 0 ⇐⇒ u is constant

(ii) ICTVβ (u) = 0 ⇐⇒ u is affinely linear

(iii) GTVβ (u) = 0 ⇐⇒ u is affinely linear .

Proof (i) is a well-known result (cf. e.g. [BO12] for full details).
(ii) Let u ∈ BV(Ω) be a function annihilating the infimal-convolution functional ICTVβ (u). By considering the

definition in (2.4), we obtain for w ∈ BV2(Ω)

TV2(w) = 0 and TV(u−w) = 0 ,

because those functionals are positive in general. This implies that w is affinely linear and from (i) we obtain
u = w+ c where c ∈ R denotes a positive constant. Hence we can conclude that u is affinely linear as well.

(iii) Let GTVβ (u) = 0, then from the definition of the generalized total variation we see that∫
Ω

u div2(q) dx = 0

for all q ∈C∞
0 (Ω) with

‖div(q)‖L∞(Ω) ≤ 1 ‖q‖L∞(Ω) ≤ β .

For arbitrary p ∈ C∞
0 (Ω) however we can always find c > 0 such that q = cp satisfies the above constraints

and thus ∫
Ω

u div2(p) dx =
1
c

∫
Ω

u div2(q) dx = 0,

which implies that ∇2u = 0 in the distributional sense, and hence u is affinely linear.

A useful result is the following rewritten version of the generalized total variation, which allows an augmentation
by skew-symmetric tensors:

Lemma 3 Let n = 2 and u ∈ BV(Ω), then

GTVβ (u)≥ sup
q∈C2(Ω ;Sym2(R2)), r∈C2(Ω)

‖q‖∞≤β , ‖div(q)‖∞≤1
(q+S(r))·n|∂Ω=0, ∇·(q+S(r))·n|∂Ω=0

∫
Ω

u div2(q) dx (2.10)

with the matrix

S(r) =
(

0 −r
r 0

)
.
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Proof Let u ∈C2(Ω), then using integration by parts and a density argument it is straight-forward to see that

GTVβ (u) = sup
q∈C2(Ω ;Sym2(R2))
‖q‖∞≤β , ‖div(q)‖∞≤1

∫
Ω

∇
2u : q dx ,

where the colon indicates tensor contraction (generalized trace for tensors) involving two indices. Now we observe
that for the skew-symmetric matrix S(r) and the symmetric matrix ∇2u we have ∇2u : S(r) = 0. Thus,

GTVβ (u) = sup
q∈C2(Ω ;Sym2(R2)), r∈C2(Ω)

‖q‖∞≤β , ‖div(q)‖∞≤1

∫
Ω

∇
2u : (q+S(r)) dx.

Now, restricting to the class of functions such that the boundary values (q+S(r)) ·n and ∇ · (q+S(r)) ·n vanish
the supremum does not increase and integrating by parts twice we obtain

GTVβ (u)≥ sup
q∈C2(Ω ;Sym2(R2)), r∈C2(Ω)

‖q‖∞≤β , ‖div(q)‖∞≤1
(q+S(r))·n|∂Ω=0, ∇·(q+S(r))·n|∂Ω=0

∫
Ω

u div2(q+S(r)) dx= sup
q∈C2(Ω ;Sym2(R2)), r∈C2(Ω)

‖q‖∞≤β , ‖div(q)‖∞≤1
(q+S(r))·n|∂Ω=0, ∇·(q+S(r))·n|∂Ω=0

∫
Ω

u div2(q) dx.

Lemma 4 (Functional Estimate, GTV and TV) Let Ω = [a1,b1]× [a2,b2]⊂ R2 and β > 0. Then there exists a
constant C =C(β )> 0 such that for all u ∈ BV with vanishing zeroth and first moment, i.e.∫

Ω

u(x)dx = 0 and
∫

Ω

x u(x)dx = 0 ,

the estimate
GTVβ (u)≥C ·TV (u) (2.11)

holds.

Proof First of all we observe that the norms induced by GTVβ (u) on the subspace of functions with vanishing ze-
roth and first moments for different β are equivalent, thus we may assume β to be sufficiently large. Furthermore,
standard density arguments as for the analysis of total variation yield

sup
p∈C∞

0 (Ω ;R2)
‖p‖∞≤1∫

p dx=0

∫
Ω

u div(p) dx = sup
p∈C1(Ω ;R2)
‖p‖∞≤1

p·n|∂Ω=0,
∫

p dx=0

∫
Ω

u div(p) dx

and
TV(u) = sup

p∈C∞
0 (Ω ;R2)
‖p‖∞≤1

∫
Ω

u div(p) dx = sup
p∈C1(Ω ;R2)
‖p‖∞≤1

p·n|∂Ω=0

∫
Ω

u div(p) dx.

Now let x = (x1,x2) and Pi(x1,x2) for i = 1,2 be the second-order polynomial with

P1(a1,x2) = 0, P1(b1,x2) = 0 ∀x2

P2(x1,a2) = 0, P2(x1,b2) = 0 ∀x1

and satisfying
∫

Ω
Pi(x) dx = 1. For arbitrary p ∈C1(Ω ;R2) such that p ·n = 0 on ∂Ω define

p̃i(x) :=
1
γ

(
pi(x)−Pi(x)

∫
Ω

pi(y) dy
)

(2.12)
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with γ ∈ R. Then p̃ ∈C1(Ω ;R2) and by construction we see

p̃ ·n|∂Ω = 0,
∫

Ω

p̃ dx = 0.

Additionally ‖p̃‖
∞
≤ 1 holds for

γ ≥ 1+ |Ω |max
x∈Ω

|Pi(x)|, i = 1,2.

Moreover, since div(P1,P2) is linear we find∫
Ω

u div(p) dx =
∫

Ω

u div(p) dx−
∫

Ω

p dy
∫

Ω

u div(P1,P2) dx︸ ︷︷ ︸
=0

(2.12)
= γ

∫
Ω

u div(p̃) dx.

Hence,
1
γ

TV (u) = sup
p∈C1(Ω ;R2)
‖p‖∞≤1

p·n|∂Ω=0

∫
Ω

u div
(

1
γ

p
)

dx≤ sup
p∈C1(Ω ;R2)
‖p‖∞≤1

p·n|∂Ω=0,
∫

Ω p dx=0

∫
Ω

u div(p) dx. (2.13)

Now we are going to apply Lemma 3. For this sake let p ∈C1(Ω ;R2) with
∫

Ω
p dx = 0 and p ·n = 0 on ∂Ω .

Define wi ∈C3(Ω ;R2) with mean zero as the solution of λ∆wi = pi in Ω with homogeneous Neumann boundary
conditions, which exists since the right-hand sides pi fulfill the solvability condition for the Neumann problem.
Now we define

q11 := ∂x1 w1, q22 := ∂x2 w2 q12 = q21 :=
1
2
(∂x2 w1 +∂x1 w2), r :=

1
2
(−∂x2 w1 +∂x1 w2).

Then, by the regularity properties of the Poisson equation it is straightforward to show that ‖q‖∞ ≤ β for β

sufficiently large and ‖div(q)‖∞ ≤ 1 for appropriate choice of λ independent of p. Moreover, one easily checks
that λdiv2(q) = div(p). Thus,

sup
p∈C1(Ω ;R2)
‖p‖∞≤1

p·n|∂Ω=0,
∫

Ω p dx=0

∫
Ω

u div(p) dx = sup
q∈C2(Ω ;Sym2(R2)), r∈C2(Ω)

‖q‖∞≤β , ‖div(q)‖∞≤1
(q+S(r))·n|∂Ω=0, ∇·(q+S(r))·n|∂Ω=0

λ

∫
Ω

u div2(q) dx ≤
Lemma3

λ GTVβ (u),

which together with (2.13) finishes the proof for C = 1/(λγ).

We mention that (2.11) can be shown easily also in spatial dimension one and with few technical additions also for
rectangles in three dimensions, we chose the case of dimension two here in order to illustrate the proof technique.

The conclusion from the above results is that restricted to BV functions with vanishing zeroth and first moment
the (semi-)norms of TV, ICTV and GTV are equivalent norms. The minimizers of the associated variational prob-
lems (1.1) can differ however, which we shall investigate below. Before going on, we verify that the functionals
GTVβ and ICTVβ only differ in multiple dimensions:

Theorem 1 Let Ω ⊂ R. Then for all u ∈ BV (Ω) the equality

GTVβ (u) = ICTVβ (u) (2.14)

holds.
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Proof In the one-dimensional case we have

ICTVβ (u) = sup
p∈C∞

0 (Ω)
q∈C∞

0 (Ω)
‖p‖∞≤1, ‖q‖∞≤β

q′′=p′

∫
Ω

u div2(q)dx . (2.15)

Thus we obtain that q′ and p in the feasible set for the supremum differ at most by a constant, which on the other
hand must be zero since both have compact support. Thus, p = q′ and the definition coincides with the one for
GTVβ (u).

2.5 Variational Problems

In this section we return to the denoising scheme (1.1) with the functionals GTVβ and ICTVβ defined above. To
fix notation we write

uI = argmin
u∈BV(Ω)

{
1
2
‖u− f‖2

L2(Ω)+αICTVβ (u)
}

, (2.16)

and

uG = argmin
u∈BV(Ω)

{
1
2
‖u− f‖2

L2(Ω)+αGTVβ (u)
}

. (2.17)

The equivalence of the seminorms allows to adapt the proofs for the ROF-functional in a straight-forward way
and conclude the existence and uniqueness of a minimizer. Moreover, using the characterization of nullspaces we
immediately conclude the following property (again completely analogous to the proof in the ROF-case):

Proposition 1 Let uI ,uG be defined as above, then∫
Ω

f (x) dx =
∫

Ω

uI(x) dx =
∫

Ω

uG(x) dx (2.18)

and ∫
Ω

x f (x) dx =
∫

Ω

x uI(x) dx =
∫

Ω

x uG(x) dx (2.19)

Using the characterization of subdifferentials above it is straight-forward to state the optimality conditions for
the denoising scheme in a more detailed way. Note that the optimality for (1.1) is given by

u− f +αw = 0 w ∈ ∂J(u). (2.20)

Thus, we obtain an optimality condition for uI (with associated vector field pI and tensor qI) as

uI− f +αdiv2qI = 0

div2qI−divpI = 0

‖pI‖∞ ≤ 1, ‖qI‖∞ ≤ β

qI ·n|∂Ω = 0, (divqI) ·n|∂Ω = pI ·n|∂Ω = 0

〈uI ,div2qI〉− ICTVβ (uI) = 0.
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In the same way we conclude the optimality for uG (with associated tensor qG) as

uG− f +αdiv2qG = 0

‖divqG‖∞ ≤ 1, ‖qG‖∞ ≤ β

qG ·n|∂Ω = 0, (divqG) ·n|∂Ω = 0

〈uG,div2qG〉−GTVβ (uG) = 0.

We mention that clearly uI respectively uG can be eliminated from the first line of the optimality condition to
obtain a purely dual problem, similar to the case of the ROF functional (cf. e.g. [Cha04]), which is however not
our main interest here.

The optimality condition also allows to gain some insight into structural properties of minimizers, as the next
result shows:

Theorem 2 Let D ⊂ Ω be an open simply connected set. If ‖qG‖ ≤ β − ε and ‖divqG‖ ≤ 1− ε in D for some
ε > 0, then uG is affinely linear in D. If ‖qI‖ ≤ β − ε and ‖pI‖ ≤ 1− ε in D for some ε > 0, then uI is affinely
linear in D.

Proof We only prove the result for uG, the proof for uI is analogous. Let r ∈C∞
0 (D;Sym2 (Rn)), and denote also

its zero extension outside D by r. Then for δ > 0 sufficiently small, we have

‖qG±δ r‖ ≤ β , ‖div(qG±δ r)‖ ≤ 1.

Thus, ∫
Ω

uG div2qG dx≥
∫

Ω

uG div2(qG±δ r) dx,

which implies ∫
D

uG div2r dx = 0, ∀r ∈C∞
0 (D;Sym2 (Rn)).

Hence ∇2uG = 0 in D, which implies that uG is affinely linear in D.

Theorem 2 indicates that piecewise affinely linear is a typical structure for solutions uG or uI , in particular if
the constraints on the tensors are not active on a set of positive measure. In spatial dimension one an analogous
result as for the ROF model can be shown: For the ROF model it is known (cf. [CCN07]) that locally u = f or u
is constant. Since we have

q′′G =
1
α
( f −uG) ∈ L2(Ω)

We conclude qG ∈ H2(Ω) and by embedding qG ∈ C1(Ω). Thus, by continuity |qG| = β on an open simply
connected subset D is only possible if qG = β or qG =−β everywhere, i.e. qG is constant in D. In analogous way
we conclude that q′G is constant in D if |q′G|= 1 everywhere in D. In either case we obtain q′′G = 0 and thus, from
the optimality condition u = f .

We proceed to a comparison result between the minimizers of (1.1). For this sake we need the notion of the
generalized Bregman distance (cf. [Kiw97]) related to a convex functional J. For a subgradient w∈ ∂J(u) we have

Dw
J (v,u) := J(v)− J(u)−〈w,v−u〉. (2.21)

In particular in singular cases like total variation regularization, Bregman distances have evolved as standard
measures for error estimates after [BO04]. We can derive an error estimate from the optimality condition of (1.1)
with functionals J1 and J2 such that J1(u)≤ J2(u) for all u. The optimality condition is

ui− f +αwi = 0 wi ∈ ∂Ji(ui), (2.22)
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and subtracting it for i = 1,2 we have

u1−u2 +α(w1−w2) = 0 wi ∈ ∂Ji(ui).

Now a duality product with u1−u2 as well as adding or subtracting terms of the form αJi(u j) yields

‖u1−u2‖2 +αDw1
J1
(u2,u1)+αDw2

J2
(u1,u2)≤ α(J2(u1)− J1(u1)+ J1(u2)− J2(u2)).

Using that J1 ≤ J2 we conclude the following result:

Theorem 3 Let J1 and J2 be convex functionals such that J1 ≤ J2 and let ui be a minimizer of (1.1) for J = Ji.
Then the estimate

‖u1−u2‖2 +αDw1
J1
(u2,u1)+αDw2

J2
(u1,u2)≤ α(J2(u1)− J1(u1))

holds. In particular, if J2(u1) = J1(u1), then u1 = u2.

Theorem 3 provides an option to compare minimizers of different regularizations and since we have the
ordering (2.9) we can apply the result with J1 = GTVβ and J2 = TV or J2 = ICTVβ , as well as J1 = ICTVβ

and J2 = TV . In particular if GTVβ (uG) = TV (uG), then uG = uI = uR.
It thus remains to get a deeper understanding of why and when the difference between the values GTVβ and

ICTVβ can typically occur, which we want to understand better in the case of the anisotropic total variation.
The canonical structures for the modified total variation functionals appear to be piecewise linear functions with
potential discontinuities in between. It can easily be generalized from the arguments for characteristic functions
in [BKP10] that for u(x) = a+ bχD(x) with χD being the characteristic function of a subdomain D ⊂ Ω with
sufficiently regular boundary one has

GTVβ (u) = ICTVβ (u) = TV (u). (2.23)

A more interesting example is of the form

u(x) = (a+ c · x)+(b+d · x)χD(x). (2.24)

It is straighforward to see that ∫
Ω

udiv2q dx =
∫

∂D∩Ω

([u]divq−q[∇u]) ·n dσ ,

where [u] and [∇u] denote the jump of the function value and gradient, respectively, across ∂D. In the setup of the
generalized total variation one can also show that∫

Ω

udiv2q dx =
∫

∂D∩Ω

([u]p−q[∇u]) ·n dσ .

Hence, GTVβ (u) respectively ICTVβ (u) can be computed by maximizing a functional concentrated on ∂D with
the above constraints.

For the anisotropic total variation with `1-tensor and -vector norms, canonical subdomains D are rectangles
parallel to the coordinate axes. Moreover, canonical vectors c and d are multiples of the unit vectors. An example
of this form with d = (1,0) in spatial dimension two is a standard test example for several image analysis tasks
and has also been used to demonstrate advantages of modified TV functionals in [SST11]. Thus, let Ω = (−L,L)2

with L > 1, D = (−1,1)2, and d = (1,0). Then we have

∂D = Γ1∪Γ−1∪Γ2∪Γ−2,
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with
Γ±1 = {x ∈ ∂D | x1 =±1}, Γ±2 = {x ∈ ∂D | x2 =±1}.

On Γ±1 we have n = (±1,0) and hence∫
Γ±1

([u]divq−q[∇u]) ·n dσ =±
∫

Γ±1

((b±d)(∂x1 q11 +∂x2 q12)−dq11) dx2.

On Γ±2 we have n = (0,±1) and hence∫
Γ±2

([u]divq−q[∇u]) ·n dσ =±
∫

Γ±2

((b+dx1)(∂x1 q12 +∂x2 q22)−dq12) dx1.

In spatial dimension two it is straightforward to characterize the nullspace of the divergence as rotations of a
compactly supported scalar v, i.e. (−∂x2 v,∂x1 v). I.e., in the case of ICTV, where div2q = divp holds, we have

∂x1 q11 +∂x2 q12 = p1−∂x2 v ∂x1 q12 +∂x2 q22 = p2 +∂x1 v.

Thus on, Γ±1 we find∫
Γ±1

(b±d)(∂x1 q11 +∂x2 q12) dx2 =
∫

Γ±1

(b±d)p1 dx2− (b±d)
∫

Γ±1

∂x2 v dx2

= ±
∫

Γ±1

[u]p ·n dσ − (b±d)(v(±1,1)− v(±1,−1)).

On Γ±2 we have∫
Γ±2

(b+dx1)(∂x1 q12 +∂x2 q22) dx1 =
∫

Γ±2

(b+dx1)(p2) dx1 +
∫

Γ±2

(b+dx1)∂x1 v dx1

= ±
∫

Γ±2

[u]p ·n dσ ± (b±d)v(±1,±1)∓ (b∓d)v(∓1,±1)∓d
∫

Γ±2

v dx1.

Thus, we find for admissible tensors and vector fields in the ICTV case∫
Ω

udiv2q dx =
∫

∂D∩Ω

([u]p−q[∇u]) ·n dσ −d
∫

Γ+2

v dx1 +d
∫

Γ−2

v dx1.

This computation indicates that the main differences between GTVβ (u) and ICTVβ (u) will be caused by the
second and third term, i.e. due to the difference of vector fields around Γ±2, i.e. the part where the jump of the
function u is not constant across the boundary. As we shall see in the numerical examples, indeed staircasing can
remain in the result of (2.16) close to this part of the discontinuity set, while eliminated in the solution of (2.17).

3 Exact Solutions

A famous example was given by Meyer [Mey01] in the case of the two-dimensional, isotropic ROF-model on an
infinite dimensional set. There the characteristic function of a circle can be recovered almost exactly, only suffering
a loss of contrast. Further examples of exact solutions are given by Strong (cf. [SC03]) and systematically in the
context of eigenfunctions in [ACC05,Ben11]. It is also well known that the application of inverse scale space
methods or Bregman iteration can compensate this loss of contrast in finite time or a finite number of iterations,
respectively (cf. [OBG+05,BGOX06,Ben11]). In this section we therefore want to compare exact solutions for the
different models in a one-dimensional setting, in order to give an intuition of what kind of solutions we can expect
to be recovered almost exactly by variational denoising schemes, respectively exactly with a Bregman iteration
strategy as we shall see in Section 6, even in the presence of noise.
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3.1 Total Variation Regularization (l = 1)

As in Meyer’s example we want to define the function ublock : [−L,L]⊂ R→{−1/
√

2L,1/
√

2L} with

ublock(x) :=

{
1√
2L

x ∈
[
− L

2 ,
L
2

]
− 1√

2L
else

, (3.1)

and we are going to show that in case of f = ublock the unique solution of the ROF-model satisfies û = cublock with
c = 1−2α

√
2/L, for α <

√
L/2/2.

Computing the optimality condition of ROF and inserting f = ublock and û = cublock yields

ŵ =
1
α
( f − û) = 2ublock

√
2/L , (3.2)

for ŵ ∈ ∂TV(û) = ∂TV(ublock). Thus, it remains to be shown that 2ublock
√

2/L indeed is a subgradient. The
subdifferential of TV can be characterized via (2.2). Hence, in one dimension we simply have to find a function
p such that p′ = 2ublock

√
2/L holds in a weak sense, and with p satisfying ‖p‖∞ = 1, p(L) = p(−L) = 0 and

〈p′, û〉= TV(û). If we consider p : [−L,L]→ [−1,1] with

p(x) :=
2
L


x x ∈

[
− L

2 ,
L
2

]
−x+L x ∈

] L
2 ,L
]

−x−L x ∈
[
−L,− L

2

[ , (3.3)

we easily see that p satisfies p(−L) = p(L) = 0, ‖p‖∞ = p(L/2) = 1, p′ = (2ublock)
√

2/L (in a weak sense)
and 〈p′, û〉 = c〈p′,ublock〉 = 2c

√
2/L

∫ L
−L u2

block dx = 2c
√

2/L = cTV(ublock) = TV(û). Thus, 2ublock
√

2/L is a
subgradient, and therefore (3.2) is fulfilled.

3.2 Second-Order Total Variation Regularization (l = 2)

After having considered a simple example that remains - despite the loss of contrast - almost invariant with
respect to ROF minimization we want to find a similar example in case of second-order total variation TV2, with
its subdifferential being characterized by (2.3). Again, we restrict ourselves to one dimension and consider the
function uhat : [−L,L]→

[
−
√

3/(2L),
√

3/(2L)
]

with

uhat(x) :=

√
6
L3

(
L
2
−|x|

)
. (3.4)

We are going to show that the unique solution û of (1.1) with J(u) = TV2(u) is given via û = cuhat, with c =
1− 2α

√
6/(L3), for α <

√
L3/24. Similar to the previous section we simply have to verify that the optimality

condition

ŵ =
1
α
( f − û) = 2uhat

√
6/(L3) ,

for ŵ∈ ∂TV2(û) = ∂TV2(uhat), is satisfied. In case of ∂TV2(uhat) we therefore have to find a function q satisfying
q′′ = 2uhat

√
6/(L3) (in a weak sense), q(L) = q(−L) = 0, ‖q‖∞ ≤ 1 and 〈q′′,uhat〉 = TV2(uhat). By considering

the function q : [−L,L]→ [0,1] with

q(x) :=
3
L2 x2− 2

L3 |x|
3−1

we easily see that this specific q satisfies all these conditions, since we have TV2(uhat) = 2
√

6
L3 .
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Fig. 1 The functions ublock, uhat and ublockhat, and their corresponding dual variables, for the interval lengths L = 8, L = 32/3 and
L = 32/(2+

√
3), respectively.

3.3 Infimal Convolution and Generalized Total Variation Regularization

In the previous sections we have seen two functions which can be recovered almost exactly by the ROF model
(1.2) and model (1.1) with J(u) = TV2(u) as a regularizer respectively, suffering only a loss of contrast. However,
neither is the ROF model able to recover uhat as defined in (3.4), nor does model (1.1) with J(u) = TV2(u)
allow to recover ublock as defined in (3.1) without introducing a slope into its constant parts and eliminating
the discontinuity. However, it is easy to compute that both (3.1) and (3.4) can be recovered by (2.16) or (2.17),
respectively (cf. [Ben11]). The remaining dual variables in case of infimal convolution, respectively the only dual
variables in case of generalized total variation can be characterized via

q(x) :=
2
L


1
2 x2− 1

4 L2 x ∈
[
− L

2 ,
L
2

]
Lx− 1

2 x2− 1
2 L2 x ∈

] L
2 ,L
]

−Lx− 1
2 x2− 1

2 L2 x ∈
[
−L,− L

2

[ ,

for the choice of ublock, with β ≥ L/2, and

q(x) :=
2
L

x2− 4
3L2 |x|

3− 2
3

L , (3.5)

for the choice of uhat, with β ≥ (2L)/3. In the latter case the loss of contrast modifies to c = 1−α
√

32/(3L), due
to the requirement ‖q′‖∞ ≤ 1.

Moreover, we can combine these functions additively, to obtain a function that can neither be recovered by
ROF nor by model (1.1) with J(u) = TV2(u), but by (1.1) with either J(u) = ICTVβ (u) or J(u) = GTVβ (u). We
therefore want to validate that for input data given in terms of the function

ublockhat : [−L,L]→
[
−
√

(1+
√

3)/(2L(2+
√

3)),
√
(1+
√

3)/(2L(2+
√

3))
]

defined as

ublockhat(x) :=
1√

2+
√

3


1√
2L

+
√

6
L3

( L
2 −|x|

)
x ∈
[
− L

2 ,
L
2

]
− 1√

2L
+
√

6
L3

( L
2 −|x|

)
else
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the solution of (1.1) with J(u) = ICTVβ (u) satisfies û = cublockhat, for c = 1− 4α

√
2/
(
L
(
2+
√

3
))

and β ≥
L/
√

3.
The subdifferential of (2.5) can be characterized via (2.6). Thus, as in the previous examples we need to

ensure the existence of two functions q and p that satisfy the subdifferential properties and for which we obtain
q′′ = p′ =

(√
L
(
2+
√

3
)

ublockhat
)
/
(
4(1+

√
3)
)
. If we consider the functions

p(x) =
4
√

2
(2+
√

3)
√

L


1√
2L

x+
√

6
L3

( L
2 x− 1

2 sign(x)|x|2
)

x ∈
[
− L

2 ,
L
2

]
− 1√

2L
x+
√

6
L3

( L
2 x− 1

2 x2
)
+
√

L
2 x ∈

] L
2 ,L
]

− 1√
2L

x+
√

6
L3

( L
2 x+ 1

2 x2
)
−
√

L
2 x ∈

[
−L,− L

2

[
and

q(x) =
4

(2+
√

3)L


1+
√

3
2 x2− 1√

3L
|x|3−L2

(
2+
√

3
4
√

3

)
x ∈
[
− L

2 ,
L
2

]
− 1−

√
3

2 x2− 1√
3L

x3 +Lx− L2

2

(
1+
√

3√
3

)
x ∈
] L

2 ,L
]

− 1−
√

3
2 x2 + 1√

3L
x3−Lx− L2

2

(
1+
√

3√
3

)
x ∈
[
−L,− L

2

[ ,

we see that q(L) = q(−L) = p(L) = p(−L) = 0 holds, and that we obtain ‖p‖∞ = 1 and ‖q‖∞ = L/
√

3 = β . Fur-

thermore, we can verify either q′′ = p′ = (4ublockhat)/
√

2/
(
L
(
2+
√

3
))

and 〈ublockhat,q′′〉 = ICTV L√
3
(ublockhat),

since

ICTV L√
3
(ublockhat)=TV(ublock)+(L TV2(uhat))/

√
3=

(
2
√

2/L+L/
√

3
√

6/(L3)

)
/

√
2+
√

3= 4
√

2/(L(2+
√

3))

is satisfied.

Before continuing with two dimensional examples we want to point out that a piecewise-linear function or-
thogonal to any affine-linear function cannot automatically be recovered by (2.16) or (2.17) in the above sense.
Let us, for instance, consider the function

u(x) :=

{
− 7

4 x x ∈ [−L/2,L/2]
1
4 x else

,

for x ∈ [−L,L]. We make the following attempt for the corresponding dual variable. We define

q(x) :=
1
L2


− 7

3 x3 +L2x x ∈ [−L/2,L/2]
1
3 x3−L2x+ 2

3 L3 x ∈ ]L/2,L]
1
3 x3−L2x− 2

3 L3 x ∈ [−L,−L/2[
.

We can easily compute that q satisfies the properties q′′ = λu for λ = 8/(L2) (in a weak sense), q(L) = q′(L) =
q′(−L) = q(−L) = 0, ‖q‖∞ = (2L

√
7)/21 := β and ‖q′‖∞ = 1. However, we cannot guarantee

〈u,q′′〉= GTV(2L
√

7)/21(u) = ICTV(2L
√

7)/21(u).
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Computing the dual product actually yields 〈u,q′′〉= (7L)/3. In addition, due to (2.4), we would actually assume
ICTV(2L

√
7)/21(u) = TV(v)+βTV2(w) to hold, for

v(x) =


0 x ∈ [−L/2,L/2]
L x ∈ ]L/2,L]
−L x ∈ [−L,−L/2[

and

w(x) =


− 7

4 x x ∈ [−L/2,L/2]
1
4 x−L x ∈ ]L/2,L]
1
4 x+L x ∈ [−L,−L/2[

.

However, for these two functions we obtain TV(v) = 2L and TV2(w) = L, and thus,

GTV(2L
√

7)/21(u) = ICTV(2L
√

7)/21(u) = 2L+(2L2
√

7)/21 6= (7L)/3.

As a consequence, we have failed to construct a function q satisfying all subdifferential properties and hence, λu
is not a subgradient. Therefore we cannot expect to recover a multiple of u by applying (1.1) with either J =GTVβ

or J = ICTVβ .

Due to Theorem 1 the solutions of ICTVβ and GTVβ do not differ in one spatial dimension. Thus, in order
to observe differences between ICTVβ and GTVβ at least the two-dimensional case needs to be considered. First
of all, we can simply extend the one-dimensional examples from above to two dimensions by a simple constant
extension of the corresponding dual variables in each dimension. If we pick e.g. the corresponding dual variable
p for the function uhat defined as the derivative of (3.5), i.e.

p(x) =
4
L

(
x− 1

L2 sign(x)|x|2
)

,

we can define a vector field based on p simply via px(x,y) = p(x) and py(x,y) = p(y). The corresponding func-
tion u2D

hat obtained via c div p = u2D
hat, with p denoting (px, py) in this case and c being a constant guaranteeing

‖u2D
hat‖L2(Ω) = 1, thus reads as

u2D
hat(x,y) =

√
3/2
L2 (L−|x|− |y|) ,

for (x,y) ∈ [−L,L]2. In a similar fashion we can extend ublock to

u2D
block(x,y) =

1
L
√

2


1 (x,y) ∈

[
− L

2 ,
L
2

]2
0

((
|x|> L

2

)
∧
(
|y| ≤ L

2

))
∨
((
|y|> L

2

)
∧
(
|x| ≤ L

2

))
−1 else

,

and ublockhat to

u2D
blockhat(x,y) =

√
2

4−
√

3

(
u2D

block(x,y)+u2D
hat(x,y)

)
.
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3.4 Staircasing

In [CL97,BKP10,SST11] it has already been pointed out that the infimal convolution- as well as the generalized
total variation-model significantly reduce staircasing artifacts. We want to illustrate this fact with a small example
based on the function ublockhat of the previous section.

Let us therefore assume that we either want to solve (2.16) or (2.17) with input data f given in terms of
f (x) = ublockhat(x)+n(x), with an additional noise term defined as

n(x) := A

(
2cos

(
2πk

L
x
)2

−1

)
, (3.6)

for A ∈ R being the amplitude and k ∈ Z\{0} representing the frequency of the noise. It is completely clear that
for this kind of data the ROF model will produce staircasing artifacts in the reconstruction (for any choice of α),
which we are also going to demonstrate in Section 5. For now we want to investigate under which conditions on
A and k it is however possible to recover ublockhat only with a loss of contrast via (2.16) or (2.17). If we again
consider the optimality condition

ŵ =
1
α
( f − û) =

1
α
(ublockhat +n− û) ,

for ŵ ∈ ∂GTVβ (û) (or ŵ ∈ ∂ ICTVβ (û) respectively), and assume û = cublockhat, then we obtain

ŵ =
1− c

α
ublockhat +

1
α

n .

We know from the previous section that λublockhat ∈ ∂GTVL/
√

3(ublockhat) = ∂GTVL/
√

3(û) is a subgradient, for

λ = 4
√

2/
(
L
(
2+
√

3
))

. Thus, for α = (1− c)/λ we have to ensure that n/α does not affect the subdifferential
properties in order to guarantee that λublock +n/α is a subgradient as well. It is easy to see that for N defined as

N(x) :=
AL2

8π2k2 sin
(

2πk
L

x
)2

we have

N′(x) =
AL
2πk

sin
(

2πk
L

x
)

cos
(

2πk
L

x
)

,

and N′′(x)= n(x). Moreover, we immediately discover N(L)=N(−L)= 0, N′(L)=N′(−L)= 0, and
∫ L
−L N′(x) dx=∫ L

−L n(x) dx = 0. Consequently, adding up N and N′ to the dual variables p and q (defined as in the previ-
ous section) does neither affect the boundary conditions, nor does it violate the condition 〈q′′+ n,ublockhat〉 =
GTVL/

√
3(ublockhat). The only conditions that might get violated are ‖p‖∞ = 1 and ‖q‖∞ = L/

√
3. Note however

that we have N(0) = 0 and N′(−L/2) = N′(L/2) = 0 and thus, the noise does not directly affect the critical points
of the dual variables. Hence, for properly chosen parameters c (or α , respectively), A and k it is possible to recover
ublockhat only with a loss of contrast and without staircasing artifacts. We are going to support this little theoretic
result by computational results in Section 5.

Prior to that - in order to obtain more interesting and complicated examples - we shall consider numerical
solutions motivated by the above analysis. For this sake we shall discuss some methods for the numerical solution
of the variational problems in the next section and then proceed to numerical results.
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4 Numerical Methods

In the following we discuss two approaches to compute minimizers of (2.16) and (2.17). We describe only one of
these models in details, i.e. GTV, and briefly mention the modifications for the other one. For simplicity we give
formal statements instead of all detailed notions of functionsspaces.

4.1 Newton Method for TV, ICTV and GTV

We first discuss a Newton-type method for the optimality conditions using additional approximation of constraints
to obtain at least semismoothness. The constraints on q and divq (or p) can be realized via the so-called penalty
method. The regularization term (2.7) can be approximated by

sup
q

∫
Ω

u
[

div2q− 1
ε

P(‖q‖−β )− 1
ε

P(‖divq‖−1)
]

dx

with ε > 0 tending to zero and a term P penalizing if the constraint is violated. A typical example for such a P is

P(s) =
1
2

max{s,0}2.

We will use the `1 tensor-norm and hence set the penalty term for an n dimensional entry

Pc(s) :=
1
2

n

∑
i=1

max{|si|− c,0}2.

Setting p = divq and realizing this new equality constraint via the method of Lagrange multipliers we obtain

inf
µ

sup
p,q

∫
Ω

u
[

div2q− 1
ε

Pβ (q)−
1
ε

P1(p)
]

dx+
∫

Ω

µ(p−divq). (4.1)

ICTV can be approximated in a similar way, the only difference is that the equality constraint here is given by
div2q = divp. For first-order total variation the approximation is even simpler since there is only one constraint on
p and no additional equality constraint.

Regarding now the denoising problem 2.17 with α = 1/λ and using a penalty approximation as before, yields
the following saddle point problem:

inf
u,µ

sup
p,q

λ

2

∫
Ω

(u− f )2 dx+
∫

Ω

[
u div2q− 1

ε
Pβ (q)−

1
ε

P1(p)
]

dx+
∫

Ω

µ(p−divq) dx.

The first order optimality conditions then yield

λ (u− f )+div2q = 0

p−divq = 0

−1
ε

P′1(p)+µ = 0

−1
ε

P′
β
(q)+∇

2u+∇µ = 0.

We now linearize the nonlinear terms P′c(s) via a first-order Taylor-approximation, i.e.

P′c(s
k+1)≈ P′c(s

k)+P′′c (s
k)(sk+1− sk),
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where we use P′′ in the sense of a semismooth Newton method (cf. [HPUU09]). Adding damping terms for p,q
and µ we have to solve the following linear system in each step:

λ (uk+1− f )+div2qk+1 = 0

pk+1−divqk+1 = 0

−1
ε

(
P′′1 (pk)(pk+1− pk)−P′1(pk)

)
− τ

k
p(pk+1− pk)+µ

k+1− τ
k
µ(µ

k+1−µ
k) = 0

−1
ε

(
P′′

β
(qk)(qk+1−qk)−P′

β
(qk)

)
− τ

k
q(q

k+1−qk)+∇
2uk+1 +∇µ

k+1 = 0.

We mention that in the course of the algorithm it is not necessary to restrict to constant equal values ε , but we can
rather choose two different sequences εk

p and εk
q tending to zero.

As usual for Newton-type methods it remains to efficiently solve the linear system in each iteration step. After
discretization the arising matrix equation Ax = b is given by

A =

(
C D
Dt B

)
x =

(
x1
x2

)
b =

(
b1
b2

)
with

C =

λ IN 0 0
0 − 1

ε
P′′1 (pk)I2N I2N

0 I2N τµ I2N

 D =

 div2

0
−div

 B =
(
− 1

ε
P′′

β
(q)I2N

)

x1 =

uk+1

pk+1

µk+1

 x2 =
(
qk+1

)
b1 =

 λ f(
− 1

ε
P′′1 (pk)− τk

p
)

pk +P′1(pk)

τk
µ µk

 b2 =
((
− 1

ε
P′′

β
(qk)− τk

q

)
qk +P′

β
(qk)

)
.

Here IN denotes the identity matrix of size N =∏
n
i ni where ni is the number of pixels in dimension i. For simplicity

we will discuss only the two dimensional case (i.e. n = 2 and N = n1 ∗ n2). As the basis for the discretization of
the divergence matrices we will use the forward difference matrix with Neumann boundary conditions:

Di :=



−1 1 0 . . . . . . 0
0 −1 1 0 . . . 0
... 0 −1 1

. . .
...

0 . . .
. . .

. . .
. . . 0

0 . . . . . . 0 −1 1
0 . . . . . . 0 0 0


∈ Rni×ni for i = 1,2.

Then the derivates in two dimensions can be written as:

Dx := In2 ⊗D1, Dxx := In2 ⊗−Dt
1D

Dy := D2⊗ In1 , Dyy :=−DtD⊗ In1

and hence under the aspect that the negative adjoint of this discrete gradient corresponds to the discrete divergence
and neglecting the mixed derivates Dxy and Dyx we obtain

−div =
(

Dt
x 0

0 Dt
y

)
, div2 =

(
Dt

xx Dt
yy
)
. (4.2)

Since the matrix C is quite easy to invert one may compute its Schur complement matrix S := B−DtC−1D and
use this to solve the linear system Sx2 = b2−DtC−1b1. We then obtain x1 from x1 =C−1(b1−Dx2).
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4.2 Split Inexact Uzawa Method for GTV

An alternative to Newton-type methods are first-order approaches based on the introduction of appropriate novel
variables and splitting. In the following we will see that an analogous primal view on GTV allows for easy
decoupling of complicated terms in the variational setting. To motivate the ”primal version” of GTV denoising we
recall that

TV(u) =
∫

Ω

|∇u|dx ,

for functions u ∈W 1,1(Ω).
In this sense the following (primal) GTV regularization generalizes TV by an additional higher order term in

a decomposition approach and an additional minimization problem.

GTVβ (u) = inf
v

∫
Ω

|∇u− v|dx + β

∫
Ω

|ε(v)|dx

= inf
v,w

∇u=v+w

∫
Ω

|w|dx + β

∫
Ω

|ε(v)|dx , (4.3)

where ε(v) := 1
2 (∇v+∇vt) denotes the symmetric derivative.

Hence in a similar fashion to the infimal-convolution, compare Section 2.2, we can observe a decomposition
of the gradient of u in the regularization via GTV. For further details we refer for instance to [SST11,BKP10,
KBPS11]. In Section 6 we will concentrate on this decomposition from a numerical point of view. With the primal
interpretation (4.3) the variational GTV denoising (2.17) defined in section 2 reads as follows

uG = argmin
u∈BV(Ω)

{
1
2
‖u− f‖2

L2(Ω)+α

{
inf

∇u=v+w

∫
Ω

|w|dx + β

∫
Ω

|ε(v)|dx
}}

. (4.4)

A key idea to obtain efficient splitting methods is to decouple complicated nested variational terms. Usually this
is realized by introducing additional constraints (often linear), which reveal simple sub-steps in an Augmented
Lagrangian setting. By introducing an additional constraint substituting ε(v) in (4.4) we obtain a decoupled mini-
mization problem with simple linear constraints

min
(u,v), (w,y)

1
2
‖u− f‖2

L2(Ω)+α

(
‖w‖L1(Ω)+β ‖y‖L1(Ω)

)
(4.5)

s.t. w = ∇u− v (4.6)

y = ε(v) . (4.7)

Introducing Lagrange multiplier functions p = (p1, p2) for the constraints yields a saddle point problem (related
to the KKT optimality system) of the following form

max
p

min
ū,z

(L(ū,z ; p) = H(ū)+ J(z)+ 〈p,Aū− z〉)

with the Lagrangian L, the data fidelity and regularization part in (4.5) denoted by H(ū), and J(z), as well as z=Aū
to represent the constraints in (4.6), (4.7) in a compact form. The primal functions ū := (u,v) and z := (w,y) are
used to simplify notations.

Several splitting methods, e.g. the Split Bregman algorithm (ADMM) by Goldstein and Osher [GO09], are
based on alternating minimization of the Augmented Lagrangian with respect to the different primal and dual
unknowns. The Split Inexact Uzawa methods, which are related to BOS, cf. [ZBO11], extend this idea by taking
into account certain primal or dual preconditioning techniques to simplify and/or accelerate the splitting algorithm.
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The Split Inexact Uzawa method (with primal preconditioning Pδ ,τ := 1
δ
− τA∗A) reads as follows:

ūk+1 = argmin
ū

L(ū,zk ; pk)+
1

2δ

∥∥∥Aū− zk
∥∥∥2

2
+

1
2

∥∥∥ū− ūk
∥∥∥2

Pδ ,τ

(4.8)

= argmin
ū

H(ū)+
〈

A∗pk, ū
〉
+

1
2δ

∥∥∥ū− ūk + τδA∗(Aūk− zk)
∥∥∥2

2
(4.9)

zk+1 = argmin
z

L(ūk+1,z ; pk)+
τ

2

∥∥∥Aūk+1− z
∥∥∥2

2
= argmin

z
J(z)+

τ

2

∥∥∥∥1
τ

pk +Aūk+1− z
∥∥∥∥2

2
(4.10)

pk+1 = pk + τ(Auk+1− zk+1) . (4.11)

By replacing τ(Aūk− zk) with pk− pk−1 in the ū update (following the dual update) and combining pk+1 with
wk+1, the Split Inexact Uzawa approach can be rewritten as

ūk+1 = argmin
ū

H(ū)+
〈

A∗pk, ū
〉
+

1
2δ

∥∥∥ū− ūk +δA∗(pk− pk−1)
∥∥∥2

2
(4.12)

pk+1 = pk + τAuk+1− τ argmin
z

J(z)+
τ

2

∥∥∥z− τ
−1(pk + τAūk+1)

∥∥∥2

2
. (4.13)

To relate the Split Inexact Uzawa approach to another class of primal-dual splitting methods we found it useful to
apply Moreau’s decomposition for g := pk + τAuk+1, i.e.

g = argmin
p

J∗(p)+
1

2τ
‖p−g‖2

2 + τ argmin
z

J(z)+
τ

2

∥∥z− τ
−1g
∥∥2

2 , (4.14)

to the p update in (4.13). Moreover, adding terms independent of ū and p in (4.12) and (4.13) respectively implies

ūk+1 = argmin
ū

H(ū)+
〈

A∗(2pk− pk−1), ū
〉
+

1
2δ

∥∥∥ū− ūk
∥∥∥2

2
(4.15)

pk+1 = argmin
p

J∗(p)−
〈

p,Aūk+1
〉

+
1

2τ

∥∥∥p− pk
∥∥∥2

2
. (4.16)

Please note that, in the case of denoising with GTV, (4.8)-(4.16) can be realized very easily, since H in (4.9)
is a simple L2 data fidelity, and because the minimization in (4.10) can be solved explicitly via soft-shrinkage
(thresholding).

If we replace the relaxation 2pk − pk−1 in the u update in (4.15) simply by pk we obtain the Primal Dual
Hybrid Gradient (PDHG) splitting method, cf. [CP11,SST11,EZC10]. In other words the Split Inexact Uzawa
method for our special choice of Pδ ,τ coincides with a modified version of PDHG.

By introducing an additional separate relaxation step, compare with the recent work [CP11],

p̄k+1 = p̄k +θ(pk+1− pk)

we obtain Split Inexact Uzawa above for θ = 1 and PDHG for GTV, [SST11], for θ = 0. In Algorithm 1 we
summarized all the ideas. As possible extensions one can think of different preconditioning methods by adapting
Pδ ,τ and of accelerating the iteration process by variable step sizes θ ,τ and γ in analogy to [CP11].
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Algorithm 1 Split Inexact Uzawa (SIU) for GTV Denoising (4.4),(2.17)
Parameters: noisy data f , reg. param. α ≥ 0, weight. param. β ≥ 0
Initialization: ū0 = f , v0 = 1

2 ε(∇ f ), w0 = 1
2 ∇ f , p0

1 = p0
2 = p̄1

0 = p̄2
0 = 0

θ = 1,τ = 0.017, γ = 9
For k = 0, · · · repeat until a primal/dual stopping criterion is fulfilled:

uk+1 = (1+δ )−1
(

δ f +uk +δ τ div(p̄1
k)
)

vk+1 = vk +δ τ

(
p̄1

k− ε
∗(p̄2

k)
)

wk+1 = S α1
τ

(
p̄1

k +∇uk+1− vk+1
)

yk+1 = S α2
τ

(
p̄2

k + ε(vk+1)
)


primal updates, i.e. updates for
ū = (u,v) and z = (w,y)

pk+1
1 = pk

1 +∇uk+1− vk+1−wk+1

pk+1
2 = pk

2 + ε(vk+1)− yk+1

}
dual updates, i.e. update for p = (p1, p2)

p̄1
k+1 = p̄1

k +θ(pk+1
1 − pk

1)

p̄2
k+1 = p̄2

k +θ(pk+1
2 − pk

2)

}
relaxation, compare e.g. [CP11]

End
return ūk+1,wk+1,vk+1 .

5 Numerical Results for Higher-Order TV Methods

In this section we present one- and two-dimensional results in particular, to verify the theoretical examples of
Section 3. We restrict ourselves to the one-dimensional case here to highlight the main improvements with respect
to pure TV regularization and the main difficulties appearing in the variational methods. Further two-dimensional
examples will be given in the next section, when we compare with the results from Bregman iterations.

In the case of one-dimensional data we want to focus on the functions ublock and ublockhat as defined in Section
3, and compare computational solutions of (1.2) and (1.1) with J =GTVβ , for varying β . Note that due to Theorem
1 it is sufficient to choose only (1.1) with either J = GTVβ or J = ICTVβ .

Starting with ublock as an example, we define f as ublock corrupted by Gaussian distributed noise, with mean
zero. We compute ROF reconstructions for α = 1/8, α = 1/4 and α = 1/2, and reconstructions of (1.1) with
J = GTVβ , with the same values for α , and β = 4 as well as β = 2. The results can be seen in Figure 2. Note
that the interval length has been chosen as L = 8 in order to guarantee that the loss of contrast c is approximately
c = 1−α for β ≥ 4 (approximately, since the analytical computations of Section 3 have been made without noise
assumption). It is clearly visible that for β = 4 the TV- and GTVβ -reconstruction coincide and recover cublock as
predicted. In case of β = 2 the bound on the dual variable however is too restrictive and thus, no multiple of ublock,
but an piecewise-constant-piecewise-affine-linear approximation, is recovered.

In the following we want to concentrate on the function ublockhat, and proceed in the same fashion as for ublock.
We define f as a noisy version of ublock and compare the ROF and (1.1) reconstructions for α = 1/30, α = 1/8,
α = 1/4 and α = 1/2. The parameter β is set to β = L/

√
3 and β = L/

√
3−1 respectively, for L = 32/(2+

√
3).

The results can be seen in Figure 3. It is easy to see that the ROF model fails in recovering some multiple of
ublockhat, but instead introduced the well-known staircasing artifacts. In case of β = L/

√
3, the GTV reconstruction

does a perfect job in exact recovery, recovering ublockhat with the predicted loss of contrast. For β = L/
√

3−1 the
model fails in recovering multiples but rather tips the linear parts or even eliminates the edges for large α .
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Fig. 2 Computational solutions of (1.2) and (1.1) with J = GTVβ on the interval [−8,8], for f = ublock corrupted by Gaussian dis-
tributed noise. It is easy to see that for β = 4 the GTV4-regularized reconstructions coincide with the solutions of the ROF model. For
β = 2 however it is clearly visible that GTV2 favors piecewise-constant-piecewise-affine-linear approximations.
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Fig. 3 Computational solutions of (1.2) and (1.1) with J = GTVβ on the interval [−32/(2+
√

3),32/(2+
√

3)], for f = ublockhat
corrupted by Gaussian distributed noise. The ROF reconstruction produces staircasing artifacts and fails in recovering the linear parts
of ublockhat. For β = L/

√
3 the GTVL/

√
3-regularized reconstructions coincide with the analytical solutions predicted in Section 3. In

case of β = L/
√

3−1 however it is clearly visible that GTVL/
√

3−1 does not recover multiples of ublockhat anymore.

As a final 1D example we want to corrupt ublockhat by the noise defined in Section 3.4, i.e. f = ublockhat + n
with n being defined as in (3.6). The noise parameters are set to A = 0.05 and k = 35, and again we define the
interval length to be L= 32/(2+

√
3). Similar to the previous examples we compute reconstructions for α = 1/30,

α = 1/8, α = 1/4 and α = 1/2, and set the parameter β to β = L/
√

3. The results can be seen in Figure 4. We
observe that in contrast to the total variation reconstructions the generalized total variation reconstructions do not
produce staircasing artifacts, though - if the regularization parameter is too small - a systematic bias occurs.

6 Higher Order Inverse Scale Space Methods

In this section we want to discuss the use of inverse scale space methods in the context of the generalized total
variation (2.7) as a regularizer. In case of total variation and `1 regularization, inverse scale space methods have
been extensively studied and discovered to correct the loss of contrast ([OBG+05,BGOX06]). The inverse scale
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Fig. 4 Computational solutions of (1.2) and (1.1) with J = GTVβ on the interval [−32/(2+
√

3),32/(2+
√

3)], for f = ublockhat cor-
rupted by (3.6) with A = 0.05 and k = 35. The ROF reconstruction produces staircasing artifacts and fails in recovering the linear parts
of ublockhat, which is clearly visible in the closeup of the reconstruction. In contrast, for β = L/

√
3 the GTVL/

√
3-regularized recon-

structions again coincide with the analytical solutions predicted in Section 3 if α is large enough, which supports the considerations of
Section 3.4. If α is small enough we face some bias of the reconstruction in contrast to the analytical solutions, but still no staircasing
artifacts are produced as in the total variation case.

space for a general, convex regularization functional J is defined as

∂

∂ t
p(t) = f −u(t) , (6.1)

for p(t) ∈ ∂J(u(t)), assuming u(t = 0) = p(t = 0) = 0. The discrete analogue to (6.1) is the so-called Bregman
iteration, which can be seen as a simple backward Euler discretization of (6.1), i.e.

pk− pk−1

h
= f −uk ,
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with the stepsize h defined as h := 1/α . Then, this discretized inverse scale space flow is equivalent to solving the
iterative scheme

uk = argmin
u∈dom(J)

{
1
2
‖u− f‖2

L2(Ω)+αDpk−1
J (u,uk−1)

}
, (6.2)

for u0 = p0 = 0, and with Dp
J (u,v) denoting the Bregman distance. Equation (6.2) can be rewritten to (cf.

[OBG+05])

uk = argmin
u∈dom(J)

{
1
2
‖u− ( f + vk−1)‖2

L2(Ω)+αJ(u)
}

vk = vk−1− (uk− f )

, (6.3)

for u0 = v0 = 0, which will be useful below.
In order to motivate the use of inverse scale space methods, we want to recall a result from [Ben11, Chapter 7,

Section 2]. Assume a function uλ to satisfy an Eigenfunction property with respect to a regularization functional
J, i.e. uλ 6= 0 satisfies

λuλ ∈ ∂J(uλ ) (6.4)

for an Eigenvalue λ ∈ R>0. Then, for data given in terms of an Eigenfunction, we can state the following propo-
sition.

Theorem 4 Let J : dom(J)⊆ L2(Ω)→ R∪{+∞} be a convex and one-homogeneous functional, and let uλ 6= 0
be a function satisfying (6.4) with Eigenvalue λ . Then their exist times t∗ < t∗∗ < ∞ such that for given data
f = uλ +n the solution of (6.1) at time t with t∗ ≤ t < t∗∗ is given via u(t) = cuλ , for

c = 1+
λ −µ

η
,

if there exist constants µ and η > 0 such that

µuλ +ηn ∈ ∂J(uλ )

is guaranteed.

Note that in case of noise-free data (i.e. n = 0) the constant c simply equals one, since η can be chosen
arbitrarily and thus, µ can be set to equal λ . Moreover, for n = 0 the solution u(t) remains uλ for every t ≥
t∗ = λ (i.e. t∗∗ = ∞). Hence, Eigenfunctions uλ can be recovered perfectly after finite time by the inverse scale
space method (6.1). If we recall the examples of Section 3 we see that these examples were designed to be
Eigenfunctions. Thus, with an inverse scale space strategy, with respect to the specific regularization functional,
we would be able to recover them perfectly.

Due to the multivaluedness of subdifferentials in case of L1-type regularization functionals (as in case of
higher-order total variation methods) we can even expect to find µ ≈ λ in case of noisy data, yielding an almost
perfect reconstruction for times t∗ ≤ t < t∗∗.

Hence, one reason for considering inverse scale space methods in the context of generalized total variation
is the ability to improve the reconstruction of piecewise constant and piecewise linear functions, and additive
combinations of it, by correcting the loss of contrast.
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Another reason is that in many practical cases generalized total variation tends to tip homogeneous regions,
which we can see by the following example. Let us consider the function uedge : [−L,L]→

{
−1/
√

2L,1/
√

2L
}

with

uedge(x) =

{
1√
2L

x ∈ [0,L]

− 1√
2L

x ∈ [−L,0[
.

We would expect generalized total variation to be able to recover uedge only with a loss of contrast, since uedge, in
analogy to the function ublock defined in (3.1), is an Eigenfunction of the total variation of order one. However, the
difference between both functions is that uedge is not orthogonal to the affin-linear functions, which are the trivial
ground states of GTVβ due to Lemma 2, since 〈uedge,x〉 =

√
L3/2 6= 0 holds. And indeed, the solution of (1.1)

with GTVβ as a regularizer can be characterized via

û(x) =

{
6α

L2

(
x− 2L

3

)
+ 1√

2L
x ∈ [0,L]

6α

L2

(
x+ 2L

3

)
− 1√

2L
x ∈ [−L,0[

,

for α < L/4 and β ≥ (4L)/27. Thus, the edges of uedge get tipped. Obviously, we could argue that we do not need
generalized total variation in order to recover uedge. However, if we consider piecewise-constant-piecewise-linear
functions, we would expect to discover similar effects, which are not desirable.

For that reason we want to consider what happens by applying a Bregman iteration strategy for the reconstruc-
tion. Let us assume that the solution of (6.3) at iteration 1 is given by u1 = û, which can be guaranteed by setting
α < L/4 and β fixed to a value larger or equal (4L)/27. The update for v then reads as

v1 = v0− (u1− f )

=−6α

L2

{
x− 2

3 L x ∈ [0,L]
x+ 2

3 L x ∈ [−L,0[

and thus, the data for the next update for u modifies to

( f + v1)(x) =

{
1√
2L
− 6α

L2

(
x− 2

3 L
)

x ∈ [0,L]

− 1√
2L
− 6α

L2

(
x+ 2

3 L
)

x ∈ [−L,0[
.

As a consequence, u2 = uedge is the solution for the next Bregman iteration, since uedge satisfies the optimality
condition

q′′(x) =
1
α

(
f + v1−uedge

)
(x) =− 6

L2

{
x− 2

3 L x ∈ [0,L]
x+ 2

3 L x ∈ [−L,0[

(again, the derivation has to be considered in a weak sense), for the function q defined as

q(x) :=−

{
1

L2 x3− 2
L x2 + x x ∈ [0,L]

1
L2 x3 + 2

L x2 + x x ∈ [−L,0[
.

It is easy to see that q satisfies ‖q‖∞ = (4L)/27 = β , ‖q′‖
∞
= 1, q(−L) = q(L) = q′(−L) = q′(L) = 0 and

〈q′′,uedge〉 =
√

2/L = GTV 4L
27
(uedge) = TV(uedge) + (4L TV2(0))/27 = TV(uedge), and thus, is a subgradient

of the subdifferential ∂GTV 4L
27
(uedge).
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Hence, the systematic tipping of homogeneous regions in case of uedge as defined above can entirely be com-
pensated by Bregman iteration. Note that this is true due to the fact that uedge can simply be composed of two
Eigenfunctions.

In the following we also want to consider a more complex two dimensional example for which the proposed
Bregman-iterated GTVβ method will lead to results that are even superior to a Bregman-iterated ICTVβ method,
in the absence and presence of noise. Note that due to their derivation, the corresponding vector fields of the two-
dimensional Eigenfunction examples of Section 3, namely u2D

block, u2D
hat and u2D

blockhat, are irrotational, i.e. curl(p) = 0
for p denoting a corresponding vector field of these examples. Consequently, due to the considerations of Section
2.4, we assume that both models, (1.1) with J = GTVβ as well as with J = ICTVβ , are able to recover the
functions u2D

block, u2D
hat and u2D

blockhat almost perfectly, suffering only from a loss of contrast. Section 2.4 also suggests
that the limitations of model (1.1) with J = ICTVβ arise in the need for irrotational vector fields. Hence, we want
to discover an image, for which the corresponding vector field is not irrotational, in order to have an analytical
example which cannot be recovered well with ICTVβ -regularization.

For that reason we want to consider a vector field (px, py) based on the corresponding dual variable of ublock,
which we modify to

px(x,y) :=
2
L


xy x ∈

[
− L

2 ,
L
2

]
y(L− x) x ∈

] L
2 ,L
]

−y(L+ x) x ∈
[
−L,− L

2

[
and

py(x,y) :=
2
L


xy y ∈

[
− L

2 ,
L
2

]
x(L− y) y ∈

] L
2 ,L
]

−x(L+ y) y ∈
[
−L,− L

2

[ .

Consequently, px is no longer constant but linear with respect y, as is py with respect to x. Moreover, for curl(p)
we obtain

curl(p) =
∂ py

∂x
− ∂ px

∂y
6= 0.

Computing u = cdiv p, with c guaranteeing ‖u‖L2(Ω) = 1, thus yields

u(x,y) =

√
3

L2
√

8


x+ y (x,y) ∈

[
− L

2 ,
L
2

]2
x− y

(
x /∈
[
− L

2 ,
L
2

])
∧
(
y ∈
[
− L

2 ,
L
2

])
y− x

(
x ∈
[
− L

2 ,
L
2

])
∧
(
y /∈
[
− L

2 ,
L
2

])
−(x+ y) else

. (6.5)

In the following, we want to investigate two approaches for the computational realization of Bregmanized
GTVβ . The first approach aims in solving (6.3), by computing the primal update via a primal-dual Newton method;
the second approach is based on a method closely related to the alternating direction of multipliers methods
(ADMM). We are going to test these algorithms on the previously described examples, on the examples of Section
4 and on examples from [SST11].
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(a) GTV versus Bregman GTV
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(b) GTV versus Bregman GTV closeup

Fig. 5 Comparison of a standard GTV- and a Bregman-GTV-reconstruction in case of f = ublockhat + n, with n denoting Gaussian
distributed noise with mean zero. The function ublockhat is defined on the interval [−32/(2+

√
3),32/(2+

√
3)]. The GTV-reconstruction

was performed with the parameters α = 1/20 and β = L/
√

3, while for the Bregman iterated solution 3 Bregman iterations have been
performed, for the same value of β but with α = 1/2.

6.1 Numerical Methods for Bregman-GTV

Bregman-GTV with Newton or Inexact Uzawa Method:
By rewriting the Bregman iteration scheme (6.2) to (6.3) we can simply use the Newton method or Split Inexact
Uzawa method presented in Section 4.1 and Section 4.2 with modified input data (given in terms of f + vk−1)
in order to solve the Bregman iteration scheme. Thus, we basically have to solve a sequence of standard GTV
problems, which have to be solved by the iterative Newton scheme or the iterative splitting method each.

6.2 Synthetic results for Bregman-GTV

6.2.1 The One-Dimensional Setup

Again, as in Section 5 we want to consider one-dimensional examples first, and therefore focus on the function
ublockhat of Section 3 again. In analogy to Section 5, we consider ublockhat on the interval [−L,L] with L = 32/(2+√

3), and define f as a noisy version of ublockhat. Figure 5 on the one hand shows a standard GTV reconstruction for
small α (α = 1/20) and β = L/

√
3. On the other hand we see a Bregman iterated reconstruction for comparison.

The Bregman iterated version has been computed with the same value for β , but with α = 1/2 and 3 Bregman
iterations. In terms of ublockhat, which is an Eigenfunction of the GTVL/

√
3-functional, the improvement is not

stunning, but at least visible. The standard GTV reconstruction has a loss of contrast around the edges, and linear
regions have slightly decreased slope in contrast to the Bregman iterated solution.

6.2.2 The Two-Dimensional Setup

First we investigate the two dimensional function ublockhat defined in Section 3. As we can see in Fig. 6 and Fig.
6.2.2 the Bregman iterated GTV (Fig. 6(c)) as well as the Bregman iterated ICTV reconstruction (Fig. 6(d)) lead
to the same result. The function ublockhat is nearly exactly recovered despite of the noise in the image. However
if we consider the function defined in 6.5 there are obvious differences in the Bregman reconstructions. While
the Bregman iterated GTV reconstruction (Fig. 8(c)) again recovers the function nearly exactly, there are TV like
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(a) original image (b) noisy image

(c) Bregman GTV (d) Bregman ICTV

Fig. 6 a) Original image u (64x64 px), and b) given noisy image f corrupted by additive Gaussian noise. c) Bregman GTV (7 iterations)
α = 1

2 and β = L√
3

. d) Bregman ICTV (7 iterations) α = 1
2 and β = L√

3
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Fig. 7 Line profile through line 55 in Fig. 6

artifacts well visible in the Bregman iterated ICTV reconstruction (Fig. 8(d)). This is also apparent in the line
profile in Fig. 9.
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(a) original image (b) noisy image

(c) Bregman GTV (d) Bregman ICTV

Fig. 8 a) Original image u (64x64 px), and b) given noisy image f corrupted by additive Gaussian noise. c) Bregman GTV (10
iterations) α = 1

2 and β = L√
3

. d) Bregman (10 iterations) α = 1
2 and β = L√
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Fig. 9 Line profile through line 55 in Fig. 8
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(a) original image (two ramps) (b) noisy image

Fig. 10 (a): Original image u (200x200 px), and (b): given noisy image f corrupted by additive Gaussian noise of standard deviation
20. Compare with [SST11].

Here we also want to consider the two-dimensional synthetic two-ramps example, see Figure 10, discussed
for ICTV and GTV in the work by Setzer et al. [SST11]. With this example we particularly aim for showing
an improved image-decomposition performance of Higher-Order Inverse Scale Space methods, which results in
higher reconstruction quality.

Figure 10 shows the original image u with two ramps intersecting and increasing in opposite directions. The
surrounding frame has constant brightness to address the combination of piecewise affinely linear and piecewise
constant parts. The resolution is 200x200 pixels and the image is normalized to [0,255]. In analogy to [SST11] we
corrupted the original by additive Gaussian noise of standard deviation 20.

Setzer et al. [SST11] showed that GTV outperforms ICTV in this example. To get an idea of the natural re-
maining deficiencies of GTV we focus on applying image decomposition via Bregman-GTV to the noise-free
original image first. Figure 11 shows the first step of the Bregman-GTV algorithm (with inner Split Inexact
Uzawa), which is simply GTV. Compared to [SST11] we increased the regularization parameter by a factor of
two, i.e. α = 120,β = 2.5, to reveal remaining deficiencies of GTV even more. The first row shows the resulting
decomposition u = u1 + u2 and the second and third row represent the decomposition of the gradient of u, i.e.
∇u = w+ v. Please note that the colorbar for the derivates in row two and three is limited to a range of [-10,+10]
for better visualization.

A perfect reconstruction and decomposition of the image would show continuous edges in w1 and w2, as well
as nearly piecewise constant results for v1 and v2. The lack of accuracy of the GTV result in Figure 11 is apparent
for instance at the edges of the two ramps in u facing each other. This deficiency can also be verified by missing
edge parts in w and remaining blocks in v.

In Figure 12 we present the result of Bregman-GTV after 3 iterations. Obviously, we now obtain a nearly
perfect image decomposition and a strongly enhanced image reconstruction result.

In Figure 13 and Figure 14 we illustrate the same case, but now with noisy data. Interestingly, we could
observe nearly the same great improvement of the image decomposition for Bregman-GTV, which again results
in an improved reconstruction quality.
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(a) u (b) u1 (c) u2

(d) ∂x1 u (e) w1 (f) v1

(g) ∂x2 u (h) w2 (i) v2

Fig. 11 Reconstructions for data without noise, 1st iteration of Bregman-GTV with α = 120,β = 2.5 and 400 iterations.
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(a) u (b) u1 (c) u2

(d) ∂x1 u (e) w1 (f) v1

(g) ∂x2 u (h) w2 (i) v2

Fig. 12 Reconstructions for data without noise, 3rd iteration of Bregman-GTV with α = 120,β = 2.5 and 400 iterations.
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(a) u (b) u1 (c) u2

(d) ∂x1 u (e) w1 (f) v1

(g) ∂x2 u (h) w2 (i) v2

Fig. 13 Reconstructions for noisy data, 1st iteration of Bregman-GTV with α = 120,β = 2.5 and 300 iterations.
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(a) u (b) u1 (c) u2

(d) ∂x1 u (e) w1 (f) v1

(g) ∂x2 u (h) w2 (i) v2

Fig. 14 Reconstructions for noisy data, 3rd iteration of Bregman-GTV with α = 120,β = 2.5 and 300 iterations.
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6.3 Experimental results

In this subsection we present some real-world high-resolution color image denoising results with Bregman-GTV.
The given noisy image in Figure 15 (a) shows Santa Monica beach near LA, California. The image has been taken
by the authors with a smartphone camera. The data is a color image and has a resolution of 968x1296x3 pixels. On
the one hand, we can observe some smooth (higher-order) features in the given noisy image like the sky, clouds,
as well as some sand regions with and without water. On the other hand, the image contains some sharp edges

(a) Santa Monica beach with pier and seagulls (b) Best GTV denoising via Split Inexact
Uzawa, α = 2,β = 2.5

(c) Bregman-GTV, 1st iter., with inner SIU,
α = 64,β = 2.5

(d) Bregman-GTV, 4th iter., with inner SIU,
α = 64,β = 2.5

(e) Bregman-GTV, 7th iter., with inner SIU,
α = 64,β = 2.5

(f) Bregman-GTV, 17th iter., with inner SIU,
α = 64,β = 2.5

Fig. 15 Bregman-GTV denoising via Split Inexact Uzawa of a noisy color photo collected with a smartphone camera at the beach in
Santa Monica, CA. Image resolution: 968x1296x3 px.
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(a) noisy (b) Best GTV denoising (c) Breg-GTV 1st iter

(d) Breg-GTV 4th iter (e) Breg-GTV 7th iter (f) Breg-GTV 17th iter

Fig. 16 Bottom left apertures corresponding to data and reconstructions in Fig. 15.

(a) noisy (b) Best GTV denoising (c) Breg-GTV 1st iter

(d) Breg-GTV 4th iter (e) Breg-GTV 7th iter (f) Breg-GTV 17th iter

Fig. 17 Bottom right apertures corresponding to data and reconstructions in Fig. 15.
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at interfaces and some interesting details and textures like the Santa Monica pier in the background, the waves,
the seagulls or some fine structures in the still water close to the sand. Figure 15 illustrates the collected image,
the best GTV denoising result we could obtain by tuning the regularization parameter, and the 1st, 4th, 7th and
17th iteration of Bregman-GTV with the Split Inexact Uzawa method for the inner GTV problem. Please note
that for simplicity we applied our algorithms to all color channels separately in the same way. We can observe
a nice removal of noise for the GTV denoising. However, with the higher-order inverse scale space method we
can additionally recover important textures and sharp interfaces while taking care of the affinely linear parts in
the image. This observation is underlined by the apertures in Figure 16 and Figure 17 taken from the data and
reconstructions in Figure 15. Please note the revealed foam and line in the sand, as well as the thin lines in the
water. In addition we plotted a line profile of the reconstructions at row 870 of 968 in Figure 18. This plot shows
that Bregman-GTV nicely enhances fine structures like the foam peaks in the middle of Figure 18 (in between
pixels 400 and 600), while regarding the smooth higher-order parts. The fact that we gain texture information in
successive Bregman-GTV iterations can be explained by the underlying inverse scale space procedure reflecting a
high-order gradient flow, compare (6.3). In each of the Bregman-GTV steps we update our reference function by
a residual containing local texture information.
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Fig. 18 This is a line profile at row 870 of 968 and a selected interval, pixels 300− 950 in column direction, of the noisy data, best
GTV reconstruction and Bregman-GTV reconstructions presented in Fig. 15 (after grayscale conversion for simplified visualization).

7 Conclusion and future directions

One of the standard regularization techniques in imaging science is the total variation. Although it has the desirable
capability of recovering sharp edges in images and signals, TV can also produce staircase-like artifacts, which
is less desirable, e.g. in some biomedical imaging applications. Modifications of total variation, incorporating
derivatives of higher-order, have been proposed in literature, mainly to reduce this drawback. However, combining
derivatives of different order still revealed other undesired side effects at the same time.
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In this work we have focused on analyzing the capabilities and limitations of different higher-order TV models
including TVl , ICTV and GTV. We proved that their (semi-)norms are equivalent when restricting to BV functions
with vanishing zeroth and first moment, whereas minimizers of associated variational problems can differ substan-
tially. Thus, to compare capabilities of these models, we studied exact solutions with regard to eigenfunctions and
presented several examples.

Besides general modeling and analysis of higher-order TV models, the second main contribution of this pa-
per was to address the limitations of these models numerically. We improved higher-order TV reconstructions by
introducing Bregman iterations. To realize Bregman-GTV efficiently, a primal-dual Newton method and a precon-
ditioned Split Bregman method (Split Inexact Uzawa) have been proposed. With several synthetic and real-world
denoising examples we underlined our analytical observations and illustrated the performance of the proposed
Bregman-GTV algorithms.

Possible future directions are comparisons with other higher-order PDE methods in imaging science and the
extension of Bregman-GTV to the case of new challenging inverse problems in biomedical imaging.
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