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Braxton Osting1, Jérôme Darbon1,2, and Stanley Osher1

1 Department of Mathematics, University of California, Los Angeles
2 CMLA, ENS Cachan, CNRS, PRES UniverSud

Abstract. We consider the problem of establishing a statistical ranking for
a set of alternatives from a dataset which consists of an (inconsistent and in-

complete) set of quantitative pairwise comparisons of the alternatives. If we
consider the directed graph where vertices represent the alternatives and the

pairwise comparison data is a function on the arcs, then the statistical ranking

problem is to find a potential function, defined on the vertices, such that the
gradient of the potential optimally agrees with the pairwise comparisons. Po-

tentials, optimal in the `2-norm sense, can be found by solving a least-squares

problem on the digraph and, recently, the residual has been interpreted using
the Hodge decomposition (Jiang et. al., 2010). In this work, we consider an

`1-norm formulation of the statistical ranking problem. We describe a fast

graph-cut approach for finding ε-optimal solutions, which has been used suc-
cessfully in image processing and computer vision problems. Applying this

method to several datasets, we demonstrate its efficacy at finding solutions

with sparse residual.

1. Introduction. We consider the statistical rank aggregation problem of estab-
lishing an optimal statistical ranking for a set of alternatives from a dataset which
consists of (i) an inconsistent and incomplete set of quantitative pairwise compar-
isons of the alternatives and (ii) a set of weights, each associated with a comparison.
Inspired by applications in machine learning, social networking, and competitive
sports, we focus on the statistical ranking problem for large data sets consisting
of cardinal or rated data (as opposed to ordinal or binary datasets). A precise
formulation of the rank aggregation problem requires a decision on how to resolve
inconsistencies within the data, i.e., the measure of “optimal.” Our method seeks
solutions for which the error is as sparse as possible.

In what follows, we specify assumptions on the dataset, formulate the rank ag-
gregation problem as an optimization problem, and summarize the results of this
paper.

Dataset assumptions. We assume a dataset consisting of the following:
1. A weakly connected1 directed graph (weak digraph), D = (V,A), consisting

of a set of alternatives V = {j}nj=1 and a (possibly incomplete) set of ordered
alternative pairs, A = {k}mk=1, such that arc k ∈ V × V .

2000 Mathematics Subject Classification. 62F07, 65F10, 05C20, 58A14, 05C85.
Key words and phrases. statistical ranking, rank aggregation, Kemeny-Snell ordering, HodgeR-

ank, `1-norm minimization, graph-cut method.
1A digraph is weakly connected if replacing its arcs with undirected edges yields a connected

graph. If D is disconnected, each weakly connected component is ranked separately.
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2. A set of non-negative2 pairwise comparisons, {yk}mk=1, assigning a “degree of
preference” to each alternative pair k ∈ A. If k = ij ∈ A, then alternative j
is preferred to alternative i as measured by yk.

3. A set of positive weights, {wk}mk=1, where each weight wk is associated with an
arc k ∈ A. A large value of wk implies, e.g., a high confidence in the pairwise
comparison of pair k ∈ A.

We are particularly interested in large datasets (|V | = n� 1) which are incomplete,
i.e., m = |A| <

(
n
2

)
.

Digraph operators. We define three operators on the digraph [17]. Let grad ∈ Rm×n
be the arc-vertex incidence matrix for the digraph D = (V,A),

(grad)k,j =


1 if k ∈ A and j = head(k)
−1 if k ∈ A and j = tail(k)
0 otherwise.

(1)

We refer to the application of grad to a vector φ ∈ Rn as the gradient of φ. Define
the divergence, divw : Rm → Rn,

[divw x]j :=
∑

k : j=tail(k)

wkxk −
∑

k : j=head(k)

wkxk, j = 1, . . . , n (2)

so that grad and divw are negative adjoint with respect to the w-inner product
〈x, y〉w :=

∑
k wkxkyk, i.e.,

〈x, grad φ〉w = 〈w.x, grad φ〉 = 〈gradt (w.x), φ〉 = −〈divw x, φ〉.

The composition operator, ∆ ∈ Rn×n, defined

∆ = −divw ◦ grad, with entries [∆]ij =


∑
k3i wk i = j

−wk i ∼ j, k = ij

0 otherwise,
(3)

is symmetric and referred to as the w-weighted graph Laplacian.
In the following, we assume that the dataset (grad, y, w) is given and postpone

the discussion of the construction of y and w from raw data to §5.

Consistency of pairwise comparison data. We make the following definitions:
1. The dataset (grad, y) is acyclic if there exists a vertex function φ : V → R

such that

sign(grad φ) = sign(y) = 1m where 1m = [1, . . . , 1]t ∈ Rm. (4)

2. The dataset (grad, y) is globally consistent if it is the gradient of a vertex
function, i.e., there exists a vertex function φ : V → R such that

grad φ = y. (5)

In this case, the vertex function φ is called a potential. Since a potential (if
one exists) is unique modulo an additive constant, we restrict φ to the set

Ad := {φ ∈ Rn : 1tnφ = 0} where 1n = [1, . . . , 1]t ∈ Rn, (6)

and define the projection of x ∈ Rn onto Ad by PAdx := x− 1
n (1tnx)1n.

2Due to the skew-symmetry of pairwise comparisons, non-negativity is not restrictive.
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The dataset (grad, y) being acyclic is equivalent to the digraph D = (V,A) being
acyclic. Note that a potential function induces an ordering relation on the alter-
natives V = {vi}ni=1, via vj �φ vi if φj > φi. A potential for an acyclic dataset
induces an asymmetric ordering which is transitive. Global consistency of a dataset
is a harsh requirement, necessarily requiring the dataset be acyclic. The dimension
of the space of edge flows is m, while the dimension of imag(grad) is n− 1, which,
depending on the digraph, could be considerably smaller. Global inconsistencies in
pairwise comparison data are commonplace in applications (Condorcet paradox);
the datasets studied in this work are not globally consistent. However, globally
consistent datasets do appear frequently. For example, a dataset for which D is
a directed tree, such as those generated from single-elimination tournaments, are
globally consistent and hence acyclic.
Formulation of the statistical ranking problem. The statistical ranking problem is
to find a potential φ for an inconsistent dataset (grad, y, w) such that (5) is approx-
imately satisfied in some sense. This is formulated as the following optimization
problem:

min
φ∈Ad

J(φ), (7)

where the objective function J(φ) is a measure of the misfit in (5) and the admissible
set, Ad, is defined in (6). An advantage of the formulation of the ranking problem as
an optimization problem is that a small objective value gives a “performance mea-
sure” or “certificate of reliability” for a proposed potential. Of particular interest
in this work are objective functions of the form

Jp(φ) := ‖grad φ− y‖pp,w =
m∑
k=1

wk |(grad φ)k − yk|p , (8)

where ‖ · ‖p,w is the w-weighted `p-norm for p ≥ 1. In this paper, we discuss the
following four objective functions.

The w-weighted `2-norm. The optimization problem (7) with objective function
given by (8) with p = 2,

min
φ∈Ad

J2(φ) := ‖grad φ− y‖22,w, (9)

is studied in [26, 22]. Equation (9) has the following properties:
1. The column rank of grad for a weak digraph is n−1 with ker(grad) = span{e}

(see, e.g., [17, p.103]). Thus, the objective function in (9) is strictly convex on
Ad and (9) has a unique solution. The solution may be obtained by finding
the minimal `2-norm solution to the normal equations

∆ φ = −divw y. (10)

The solution of (10) is given by φ = −∆† divw y where ∆† denotes the
Moore-Penrose pseudoinverse of ∆.

2. Defining the residual, r := y − grad φ, which is the obstruction to global
consistency in (9), the optimization problem can be rewritten

min
r∈Rm

‖r‖22,w (11)

such that P⊥grad r = P⊥grad y

where P⊥grad := (Idm − Pgrad) is the w-projection onto ker(divw) and Pgrad :=
grad ∆† divw is the w-projection onto imag(grad). Since r − y ∈ imag(grad),
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φ can then be recovered from r in O(n) operations by solving grad φ = r− y.
Results from combinatorial Hodge theory provide a further decomposition of
im(grad)⊥ implying that the residual, r = grad φ?−y, can be decomposed into
locally cyclic (3 vertex cycle) and locally acyclic (≥ 4 vertex cycle) components
[26, 22]. The locally cyclical component is given by curl Φ?, where

Φ? = arg min
Φ∈V×V×V

‖curl Φ− y‖2,w. (12)

The locally acyclic, harmonic component, h = y − grad φ? − curl Φ?, [26]
argues, is the least desirable component of the data.

3. Generally, the solution of the normal equation (10) requires O(n3) com-
putations using standard solvers, which is prohibitively expensive for large
datasets. Larger datasets may be considered using Krylov iterative and alge-
braic multigrid methods [22].

The w-weighted Kemeny-Snell objective function. The w-weighted Kemeny-Snell
method for statistical ranking solves

min
φ∈Ad

JK(φ) :=
m∑
k=1

wk |sign (grad φ)k − 1| (13)

where sign(x) = x
|x| if x 6= 0 and 0 otherwise. The objective function JK(φ) seeks the

ranking with the (weighted) minimum number of edges which violate the acyclicity
condition (4). A dataset is acyclic if there exists a potential φ such that JK(φ) = 0.
This formulation is natural if one is only interested in an induced ordering of the
alternatives and not a quantitative comparison. However, (13) is equivalent to the
feedback arc set problem and hence an NP-hard problem [10].

The w-weighted “`0-norm”. The optimization problem (7) with objective function
(8) with p = 0, is given by

min
φ∈Ad

J0(φ) := ‖grad φ− y‖0,w. (14)

The objective function is a semi-norm, lacking positive homogeneity, and measures
the w-weighted support of the residual r = y − grad φ. For w = 1m, J0(φ) simply
minimizes the number of edges for which the data and grad φ disagree. In this case,
the optimal solution φ? of (14) will have residual r? = y−grad φ? which is as sparse
as possible. In fact, (14) generalizes (13) from looking for potentials which have the
smallest number of entries for which acyclicity fails to potentials which have the
smallest number of entries for which the data is not globally consistent. Like (13),
Eq. (14) is NP-hard.

The w-weighted `1-norm. In this work, we primarily consider (7) with objective
function given by (8) with p = 1,

min
φ∈Ad

J1(φ) := ‖grad φ− y‖1,w. (15)

Equation (15) has the following properties:

1. In §4, it is shown that (15) can be formulated as a linear program (LP) in
Rn+2m with m + 1 equality constraints. Convexity implies that any local
minima is a global minima. Generally, the optimal set can be an (n − 1)-
dimensional polytope.
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2. Defining the residual, r := y − grad φ, the optimization problem (15) can be
rewritten analogously to (11) as

min
r∈Rm

‖r‖1,w (16)

such that P⊥grad r = P⊥grad y

where P⊥grad is the projection onto imag(grad)⊥. Compressive sensing results
imply that if the residual r is sparse, i.e., obeys a power law decay, and if
P⊥grad satisfies certain properties, then the solution of (16) will be a good
approximation to the solution of (14), hence sparse [12]. Although we do not
verify these properties for P⊥grad here, we demonstrate using simple examples
in §3 and with numerical experiments for real datasets in §5 that the residual
for the solution to (15) is sparse. In Prop. 3.3, we give a simple condition
which implies that a vertex have at least one incident arc with zero residual.

3. In §4, we describe a graph-cut approach that can be used to efficiently solve
(15), which has been applied to image processing and computer vision prob-
lems. The method is applied to several example statistical ranking problems
in §5.

1.1. Outline of paper. In §2, we briefly review related work. In §3, we review
the KKT conditions for optimality for the objective function (8) and give several
simple examples to demonstrate statistical ranking and illustrate the differences
between the `1- and `2-norm objective functions, (15) and (9). In §4, a computa-
tional method based on graph cuts for solving (15) is described. In §5, we apply
the proposed method to three datasets. Finally, in §6, we discuss several future
directions.

1.2. Notation.
1. Unordered pairs are denoted {i, j} and the set of unordered pairs is denoted(

V
2

)
while ordered pairs are denoted (i, j) or abbreviated ij and the set of

ordered pairs by V × V . If i is incident on j or j is incident on i, we denote
i ∼ j. If k = ij, then i = tail(k) and j = head(k). For node j ∈ V , id(j) and
od(j) denote the in-degree and out-degree respectively.

2. Greek letters are used for functions V → R and Roman letters for functions
A→ R.

3. The vectors in Rn of all ones and zeros are denoted 1n and 0n.
4. Pointwise vector multiplication: (a.b)i := aibi
5. The Moore-Penrose pseudoinverse of a matrix A is denoted by A†.

2. Related work. Rank aggregation has evolved from electoral and social choice
foundations with Borda (1781) and Condorcet (1786) to its current state [42, 36].
A comprehensive survey of the literature is beyond the scope of this work; more
comprehensive reviews can be found in [14, 31, 10, 26].
Ordinal Data. Early work on ranking focused on ordinal data, where results are
often negative. For example, Arrow’s impossibility theorem states that when voters
have more than 3 options, no voting system can aggregate the ranked preferences of
individuals while also meeting 4 (sensible) criteria. Kemeny and Snell showed that

dK(σ, τ) := #{k = ij ∈ A : (σi > σj and τi < τj) or (σi < σj and τi > τj)}
is the unique distance between two orderings, σ and τ , which is a metric, invariant
to permutation of the objects, independent of “irrelevant alternatives,” and has
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minimal positive distance equal to unity [27, §2]. Minimizing the distance, dK
between the orderings induced by a proposed potential φ and a given dataset is
precisely JK(φ) as defined in (13). The equivalence of (13) to the arc feedback set
problem and Slater’s problem, which are NP-hard, is discussed in [10] along with
a survey of relaxation algorithms. [16, 15] extend these ideas to combing ranking
results from multiple sources for web-search applications.
Cardinal Data. It appears that [11] was the first to consider aggregating cardinal
ranking data. Written in the graph language formalism used here, they consider
the problem

min
φ

∑
λ∈Λ

∑
k∈A

wk,λ|(grad φ)k − vk,λ|. (17)

where vk,λ is the pairwise preference given to pair k ∈ A by a user λ ∈ Λ. In a later
paper, [2] showed that the constraint matrix is totally unimodular and formulated
the problem as a linear programming problem. This approach differs from the
approach advocated in (15) because we first generate aggregate pairwise comparison
data, y, from the individual user comparisons vk,λ, via, e.g., yk = meanλ(vk,λ) and
weights w from the number of user comparisons (see §5) and then find a potential
for the dataset (grad, y, w). While our approach has the interpretation of grad φ
being the “`1 pojection” of the edgeflow y onto imag(grad), it is more difficult to
interpret the solution of (17). Note that for a particular choice of constructions for y
and w, these two approaches agree for the `2-norm objective function (9) [26]. More
recently, [24] generalizes (17) to, when written in the graph formalism considered
here,

min
φ

∑
λ∈Λ

∑
k∈A

fk,λ[(grad φ)k − vk,λ],

for convex functions fk,λ. The author refers to this as the “separation” model
for ranking and also introduces a further generalization, which also takes as data
a desired rating vector, referred to as the “separation-deviation” model. These
models are solved using network-flow algorithms and applied to evaluating country
credit-risk ratings [23].

As discussed in the introduction, [26] considered (9) and interpreted the residual
in terms of the Hodge decomposition. As such, they refer to this ranking methodol-
ogy as HodgeRank. In [40], the HodgeRank framework developed in [26] is applied
to distributing the task of assessing video quality for a large number of videos to a
number of viewers using randomly generated graphs. Recently, [22] extended this
work to use a graph representation of the data (as considered in this manuscript)
rather than skew-symmetric matrices. [22] studies the application of Krylov itera-
tive and algebraic multigrid methods to solving (9) for synthetic data on randomly
generated graphs.

Another approach to the ranking problem, described in [21], is a two step pro-
cess: (1) First extend the incomplete and inconsistent pairwise comparison data to
a consistent and complete pairwise comparison dataset using a matrix completion
algorithm while constraining the pairwise comparison matrix to be anti-symmetric
and to have rank less than or equal to two using the nuclear norm (convex con-
straints). (2) The statistical ranking is then easily recovered by solving the least
squares problem (9) where y ∈ im(grad).

It was recently shown that datasets can be constructed for which the HodgeRank
method produces arbitrarily different ranking orders from two other well-known
methods: the Principal Eigenvector and Tropical Eigenvector methods [39].
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Other related work. While the methods studied here establish a ranking for a fixed
graph, recent work (see, e.g., [30, 3]) studies the problem of learning, from examples
of preferences among alternatives in a graph, a statistical ranking for the remaining
objects in the graph.

In [32], the authors used a continuous version of (15) to obtain an “L1-norm
Hodge decomposition” and successfully applied it to Retinex theory, imitating the
human visual system which recovers the reflectance under varying illumination con-
ditions. For a rectangle R ⊂ R2 and given data (g1, g2), they solved the following
variational problem:

min
φ

∫
R

√
(φx − g1)2 + (φy − g2)2 such that

∫
R

φ = 0. (18)

3. KKT conditions and examples illustrating statistical ranking. In this
section, we review the KKT optimality conditions for equations (9) and (15). We
also consider several simple examples of the statistical rank aggregation problem
for cyclic and/or inconsistent datasets, (V,A, y, w).

3.1. KKT optimality conditions. In what follows, we use the concept of a sub-
differential or subderivative from convex analysis [34]. Given a convex function
f : Rn → R, the subdifferential of f at a point x0 is defined

∂f(x0) = {v ∈ Rn : f(x)− f(x0) ≥ 〈v, x− x0〉 ∀ x ∈ Rn}.
The subdifferential of the absolute value function f(x) = |x| is given

∂|x| =

{
sign(x) x 6= 0
[−1, 1] x = 0.

Using the identity ∂(f1 + f2), we obtain ∂‖x‖1 =
∑n
i=1 ∂|xi|.

Proposition 3.1 (KKT optimality conditions). Consider the statistical ranking
problem (7) with objective function given by Jp(φ) := ‖grad φ− y‖pp,w.

1. φ1,? is a global minimizer for p = 1 if

0 ∈ divw ∂‖grad φ1,? − y‖1,w (19)

2. φ2,? is a global minimizer for p = 2 if

divw (grad φ2,? − y) = 0. (20)

Equation (19) follows from the identity ∂g(x) = At∂f(Ax − b) where g(x) =
f(Ax − b) [34]. Note that s ∈ ker(divw) implies that s is a w-weighted digraph
circulation, i.e., the w-weighted flow into each node equals the w-weighted flow
out. The continuous analog of (15), given in (18), has KKT conditions with the
interpretation that r = grad φ− g has zero curvature on the set {x ∈ R : r(x) 6= 0};
(19) can be interpreted similarly.

3.2. Single n-node cycle. Consider the dataset V = {i}ni=1, A = {(i, i+1)}n−1
i=1 ∪

(n, 1), m = n, y = 1m, and w = 1m. This graph for n = 4 is displayed in Fig.
1(left). For this data, the `p-norm objective function (8) is written

Jp(φ) = ‖grad φ− 1m‖pp.
The optimal solution for p = 2 is (uniquely) attained by φ?,2 = 0n with objective

function value J?2 = n. The residual for the optimal solution, r?,2 = 1m−grad φ?,2 =
1m, is evenly distributed over all arcs.
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Figure 1. Diagrams of the digraphs for the examples considered in §3.

The optimal objective function value for p = 1 is J?1 = n, which is attained by
any potential in the (n− 1)-dimensional polytope defined by

P = {φ ∈ Rn : (grad φ)j ≤ 1 ∀ j = 1, . . . ,m and 1tnφ = 0}

which follows from (19). Note that P contains both 0n and all circular shifts of the
vector [1, 2, . . . , n]− n+1

2 1n. In the first case, the residual in the objective function
is evenly distributed over all arcs, while the error in the latter case is concentrated
on a single arc.

3.3. Globally inconsistent, competing paths. Consider the dataset V = (1, 2, 3),
A = {(1, 2), (2, 3), (1, 3)}, y = (γ, 1, 2) for γ > 0, and w = 1m as in Fig. 1(center).
This dataset is acyclic, yet globally inconsistent except for γ = 1. For this data,
the `p objective function (8) is written

Jp,γ(φ) = |φ2 − φ1 − γ|p + |φ3 − φ2 − 1|p + |φ3 − φ1 − 2|p.

For p = 2, the optimal solution is given by φ?,2 = (−(γ + 2)/3, (γ − 1)/3, 1),
with optimal objective function value J?2,γ = 1

3 (γ−1)2. The residual for the optimal
solution is r?,2 = 1

3 |γ − 1|1m.
For p = 1, the optimal objective function value is J?1,γ = |γ − 1|. For 0 < γ ≤ 1,

the optimal solution is given by any vector in the (n− 1)-polytope:

P = {φ ∈ R3 : φ2−φ1− γ ≥ 0, φ3−φ2− 1 ≥ 0, φ3−φ1− 2 ≤ 0, and 1tnφ = 0}.

If γ ≥ 1, then the optimal solution lies in the (n−1)-polytope defined as above, but
with the inequalities reversed. For γ 6= 1, P contains both φ?,2 where the residual
is evenly distributed over all arcs and also solutions at the vertices of P where the
residual is concentrated on a single arc.

3.4. Two cycles. Consider the dataset V = (1, 2, 3, 4), A = {(1, 2), (2, 3), (3, 1),
(2, 4), (4, 1)}, y = 1m, and w = 1m as in Fig. 1(right). For this data, the `p

objective function (8) is written

Jp(φ) = |φ2−φ1−1|p+ |φ3−φ2−1|p+ |φ1−φ3−1|p+ |φ4−φ2−1|p+ |φ1−φ4−1|p.

For p = 2, the optimal solution is given by φ?,2 = (1,−1, 0, 0)/4 with optimal
objective function value J?2 = 9/2. The residual for the optimal solution is r?,2 =
1m − grad φ?,2 = (6, 3, 3, 3, 3)/4.

For p = 1, the optimal solution is given by φ?,1 = (1,−1, 0, 0) with optimal
objective function value J?1 = 3. The residual for the optimal solution is r?,1 =
1m − grad φ?,1 = (3, 0, 0, 0, 0). This example suggests that the `1 norm might be
useful for identifying arcs which can be removed to yield globally consistent data.
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3.5. Further observations. In §3.2 and §3.3, it is observed that φ2,? = ∆†divw y
also attains the minimum objective function value for the `1 problem. In the fol-
lowing proposition, we give sufficient conditions on the data (grad, y, w) for this to
occur. These hypotheses include the datasets in §3.2 and §3.3.

Proposition 3.2. Assume w = 1m. Let φ2,? = ∆†divw y. If id(j) + od(j) = 2 for
every node j ∈ V , then J1(φ2,?) = minφ∈Ad J1(φ).

Proof. Write r2,? = y − grad φ2,?. The KKT optimality conditions (20) for the
optimality of φ2,? for the objective function J2(φ) can be expressed: there exists a
residual arcflow r2,? : A→ R such that for each node j ∈ V ,∑

k : j=tail(k)

(r2,?)k −
∑

k : j=head(k)

(r2,?)k = 0

By assumption, these sums combined have only two terms implying that the terms
are either both zero or are arranged in such a way so that the values, and hence
signs, cancel. In either case, (19) is satisfied.

The following proposition suggests why the residual of the `1-norm problem (15)
for datasets with w = 1m might be sparse.

Proposition 3.3. Assume w = 1m. Let φ1,? denote a minimum of (15) and
r1,? = y− grad φ1,?. For every j ∈ V such that id(j) + od(j) is odd, there exists an
arc k ∈ A with either j = head(k) or j = tail(k) such that (r1,?)k = 0.

Proof. The KKT optimality condition (19) implies the existence of an arcflow
s : A → R such that divs = 0n. Let j ∈ V be such that id(j) + od(j) is odd
and define Aj = {k ∈ A : j = head(k) or j = tail(k)}. Suppose (r1,?)k 6= 0 for every
k ∈ Aj which implies sk ∈ {1,−1} for all k ∈ Aj . But the sum of an odd number
of ±1 cannot be zero.

In particular, Prop. 3.3 suggests that for the example problem in §3.4, at least
one of the residuals is exactly zero.

4. Computational methods for ranking using `1-norm regression. In this
section, we demonstrate that (15) can be written as a linear program and describe a
network-flow approach for approximately minimizing (15) which utilizes the graph
structure of the ranking problem. The network-flow algorithm discussed here has
also been employed for imaging and computer vision problems.

4.1. Fomulation as a linear program. By introducing the auxillary variables g
and h, the `1-norm optimization problem (15) can be reformulated as the following
standard-form linear program (LP) in Rn+2m with m+ 1 equality constraints:

min
(φ,g,h)∈Rn+2m

(0n, 1m, 1m)t(φ; g;h) (21)

such that [grad, −Idn, Idn](φ; g;h) = y

1tnφ = 0
g ≥ 0, h ≥ 0.

For small datasets, (21) can be solved using black-box LP software. We use CVX,
a Matlab package for specifying and solving convex programs [19, 18]. For larger
datasets however, methods which utilize the underlying graph structure of the op-
timization problem (15) are more efficient. We discuss such algorithms next.
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4.2. Graph-cut approach for solving (15). Equation (15) is within the class of
convex, cost tension/differential problems [35] that can be optimized using network
flow algorithms [5] and, in particular, those described in [4]. Steepest-descent-
based algorithms proposed by Murota for computing ε-optimal solutions may also be
applied [33]. The latter have been in specialized for image processing and computer
vision applications [7, 13, 28] using a graph-cut approach [9, 29].

We begin by introducing a steepest-descent algorithm which can be refined to
give a second algorithm with better time complexity performance. The main idea
of behind these two algorithms is to recast the problem of finding a potential in Rn
to finding a potential on a lattice, for which a descent direction may be obtained
by finding an s-t minimum cut. In computer vision, this algorithm is hence known
as the graph-cut approach [9, 29].
First algorithm. Given a current potential, φ0 ∈ Rn and a lattice parameter δ > 0,
we introduce a new feasible set, Sδ = φ0+δZn. Our goal is to minimize the objective
function J1(φ) over this new set, i.e., solve

min
φ∈Sδ

J1(φ) := ‖grad φ− y‖1,w, (22)

The solution to (22) is obtained iteratively by finding, amongst all lattice points
within an `∞-norm ball of radius δ, the potential with smallest objective value, i.e.,
solving

min
σ∈{−1,0,1}n

J1(φ0 + δσ). (23)

Thus, at each iteration of the solution to (22), each potential component can either
retain the current value or increase/decrease by δ.

The solution of (23) can efficiently computed using a graph-cut approach [9] [29].
This is accomplished by constructing an augmented graph, with prescribed edge
capacities, for which an s-t minimum cut partitions the graph, yielding a solution
to (23), σ?. The solution of the s-t minimum cut problem is efficiently obtained
by solving the dual maximum-flow problem. We refer the reader to [7],[13, chp.
3], [28], for instance, for a more comprehensive description of the augmented graph
construction and how a descent direction can be found using a s-t minimum cut.

Once the optimal solution σ? of (23) is computed, the current potential is updated
via φk+1 = φk + δσ? and the procedure is iterated until an objective function value
is obtained such that the subsequent iteration has the same value. It may be shown
that every iteration reduces the `∞-norm distance of the current iterate to the
optimal solution φ? by δ and thus the number of iterations required for convergence
is given by ‖φ? − φ0‖∞/δ [33]. So, if we denote by T (n,m) the time needed to
compute a s-t minimum-cut in a graph of n nodes and m edges, the time complexity
of the algorithm is T (n,m) · ‖φ? − φ0‖∞/δ.

Let us emphasize that although this algorithm is effective in practice, it depends
on the `∞-norm distance between the initial potential and global minimum, and
thus has only pseudo-polynomial time complexity.
Second algorithm. The second algorithm is a refinement of the first, permitting a
polynomial time complexity bound [33]. The idea, similar to the binomial search
algorithm, is to iteratively halve the lattice parameter, δ. More precisely, given an
initial guess φ0, and a sufficiently large initial lattice parameter δ, (22) is solved
for this lattice parameter δ as described above, and then we set δ ← δ/2 and
repeat until a prescribed precision level ε is attained. The method is summarized
in Algorithm 1. The number of times (23) needs to be solved for a single lattice
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Algorithm 1: For solving the statistical ranking problem, (15).
Data: Initial guess φ0 ∈ Ad, convergence tolerance ε > 0, and initial search

size parameter δ > 0 (sufficiently large).
Output: ε-optimal potential φ with J1(φ) = E.
Set E =∞ (current objective function level)
Set φ = φ0

for k = 0 to ceil(log2
δ
ε ), do

Set δk = δ
2k

while J1(φ) < E, do
Set E = J1(φ)
Use graph cut methods to solve:

σ? = arg min
σ∈{−1,0,1}n

J1(φ+ δkσ)

Set φ = φ+ δkσ?

parameter δ is bounded above by n and thus the time complexity of this algorithm
is n · T (n,m) · log2

d
ε [33].

We use the graph-cut implementation described in [8], which achieves excellent
performance in the examples considered in our experiments; see §5.

5. Applications / Experimental studies. In this section, we conduct a series
of computational experiments to demonstrate the differences between solving the
statistical ranking problem using the `1- and `2-norms. All computations in this
section were performed on a 2.4 GHz dual core processor with 2GB memory.

5.1. Jester: the online joke recommender. In this section, we consider a
dataset from an online joke recommendation website [25]. The raw dataset con-
tains 1,761,439 ratings (on a scale from -10 to 10) of 140 jokes from 59,132 users
collected between November 2006 and May 2009. In the raw dataset, the jokes are
numbered from 1 to 150 with the following 10 numbers omitted: 1, 2, 3, 4, 6, 9,
10, 11, 12, and 14 and the users are numbered from 1 to 63,978 leaving 4,846 users
who did not review any jokes. We discard the data associated with the following
12 jokes: 5, 20, 27, 31, 43, 51, 52, 61, 73, 80, 100, and 116, which, due to being
removed from the Jester website before the collection period ended, have fewer user
reviews. The remaining dataset contains 1,758,234 ratings of 128 jokes from 59,123
users.
Construction of pairwise comparison data from raw data. Let Λ be the set of all
joke reviewers and let u(i, λ) be the rating given to joke i ∈ V by reviewer λ ∈ Λ.
Let E ⊂

(
V
2

)
denote the set of unordered joke pairs that have been reviewed by at

least 1 reviewer. For each unordered joke pair {i, j} = e ∈ E, we define

Λe = {λ ∈ Λ: λ reviewed both items i and j}. (24)

The unordered pairwise weights and comparison data are then constructed

we = |Λe| and ye =
1
|Λe|

∑
λ∈Λe

u(i, λ)− u(j, λ) where e = {i, j} ∈ E.

We then define the set of ordered pairs A consisting of arcs a = ij such that for
e = {i, j} ∈ E, ye ≥ 0. Lastly, for each a = ij ∈ A, if we denote e = {i, j}, then we
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joke id #
rank `2 `1

1 89 89
2 53 53
3 105 105
4 62 62
5 106 106
6 104 104
7 114 50
8 32 114
9 129 32
10 35 68
11 50 35
12 68 129
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Figure 2. See §5.1 (left) A table which give the top 12 joke id
numbers (in the original dataset numbering) for optimal rankings
obtained using the `1- and `2-norms. (right) The number of small
entries (25) in the residual of the `1 (black) and `2 (blue) solutions.

define the ordered pairwise weight wa = we and comparison ya = ye. This method
is invariant to translation in the ratings u(i, λ) for each reviewer λ ∈ Λ. We remark
that there are several other methods of constructing pairwise data from user reviews
which are invariant under other transformations [26].

One of the advantageous properties of this dataset is that the pairwise comparison
data is complete, i.e., for every unordered pair {i, j}, either ij ∈ A or ji ∈ A. In fact,
the mean number of users which ranked each joke pair is 6,976. The joke pair with
the minimum number of pairwise comparisons is {74, 141} with 3,284 comparisons,
while the joke pair with the maximum number of pairwise comparisons is {7, 8} with
57,456 comparisons. In the following, we exploit the properties that this dataset is
relatively small (128 alternatives) and the pairwise comparison data is complete.
Numerical experiments. We begin by considering the solutions to the rank aggre-
gation problem (7) for p = 1 and p = 2. The relative residual norm for the optimal
solutions obtained are

‖grad φ1,? − y‖1,w
‖y‖1,w

= 0.052 and
‖grad φ2,? − y‖2,w

‖y‖2,w
= 0.072.

We find that the optimal solutions φ1,? and φ2,? are very close, e.g., ‖φ1,?−φ2,?‖2 =
0.26, although they do induce different orderings on the alternatives (jokes), which
we make more precise below. The top-12 jokes for each ranking are given in Figure
2(left).

The induced ordering relation on a set of alternatives by the ranking r is defined
i �φ j iff φ(i) > φ(j), i =φ j iff φ(i) = φ(j), and i ≺φ j iff j �φ i. Given an
ordering relation induced by φ on V , let τr(i) denote the order of i ∈ V . If τφ(i) is
large, then alternative i has large ranking (φ(i) is large).

It is useful to introduce a few metrics to measure the distance between rankings
and their induced orderings. We use the following measures of distance to compare
potentials for a given dataset:

R(φ1, φ2) =
‖φ1 − φ2‖2

(‖φ1‖2 + ‖φ2‖2)/2
T (φ1, φ2) =

‖grad (φ1 − φ2)‖2,w
(‖grad φ1‖2,w + ‖grad φ2‖2,w)/2

.
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Figure 3. See §5.1. A study of the `1 and `2 optimal solutions
to the statistical ranking problem for varying Erdös-Rényi sub-
digraph connectivity parameter, p. (left) φp1,? vs. φp2,?. (center)
φp2,? vs. φ1

2,?. (right) φp1,? vs. φ1
1,?. In each comparison, four

metrics are used: Rp (green), T p (black), Kp(blue), and Sp (red).

The Kendall tau distance between two potentials φ1 and φ2 is defined

K(φ1, φ2) :=
#{(i, j) : i > j, φ1(i) < φ1(j), and φ2(i) > φ2(j)}

n(n− 1)/2
.

Following [16], we define the Spearman footrule distance between two induced or-
derings τ1 and τ2,

S(τ1, τ2) :=
‖τ1 − τ2‖1
n2/2

.

Each of these distances have been normalized to take values on [0, 1].
For the Jester dataset, let τ1,? and τ2,? denote the ordering indices induced by

the rankings φ1,? and φ2,? respectively. The following table gives the values of these
distances.

R(φ1,?, φ2,?) T (φ1,?, φ2,?) K(φ1,?, φ2,?) S(τ1,?, τ2,?)
0.015 0.015 0.0023 0.011

The `1 and `2 rankings and their respective induced orderings are similar, yet the
number of zeros in the solution residuals differ significantly. Define the number of
’small values’ in the residual r = y − grad φ, as measured by

Z(δ) = #{j : |rj | < δ}. (25)

In Fig. 2(right), we plot δ vs. Z(δ) for the potentials φ1,? (black) and φ1,? (blue).
Indeed the number of zeros in the residual for the `1-norm ranking is much larger
than that for the `2-norm ranking.

Next, we explore the dependency of the rankings and induced orderings on the
connectivity of the graph. For a sequence of decreasing probabilities p, we generate
Erdös-Rényi random sub-digraphs D(p) ⊂ D, which randomly discard arcs with
a uniform probability of 1 − p, independent from every other arc. The expected
number of arcs in D(p) is p

(
n
2

)
= pn(n−1)

2 and thus we consider p to be an incom-
pleteness parameter for the digraph. The threshold for weak connectedness of D(p)
is ptwc = logn

n ≈ 0.038. Using the subset of the pairwise comparison data specified
by the random digraph D(p), we compute the solutions to the `1- and `2-norm rank
aggregation problems using CVX, which we denote φp1,? and φp2,? respectively. For
each value of p, we generate an ensemble of size 20 of random digraphs D(p). For
each digraph D(p), we make three comparisons: φp1,? vs. φp2,?, φ

p
2,? vs. φ1

2,?, and
φp1,? vs. φ1

1,? using each of the 4 distances defined above: R(·, ·), T (·, ·), S(·, ·), and
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largest average user rating `2-norm ranking, (9) `1-norm ranking, (15)
12.7 Lawrence of Arabia 4.3 It’s a Wonderful Life 4.1 It’s a Wonderful Life
12.7 The Shawshank Redemption 4.2 Rear Window 4.0 Rear Window
12.6 The Adventures Of Indiana Jones 3.8 Friends (4th Season) 3.5 The Shawshank Redemption
12.4 Say Anything 3.6 Vertigo 3.4 Seven Samurai
12.4 12 Angry Men 3.6 The Shawshank Redemption 3.4 Vertigo
12.4 It’s a Wonderful Life 3.5 The Good, the Bad and the Ugly 3.4 The Godfather
12.3 National Lampoon’s Animal House 3.4 The Godfather 3.3 The Good, the Bad and the Ugly
12.3 Apocalypse Now Redux 3.3 Serpico 3.2 Psycho
12.4 The Good, the Bad and the Ugly 3.3 To Kill a Mockingbird 3.2 To Kill a Mockingbird
12.2 Braveheart 3.3 The Natural 3.2 12 Angry Men

Table 1. Top 10 movies, ranked using 3 different methods. See §5.2.

K(·, ·). In Fig. 3, we plot the connectivity parameter p vs. the ensemble average for
each of these quantities: Rp (green), T p (black), Kp(blue), and Sp (red) for each of
the three comparisons: φp1,? vs. φp2,? (left), φp2,? vs. φ1

2,? (center), and φp1,? vs. φ1
1,?

(right). We find that the potentials are robust in the sense that they change only
slightly, even when computed without ≈ 80% of the data. For large datasets, this
observation could be used as a heuristic to initialize an optimization method.

5.2. Yahoo! Movie user ratings. In this section, we consider the Yahoo! Movie
user rating dataset consisting of a 7, 642× 11, 915 user-movie matrix where each of
the 211, 197 nonzero entries (0.23% sparsity density) is a 1 to 13 rating [41]3. Each
movie was rated by between 1 and 4,238 users (the average number of reviews for
each movie is 17.7). Each user rated between 10 and 1,632 movies (the average
number of reviews made by each reviewer is 27.6). Of the 70,977,655 (movie) pairs
(i, j) where i > j, there are 5,742,557 for which a user has given a rating to both
movies i and j which implies that the pairwise comparisons for the raw dataset are
8.1% complete.

The majority of movies in the dataset received relatively few reviews:
# times movie reviewed 1 2 3 4 5 6 7 ≥ 8

occurrences 4,901 1,882 897 548 398 316 237 2736

The movies which received less than 20 rankings were discarded from the dataset,
leaving 1,477 movies, each of which were reviewed by an average of 119.8 users.
We then removed 22 users who did not review any of the remaining movies. The
remaining 7620 reviewers reviewed between 1 and 889 movies (on average they
reviewed 23.2 movies). The average user rating for each movie was computed and
the top ten averages along with the movie names are given in Table 1 (first column).
Construction of pairwise comparison data from raw data. The pairwise comparison
data are constructed as described in §5.1. Of the 1,090,026 (movie) pairs (i, j) where
i > j, there are 907,683 for which a user has given a rating to both movies i and
j. Although the pairwise comparison dataset is 83% complete, 85% of the pairwise
comparisons were constructed from less than 10 user comparisons. A log-histogram
of the number of user-pairwise comparisons for each pair, i.e., |Λe| where Λe is
defined in (24), is given in Fig. 4 (left).
Numerical experiments. We begin by computing the solution to the `1-norm and
`2-norm statistical ranking problems (9) and (15) for this dataset. The graph-cut
method described in §4 for solving the `1-norm statistical ranking problem (15) was

3We discarded 34 entries from the dataset which review Yahoo! movie id 0, which does not
appear in the movie content description file.
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Figure 4. See §5.2. (left) A log-histogram of the number of user
comparisons for each movie pair. (right) The number of small
entries (25) in the residual of the `1 (black) and `2 (blue) solutions.

implemented in C. The optimal solution obtained, φ1,?, has relative residual norm

‖grad φ1,? − y‖1,w
‖y‖1,w

= 0.415.

The solution to the `2-norm statistical ranking problem (9) was obtained using
Matlab’s lsqr function. The relative residual norm of the optimal solution obtained,
φ2,?, is

‖grad φ2,? − y‖2,w
‖y‖2,w

= 0.488.

The larger relative residual norms for these potentials indicate that this dataset is
less consistent than the dataset considered in §5.1.

The top ten movies using the ordering induced by φ1,? and φ2,? are given in
Table 1 along with the top ten movies obtained by sorting the average user ratings.
As in §5.1, we find φ1,? and φ2,? are similar:

R(φ1,?, φ2,?) T (φ1,?, φ2,?) K(φ1,?, φ2,?) S(τ1,?, τ2,?)
0.088 0.068 0.016 0.032

In Fig. 4, we plot δ vs. Z(δ) (as defined in (25)) for the potentials φ1,? (black)
and φ2,? (blue). The number of small values in the residual for the `1-norm ranking
is much larger than that for the `2-norm ranking.

5.3. Association of Tennis Professionals (ATP) Match Data. The Associ-
ation of Tennis Professionals (ATP) is an organization which organizes the ATP
World Tour, the primary tennis circuit for male professional tennis players [6].
On October 5, 2011 we collected 2011 ATP tennis match records from the Tennis
Datenbank website [38] using a Scrapy web crawler [37]. The dataset was collected
by starting with the set of tennis players containing only Rafael Nadal and sub-
sequently adding players to the set who have played members of the set. In this
manner, a set of 609 players was collected, each of which have played at least one
other member of the set. For each of these players, the match history from October
9, 2010 to October 5, 2011 was then downloaded, yielding 10,784 matches (where
both players were contained in the player set). We then remove players from the
dataset who played less than 27 matches. The remaining dataset consists of 4,074
matches played between 218 players. For each match, the collected dataset contains
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the outcome, match score, court type (hard, clay, grass, etc. . . ), tournament round,
date, and venue information. At the end of each tennis match, there is a winner
and a loser; there are no ties.
Construction of pairwise comparison data from raw data. Let Λ be the set of all
tennis matches and let E ⊂

(
V
2

)
denote the set of unordered player pairs that have

met in a match at least once. For each unordered player pair {i, j} = e ∈ E, we
define

Λe = {λ ∈ Λ: match λ is between players i and j}.

For each player pair e = {i, j} ∈ E, we let we be the number of times players i and
j have met in a match, i.e., we = |Λe|.

For the pairwise comparison values yk, we seek a construction that estimates
the relative player strengths, i.e., provides a “victory margin” for matches, while
appealing to simplicity. To accomplish this, we propose using match scores rather
than just win-loss results. For player pair {i, j} = e ∈ E, the unordered pairwise
comparison data are constructed

ye =
1
|Λe|

∑
λ∈Λe

(
2

#{sets i beat j in match λ}
#{sets in match λ}

− 1
)

where e = {i, j} ∈ E.

Note that the expression in parenthesis is anti-symmetric in the indices i and j and
lies in the interval [−1, 1]. Then, following §5.1, we define the set of ordered pairs
A consisting of arcs a = ij such that for e = {i, j} ∈ E, ye ≥ 0. Lastly, for each
a = ij ∈ A, if we denote e = {i, j}, then we define the ordered pairwise weight
wa = we and comparison ya = ye.

The resulting digraph, D = (V,A), is fairly sparse, m
n(n−1)/2 = 0.1722, which is

approximately 7 times the Erdös-Rényi threshold for weak connectedness (ptwc =
log(n)
n ≈ 0.025). For the players who did meet in a tennis match, they did so only

1.19 (= mean w) times on average. The following table gives histogram data for
the number of matches between players:

# times player pairs met 0 1 2 3 4 5 6 7 8 ≥ 9

occurrences 19,603 3,395 560 77 13 3 0 1 1 0

Numerical experiments. The relative residual norm for the optimal solutions ob-
tained to the rank aggregation problem (7) for p = 1 and p = 2 are

‖grad φ1,? − y‖1,w
‖y‖1,w

= 0.79 and
‖grad φ2,? − y‖2,w

‖y‖2,w
= 0.86.

This dataset is less consistent than the datasets considered in §5.1 and §5.2. This
may partially reflect the fact that each pairwise comparison is typically based on
only a single match, while for other datasets, pairwise comparisons where based on
an average over many reviews. The ranking methods considered in this paper also
neglect temporal variations in the data, which may be more pronounced for this
particular dataset.

The top-10 tennis players for each ranking and also those given by the Association
of Tennis Professionals (ATP) are given in Table 2. The ATP player ranking is based
on points accrued from (typically 19) tournament results from the previous calendar
year. Points are awarded based on the tournament category (Grand Slam, Barclays
ATP World Tour Finals, ATP World Tour Masters 1000, etc. . . ) and the round
in which the player advances [6]. Indeed, all three ranking methodologies produce
very similar rankings.



STATISTICAL RANKING USING THE `1-NORM ON GRAPHS 17

ATP Entry Ranking `1-norm ranking, (15) `2-norm ranking, (9)
1 Djokovic, Novak (SRB) 1.34 Djokovic, Novak (SRB) 1.20 Djokovic, Novak (SRB)
2 Nadal, Rafael (ESP) 1.33 Federer, Roger (SUI) 1.16 Federer, Roger (SUI)
3 Federer, Roger (SUI) 1.28 Nadal, Rafael (ESP) 1.09 Nadal, Rafael (ESP)
4 Murray, Andy (GBR) 1.09 Soderling, Robin (SWE) 0.91 Murray, Andy (GBR)
5 Ferrer, David (ESP) 1.06 Murray, Andy (GBR) 0.86 Soderling, Robin (SWE)
6 Soderling, Robin (SWE) 0.95 Ferrer, David (ESP) 0.83 Del Potro, J. M. (ARG)
7 Tsonga, Jo-Wilfried (FRA) 0.92 Fish, Mardy (USA) 0.78 Ferrer, David (ESP)
8 Fish, Mardy (USA) 0.92 Del Potro, J. M. (ARG) 0.72 Tsonga, Jo-Wilfried (FRA)
9 Monfils, Gael (FRA) 0.84 Tsonga, Jo-Wilfried (FRA) 0.70 Fish, Mardy (USA)
10 Berdych, Tomas (CZE) 0.75 Monfils, Gael (FRA) 0.68 Monfils, Gael (FRA)

Table 2. 2011 tennis player rankings given by the Association of
Tennis Professionals (ATP) as of October 5, 2011 and obtained by
solving (15) and (9); see §5.3.

The number of small values in the residual r = y−grad φ?, as measured by Z(δ)
defined in (25) for δ = 4×10−4 is 0 for the `2-norm ranking and 260 for the `1-norm
ranking.

6. Discussion and future directions. In this paper, we have considered the
statistical rank aggregation problem of ranking a set of alternatives from a dataset
consisting of pairwise comparisons of the alternatives. Our approach uses the `1-
norm objective function (15), which provides an alternative to recent work utilizing
the `2-norm objective function (9) [26, 22]. These two objective functions have
different interpretations of the residuals, each of which may be useful for a particular
application. There are many possible future extensions of the work conducted in
this paper.

Our focus for the computational methods in this paper, described in §4 and
applied to datasets in §5, was to demonstrate proof of concept for ranking using
the proposed `1-norm objective function, (15). For the moderately-sized datasets
studied in §5, our implementation for solving (15) finds solutions in seconds on a
laptop computer, comparable to the time required to solve (9) using Matlab’s lsqr
function. We believe that significant improvements can be made to our algorithm
and are particularly interested in the use of differential inclusion methods [1].

We have demonstrated, using simple examples in §3 and with numerical exper-
iments for real datasets in §5, that the residual for the solution to (15) is sparse.
In the introduction, we noted that this optimization problem, when expressed as in
(16), resembles the framework of compressive sensing problems [12]. It would be of
great interest to determine if the properties needed for these results to apply hold.

We are also interested in exploring the sensitivity of the ranking on the pairwise
values y, arc weights w, and digraph topology D. Furthermore, it may be possible
to apply robust optimization methods [20] to reduce the influence of “noise” in the
dataset, by including information about the uncertainty of y, w, and D into the
ranking model.

Finally, as discussed in the introduction, the Hodge decomposition further de-
composes the residual in (9), into locally cyclic (3 vertex cycles) and locally acyclic
(≥ 4 vertex cycles) components. We are interested in the problem of employing
fast graph-cut methods to approximate the solution of (12), to locate the locally
cyclical component of the pairwise data, by solving

min
Φ∈V×V×V

‖curl Φ− y‖1,w.
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This formulation is also motivated in [26].
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