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Abstract. We present an algorithm which computes the value function and optimal paths for
a two-player static game, where the goal of one player is to maintain visibility of an adversarial
player for as long as possible, and that of the adversarial player is to minimize this time. In a
static game both players choose their controls at initial time and run in open-loop for t > 0 until
the end-game condition is met. Compared to closed-loop (feedback strategy) games which require
solving a PDE in high dimensions, we demonstrate that the static game can be solved directly
in the state space by the proposed PDE-based technique. This results in significant savings in
both memory and computational cost, at the expense of a simpler information pattern that is
more conservative towards one player. In addition, we describe how this algorithm can be easily
generalized to games with multiple evaders. Applications to target tracking and an extension to a
feedback control game are also presented.

1. Introduction

Consider the setting where a mobile agent is required to visually track a mobile target in an
environment containing obstacles that block the agent’s line of sight. For the mobile agent to
maximize the time interval in which it maintains visibility of the target, a conservative, worst-case,
strategy is to assume that the target actively seeks occlusion behind the obstacles. Hence, the
problem may be posed as a pursuit-evasion-type game: the game terminates the first instance in
time the pursuer loses sight of the evader, the pursuer’s objective is to prolong the game as much
as possible, and the evader’s objective is to terminate the game as quickly as possible. We shall call
this type of game a visibility-based surveillance-evasion game, or simply a surveillance-evasion game.

In this work, we investigate optimal motion strategies for two or more players moving with inho-
mogeneous and/or anisotropic velocities in a domain containing obstacles. The main contribution
is a computationally and memory efficient algorithm for constructing the players’ optimal paths
for the static surveillance-evasion game. In this game the pursuer initially chooses its control for
the remaining time, assuming that the evader would always counter with its best control. As we
shall see, the particular information pattern of the static game allows for a decomposition of the
problem into simpler optimal control problems in the underlying domain, which can be implemented
in parallel. Our approach contrasts non-anticipative or feedback strategy games, which require so-
lutions to Hamilton-Jacobi-Issacs partial differential equations in the joint configuration space with
a computational complexity which increases exponentially with the number of participating players.

The efficiency of the algorithm allows for various applications and extensions. For example, the
algorithm generalizes easily to the game involving multiple evaders while maintaining a complexity
which is linear in the number of players. Furthermore, our algorithm may be applied iteratively in
small time increments to provide efficient solutions to a class of dynamic target tracking problems.

1.1. Previous work.

1.1.1. Related problems involving surveillance and visibility. Surveillance-evasion games were studied
geometrically in [LO79, LB75, Gre87], where the game terminates the instance the evader exits the
pursuer’s local “detection circle.” It is unclear, however, how these geometric formulations could be
applied in the context of the more general visibility-based surveillance-evasion game. Furthermore,
the geometric nature of the derivations makes generalizations to arbitrary players dynamics and the
presence of state constraints difficult to analyze.
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In a domain with polygonal obstacles, the numerical methods for the visibility based surveillance-
evasion game with constant, isotropic velocities were studied in [BH08a]. There, the authors geo-
metrically characterized sets called “decidable regions” consisting of all possible pursuer initial states
where the outcome of the game is known, given the initial state of the evader. The same authors, in
[BH08b], also considered computing optimal trajectories of the surveillance-evasion game backwards
in time by tracing particular characteristic curves from the terminal condition set.

We also mention another class of problems, called visibility based pursuit-evasion, which concerns
the motion planning of an agent that seeks out an initially hidden mobile target in a simply connected
polygonal domain [SY92, TL08, GLL+97]. The simplified representation of the environment using
polygons is a major limitation of the algorithms based on computational geometry and combinatorics.
Furthermore, the extension of these algorithms to three dimensional problems may be extremely
complicated. In [LT08], the authors present a robust algorithm for reconstructing the visible portions
of the obstacles’ boundaries as well as identifying visible regions of a bounded domain provided
a vantage point and a dense collection of points sampled from the surfaces of solid obstacles in
the domain. The formulation may be applied to arbitrary bounded regions independent of their
geometry. The resulting visibility function can easily be transformed into the level-set-based visibility
function [CT05, TCO+04], which is described below and is used as a basis of the algorithms described
in this paper.

1.1.2. Pursuit-evasion type game. One of the initial applications of the pursuit-evasion games was
missile guidance systems formulated by R. Isaacs in the celebrated monograph [Isa65]. Other ap-
plications of this problem include security and surveillance systems as well as search/rescue efforts.
The proposed strategies could be used by autonomous systems or by human searchers.

In Section 2.2, we outline how the connection between differential games and Hamilton-Jacobi
equations is established. The key idea is to introduce a value function of the game, which formally
satisfies a particular PDE, known as Hamilton-Jacobi-Isaacs (HJI) equation. The characteristic
curves of the HJI equation correspond to the optimal paths of the players. The first treatment
of such equations appeared in the monologue [Isa65]. Subsequently, with the advent of the notion
of viscosity solutions [CL83], rigorous theories regarding the existence and uniqueness of solutions
(the value functions) to HJI equations were established; see [ES84] and the references therein.
Numerical results have been developed to compute the value and optimal paths for various games,
see e.g. [BFS99]. In practice, the high dimensionality of the HJI equation makes this approach
tractable only on a modestly sized grid with a small number of players – usually two players in at
most a two dimensional domain.

1.1.3. Target tracking. A related target tracking problem consists of a combination of different chal-
lenging problems that have been separately studied in robotics. Visibility and collision constraints
must be satisfied in the presence of uncertainties in the positions of the observer and the target
[LGBL97, FGBLL01, MCGT02, BLJH05, YL08]. The observer would like to maintain visibility
of the target while avoiding collisions with the obstacles [LGBL97]. When the target is fully pre-
dictable, that is, its trajectory is known, a dynamic programming approach [Ber86] can be used to
compute the shortest path for the observer. If the target is only partially predictable, this approach
fails. Instead, the observer chooses the motion command which would maximize the likelihood that
the target will remain visible during some time in the future [LGBL97, FGBLL01, MCGT02]. In
[LGBL02], a more complicated problem of tracking unpredictable targets in unknown environments
is considered. The observer is able to reconstruct a local map of the environment based on range
data. Then, a new velocity is determined using a combinatorial algorithm to minimize the risk of
target escaping the observer’s view by crossing an occlusion ray created by the obstacle. The gen-
eral problem of inferring where the unpredictable moving targets could be as they pass out of view
is presented in [YL08]. The main idea behind [YL08] is to introduce information spaces that ex-
tract and maintain combinatorial data obtained by robots that carry sensors. The proposed strategy
[YL08] can be easily generalized to two or three dimensional, known or unknown, multiply connected
domains, as long as the connected components of the shadow region are maintained.

The problem of target tracking in an arbitrary domain using a variational model was proposed
in [CT05]. There, the pursuer’s control was determined by optimizing a functional composed of a
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linear combination of the distance between the two players and the visibility area. Gradient descent
was employed to lead the pursuer to a local minimizer of the functional.

1.1.4. Optimal control and visibility in the Hamilton-Jacobi framework. Our approach to the vis-
ibility based surveillance-evasion game is based on decomposing the problem into optimal con-
trol problems. Thus, its efficiency hinges on that of the solution for the corresponding optimal
control problems. To this end, we exploit recent developments in numerical Hamilton-Jacobi-
Bellman equation solvers to determine the value function associated with the optimal control problem
[TCOZ03, Set95, BCD97a, RT92, Tsi95, SV03, GR85, FF02]; optimal controls and paths can then
be extracted from the value function by means of solving an ordinary differential equation along the
characteristic curves, see appendix in [BCD97a].

Another useful tool, the level-set based continuous visibility function ϕ(·, ·) [CT05, TCO+04] has
the property that for any two points x, x0,

ϕ(x, x0) ≤ 0⇔ x is occluded from x0,

when obstacles are suitably defined implicitly as a level set function; i.e. ϕ is zero on the obstacle’s
boundary, is negative inside and positive outside. This formulation allows for accurate description
with subcell resolution of the the visibility information that is convenient for Boolean operations of
the described regions as well as for integration and differentiation. Numerically, ϕ can be computed
in O(N) complexity on a grid with N nodes, by solving a Hamilton-Jacobi equation with special
sweeping techniques [TCO+04]. In the appendix, we extend the notion of a visibility function to
that of a shadow function:

ξ(x, x0) ≤ 0⇔ x is occluded from x0 and x is not inside an obstacle.

1.2. Outline of article. The article will proceed as follows. In Section 2, we lay out all necessary
assumptions as well as give a precise definition of a static information pattern for a two-player
game. Next, in Section 3, we present the theory and algorithm for the static surveillance-evasion
game, as well as numerical results demonstrating its performance. Applications and extensions of our
algorithm to multiple evaders, target tracking and feedback control games are presented in Section 4.

2. Information patterns and game definitions

2.1. Preliminary definitions. We partition an open and bounded ambient space Ω into the
freespace and obstacles: Ω = Ωfree ∪ Ωobs, where Ωfree is open; Ωobs serves as impenetrable ob-
stacles to all players and blocks the line of sight between any two players. For a vantage point
x ∈ Ωfree, we denote Dx ⊂ Ωfree to be the relatively closed1 subset in Ωfree of all points that are not
visible from x.

We shall refer to the two competing players as E (for ‘Evader’) and P (for ‘Pursuer’), with fixed
initial states x0

E , x
0
P ∈ Ωfree, respectively. Let A = {σ̂ | ‖σ̂‖2 = 1 or σ̂ = 0} ⊂ Rn be the compact

set of control values and A = {measurable σ : [0,∞)→ A} be the set of time-parametrized controls.
Let xE : [0,∞) → Ωfree and xP : [0,∞) → Ωfree represent the time-evolution of E and P’s states,
respectively. We assume the players move according to the following geometric dynamics:

(1)

{
ẋE(t) = fE(xE(t), σE(t))σE(t)

ẋP (t) = fP (xP (t), σP (t))σP (t)
for t > 0,

{
xE(0) = x0

E

xP (0) = x0
P ,

where fE : Ωfree ×A→ R, fP : Ωfree ×A→ R are speeds assumed to satisfy the following:
(A1) fE , fP are Lipschitz continuous.
(A2) There exist constants F1, F2 > 0 such that F1 < fE(x, σ̂), fP (x, σ̂) < F2 for all x ∈ Ωfree

and σ̂ ∈ A.
(A3) For every xE , xP ∈ Ωfree the interior of the vectograms {fE(xE , σ̂E)σ̂E | σ̂E ∈ A\{0}},

{fP (xP , σ̂P )σ̂P | σ̂P ∈ A\{0}} are convex.

1two players are considered occluded if they lie on each other’s visibility horizon, i.e. the line segment connecting
the players that is tangent to an obstacle boundary.
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Assumption (A1) implies a unique solution to (1) for a pair of controls σE ∈ A, σP ∈ A up to
some finite time; we refer to these solutions xE(·), xP (·) as paths for E and P, respectively. To avoid
cumbersome notation, we will not write the explicit dependence of xE(·) on σE and x0

E , and similarly
for xP (·) on σP and x0

P . Assumption (A2) ensures that the minimum time value functions

uE(x) = inf
σE∈A

inf{t ≥ 0 | xE(t) = x},(2)

uP (x) = inf
σP∈A

inf{t ≥ 0 | xP (t) = x},(3)

for the single player optimal control problems are continuous. Finally, the convexity assumptions
of the interior of the vectograms in (A3) guarantee the existence of optimal controls in (2) and
(3) and closedness of optimal paths (under uniform convergence over bounded-time intervals) in
an unrestricted state space; for a remark on the existence of optimal controls for a restricted state
space, see Remark 2.2. Note that the zero control value 0 ∈ A gives the players the option to stop.
As we shall see later, the existence of the zero control crucial is when characterizing the optimal
control for P.

Remark 2.1. It can be shown by a formal derivation that uE satisfies the Hamilton-Jacobi (HJ)
partial differential equation (PDE)

(4) max
σ∈A
{∇uE(x) · fE(x, σ)σ} = 1,

in Ωfree\{x0
E} and similarly for uP . It is known that in general, even under the assumptions (A1)-

(A3), Lipschitz continuous solutions of (4) with typical Dirichlet boundary conditions are non-
unique. However, it is possible to characterize a generalized solution, called a viscosity solution
[CL83]. It has been shown that the viscosity solution to (4) coincides with the value function uE
of the corresponding optimal control problem [Lio82]. The advantage of characterizing the value
function as a HJ PDE is the availability of a plethora of efficient numerical methods known to
converge to the viscosity solution, including fast sweeping-type [TCOZ03, RT92], fast marching-type
[Set95, Tsi95, SV03] and semi-Lagrangian methods [GR85, FF02]. See also [Mit08] for a publicly
available Matlab toolbox for computing solutions to a wide class of HJ equations.

Remark 2.2. In a restricted state space (i.e. Ωfree 6= Rn), the optimal controls in (2) and (3) may not
exist, even under the assumptions (A1)-(A3). However, from the definition of the value function,
there will always exist controls that are ε-suboptimal, provided the value function is finite. For
instance, given ε > 0, there exists σ∗ ∈ A such that the corresponding path x∗E(·) for E satisfies

uE(x) > inf{t ≥ 0 | x∗E(t) = x} − ε.
To simplify the presentation, we will loosely refer to an “optimal path” as a path that corresponds
to an optimal control, if such a control exists, or an ε-suboptimal control, if no optimal control
exists. For detailed discussions on numerical computations of optimal trajectories and empirical
demonstrations of its computation in a restricted state space, we refer the reader to Appendix A in
[BCD97a].

2.2. Feedback strategies and the value function. E’s objective is to choose an optimal σ∗E ∈ A
in order to minimize the payoff, while P’s objective is to choose an optimal σ∗P ∈ A to maximize
the payoff. For instance, P’s strategy may be to move in the direction that locally increases the
visibility area from the vantage point xP (t) [CT05].

A feedback strategy at a time t ≥ 0 is a response rule of a player based on the system states up
to t. For notational simplicity, write x(·) := (xE(·), xP (·)) as the ordered pair of E’s and P’s paths.
Let P = {x(·) : [0,∞) → Ω2

free | x(0) = (x0
E , x

0
P )} denote the set of paths for E and P from their

respective initial states. Then, a feedback strategy for P is a map ζ : P → A that satisfies
1. x(s) = x̃(s) for all s ∈ [0, t] implies ζ[x](s) = ζ[x̃](s) for all s ∈ [0, t],
2. for all σE ∈ A and T > 0, there exists a unique solution to (1) with σP (t) = ζ[x](t) for
t ∈ (0, T ].

Let FP be the set of all feedback strategies of P, and let (xE(·), xP (·;σE , ζ)) be the solution to (1)
corresponding to σE ∈ A and σP = ζ(xE) where ζ ∈ FP . We then define the payoff function

Jfeedback(x0
E , x

0
P , σE , ζ) = inf{t ≥ 0 | xE(t) ∈ DxP (t;σE ,ζ)}.
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In a feedback strategy game, at each time t ≥ 0, one player chooses its control at t knowing the
opponent’s state from times 0 up to and including t. For the moment, we assume the player choosing
the control is P.

Definition 2.3. The (lower) value function u : Ω2
free → R for the feedback strategy game is

(5) u(x0
E , x

0
P ) := sup

ζ∈FP
inf
σE∈A

Jfeedback(x0
E , x

0
P , σE , ζ).

Here, for any of P’s feedback strategy, E chooses an optimizing control, and P then picks out
one strategy that has the best payoff. It can be shown that under certain conditions the value
for such games is equal regardless of which player, E or P, chooses the control and which reacts
by choosing feedbacks. Furthermore, u is a viscosity solution to the Hamilton-Jacobi-Issacs (HJI)
equation [BCD97b, CL83, ES84]

(6) 1 = max
σ̂P∈A

min
σ̂E∈A

{−fE(xE , σ̂E)σ̂E ·∇xEu− fP (xP , σ̂P )σ̂P ·∇xP u} on Ω2
free\T ,

where u = 0 in T = {(x, y) ∈ Ω2
free | x ∈ Dy} and ∇xu is the gradient of u with respect to the

variable x ∈ Ωfree.
In contrast to the feedback strategy game, a game where the feedback strategy is invoked only

at t = 0 is called a static game. That is, at the start of the game, one player chooses its control for
all t ≥ 0 by countering the control chosen by the other player for all t ≥ 0, and the other player
optimizes knowing this response. Indeed, in such games, the optimal occlusion time may differ
depending on which player (E or P) plays in response to the other. In this article, we focus on the
case where P optimizes assuming that E will always optimally counter P’s strategies. For initial
states x0

E , x
0
P and controls σE , σP , consider the payoff function

(7) J (x0
E , x

0
P , σE , σP ) = inf{t ≥ 0 | xE(t) ∈ DxP (t)}.

Here and throughout this article, we adopt the convention that the infimum of the empty set is
infinity.

Definition 2.4. Define the (lower) value function vs : Ω2
free → R for the static game as

(8) vs(x
0
E , x

0
P ) := sup

σP∈A
inf
σE∈A

J (x0
E , x

0
P , σE , σP ).

In general, it can be shown that vs ≤ u [BCE+97]. Our central result, presented in section 3, is an
efficient algorithm which computes vs(x0

E , x
0
P ) and the paths corresponding to the optimal controls

(or ε-suboptimal controls, see Remark 2.2), formally written as

σ∗P ∈ arg sup
σP∈A

inf
σE∈A

J (x0
E , x

0
P , σE , σP ),(9)

σ∗E ∈ arg inf
σE∈A

J (x0
E , x

0
P , σE , σ

∗
P ),(10)

provided the game ends in finite time. For brevity, we shall refer to the static visibility-based
surveillance-evasion game simply as the static game and the corresponding value (8) as the static
value.

Remark 2.5. Note that the value function can be analogously defined for a “dual” static game where
E optimizes by assuming that P will always optimally counter, by swapping the “infσE∈A” and
“supσP∈A” in (8); this will yield a(n) (upper) value function which will be greater than or equal to
vs and u [BCE+97].

In the differential game theory literature, a pursuit-evasion type game typically refers to (6), i.e.
the boundary value PDE problem whose solution corresponds the feedback strategy value function.
We emphasize that the objective of this article is not to solve u, but to solve the static game value
function vs (and the associated optimal paths), which is not known to be a solution to a PDE.
While this demands techniques that are not standard in the numerical PDE literature, it avoids
computational issues associated with solving (6). See Remark 2.6 below.
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Remark 2.6. The HJI equation (6) immediately suggests a numerical algorithm to solve the feedback
strategy value function. However, since (6) is solved on the joint configuration space Ω2

free, even the
simplest (non-trivial) setting of two players in a two dimensional ambient space leads to a problem
in at least four dimensions. For problems with additional players, the dimension of the problem
scales exponentially in the number of players. The high-dimensionality of the problem is attributed
to the information contained in a single value function: the optimal control can be extracted from
u for every pair of initial starting positions on the domain. However, for a problem of finding
optimal controls for a single prescribed initial pair of positions (x0

E , x
0
P ), solving (6) involves excessive

amounts of computational time and data memory.

We now give a condition such that the static value function (8) is finite.

Proposition 2.7. Assume that Ωfree is not a star domain, and supx∈Ωfree
uE(x) < ∞. Then

vs(x
0
E , x

0
P ) <∞.

Proof. For ε > 0 small, let tmax = supx∈Ωfree
uE(x) + ε. By the existence of ε-suboptimal controls,

for any y ∈ Ωfree, there is a path xE(·) such that xE(0) = x0
E and xE(tmax) = y.

Choose any σ∗P ∈ A, and let x∗P (·) be the corresponding path for P. Since the domain is not
star shaped, there exists y ∈ Ωfree such that x∗P (tmax) ∈ Dy. If in response, E chooses σ∗E ∈ A
corresponding to a path x∗E(·) such that x∗E(tmax) = y (which exists by the earlier argument), then
J (x0

E , x
0
P , σ

∗
E , σ

∗
P ) ≤ tmax. Since E has a response control such that J ≤ tmax for any control choice

of P, we conclude that vs(x0
E , x

0
P ) ≤ tmax <∞. �

This proposition says that the static game will terminate in finite time, for example, if E travels
with positive speed on a bounded, path connected Ωfree that is not a star domain. This rather
strong statement results from the fact the entire future control values σP (t) and σE(t) for both
players are chosen only once at initial time, and no future revision is allowed. Looking ahead, the
last proposition is useful in justifying the use of our algorithm in the numerical examples discussed
in Section 3. In Section 4.2, we present a scenario in which optimal controls for both players are
allowed to be revised at discrete time increments as the game progresses.

We close this section by proving a simple observation, to be used later.

Proposition 2.8. For a stationary P, i.e. xP (t) = x0
P ,∀t ≥ 0, the optimal control for E for the

static game is the time optimal control from x0
E to the set Dx0

P
.

Proof. Fix P’s control σ0
P to have zero control value 0 ∈ A for all t ≥ 0. Then,

vs(x
0
E , x

0
P ) = inf

σE∈A
J (x0

E , x
0
P , σE , σ

0
P )

= inf
σE∈A

inf{t ≥ 0 | xE(t) ∈ Dx0
P
},

which precisely characterizes the optimal control of E as desired. �

2.3. Notations and game assumptions. Since we will be considering “optimal paths/controls”
in the context of both the differential game and the related optimal control problems, we choose
to call optimal paths/controls (or ε-suboptimal paths/controls) as those corresponding to the static
game, and time optimal paths/controls (or ε-time suboptimal paths/controls) as those corresponding
to minimum arrival time optimal control problems, such as in (2) and (3).

Throughout this article, we use the following notations:
• Ω ⊂ Rn is an open and bounded ambient space; we focus particularly with n = 2, but the

theory applies naturally to higher dimensions.
• Ωfree ∪ Ωobs = Ω partitions the ambient space into the freespace and obstacles. We assume

that Ωfree is open.
• E and P are the two competing players, representing the evader and the pursuer, respectively.
• x, y are generic points in Ω.
• Dx ⊂ Ωfree is the set of occluded points from the vantage point x ∈ Ωfree.
• σE , σP : t ∈ [0,∞)→ A are the controls of E and P at time t ≥ 0, respectively.
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• xE , xP : t ∈ [0,∞) → Ωfree are E and P’s respective positions at time t ≥ 0; we suppress
their dependence on the initial states x0

E , x
0
P and controls σE , σP .

• x0
E , x

0
P ∈ Ωfree are the fixed initial positions of E and P, respectively.

• xfE , xfP ∈ Ωfree are the final positions of E and P, respectively, to be computed.
• vs : Ω2

free → R+ ∪ {0} is the value of the static game, see (8).
Furthermore, we shall make the following assumptions on the games introduced henceforth:
(B1) x0

E 6∈ Dx0
P
, i.e. the players are initially visible to each other.

(B2) both players are aware of their opponents’ dynamics,
(B3) both players know their opponents’ positions, if and only if they are visible to each other.

Remark 2.9. Given a vantage point x ∈ Ωfree, a level set function ξ(·;x) : Ω → R representing
Dx ⊂ Ω, where {

ξ(y;x) ≤ 0 if y ∈ Dx
ξ(y;x) > 0 if y ∈ Ω\Dx

can be computed in O(N) time on a grid with N nodes, using the level set visibility function
[TCO+04]. The details are described in Appendix A.

3. An algorithm for the static value function

In this section, we present an algorithm which computes the value function and optimal paths
corresponding to the optimal controls (9) and (10). Our algorithm depends crucially on a maximal
set R∗ ⊂ Ωfree and two functions t∗(·;x0

E) and wR∗(·;x0
P ) which, in some sense, decouple the analysis

of the dynamics of E and P.

Definition 3.1. Given x ∈ Ωfree,

(11) t∗(x;x0
E) := inf

σE∈A
inf{t ≥ 0 | xE(t) ∈ Dx, xE(0) = x0

E}.

That is, t∗(x;x0
E) is the shortest time for E, starting from x0

E , to become occluded from a sta-
tionary vantage point x ∈ Ωfree. Note that the two players must be initially visible to each other by
assumption (B1), so t∗(x0

P ;x0
E) > 0.

Definition 3.2. For any subset R ⊂ Ωfree containing x0
P , let

(∆R) wR(x;x0
P ) = inf

σP∈A
inf{t ≥ 0 | xP (0) = x0

P , xP (t) = x, xP (s) ∈ R,∀s ∈ [0, t]}.

That is, wR(x;x0
P ) is the minimum time for P to reach x from x0

P by traveling along a path that
is contained in R. By the small-time controllability assumption (A2), the function wR(·;x0

P ) is finite
and continuous in any pathwise connected subset of R containing x0

P . Next, we relate t∗ and wR by
an inequality over a maximal set R∗:

Definition 3.3. Let R∗ ⊂ Ωfree be the maximal set containing x0
P such that

(12) wR∗(y;x0
P ) < t∗(y;x0

E), for all y ∈ R∗.
In other words, for any R ) R∗ and y ∈ R\R∗, we have wR(y;x0

P ) ≥ t∗(y;x0
E).

We remark that the maximality of R∗ implies its uniqueness. The existence follows from the fact
that property (12) holds trivially for the subset {x0

P } ⊂ Ωfree.
Roughly speaking, The functions t∗ and wR∗ defined above quantify the reachability of the two

players by time under optimal choice of controls; this allows us to characterize P’s possible controls
(or paths) that maintain visibility of E under worst case scenarios. See Figure 1.

3.1. τ-admissible pursuit paths. By Proposition 2.8, assuming a stationary P, an optimal strat-
egy for E is to move towards the occlusion set Dx0

P
via a time-optimal path, provided it exists. In

this case, it will take t∗(x0
P ;x0

E) time for an optimally moving E to become occluded from P. This
also implies that xE(τ) 6∈ Dx0

P
for 0 ≤ τ < t∗(x0

P ;x0
E) and σE ∈ A. To consider the case of a

non-stationary P, we introduce the following notion:
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d1

x0
E

t⇤ < d1

t⇤ = 0

x0
P

t⇤ > d1

wR⇤ = t⇤

wR⇤ < d1

t⇤ < d1

t⇤ > d1

|y � x0
E | = d1 + � wR⇤ = t⇤ = d1 + �

Figure 1. An illustration of the relations between t∗(y;x0
E) and wR∗(y;x0

P ). Both
players are assumed to have unit speeds. The shaded circle represents the obstacle,
d1 is the distance between x0

E and the obstacle, and δ is some small positive constant.
The precise shape of the curve that corresponds to wR∗ = t∗ is not drawn accurately
in this illustration. In this scenario, the game will last until t > d1 since E will not
be able to reach the shadow boundary before P pushes the shadow boundary further
away.

Definition 3.4 (τ -admissible pursuit path). For a τ > 0, we say that a path xP (·) of P is a
τ -admissible pursuit path if

(13) t < t∗(xP (t);x0
E) for all t ∈ [0, τ).

Set T := vs(x
0
E , x

0
P ), where vs is defined in (8). Then, an optimal path xP (·) for P is a T -

admissible pursuit path. If not, s ≥ t∗(xP (s);x0
E) at some s < T ; this implies that there exists a

control σE ∈ A such that xE(s) ∈ DxP (s), thereby prematurely terminating the game no later than
s. Based on this observation, P’s optimal path is a τ -admissible pursuit path with the largest τ ; this
corresponds to reaching a final point xfP which maximizes t∗(·;x0

E). As we shall show later (Lemma
3.6), the set R∗ coincides with the set of points reachable by τ -admissible pursuit paths. Therefore,
the static value can be related to R∗ and t∗(·;x0

E) as follows:

Theorem 3.5. vs(x0
E , x

0
P ) = supx∈R∗ t

∗(x;x0
E), provided both sides are finite.

We note that it is possible for t∗(·;x0
E) to be infinite, for example, if Ωfree is star shaped (see

Proposition 2.7). While the equality in Theorem 3.5 may still be valid in such cases, we shall not
pursue them further. We give the proof of Theorem 3.5 at the end of this subsection. First, as
claimed earlier, we show that all points in R∗ are precisely the points “reachable” by τ -admissible
pursuit paths that start from x0

P .

Lemma 3.6.
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1. For any arbitrary point y ∈ R∗, there exists a τ -admissible pursuit path xP (·) such that
xP (t) = y for some t ∈ [0, τ), if there exists a time-optimal path in R∗ from x0

P to y.
2. For any y ∈ Ωfree\R∗, there does not exist a τ -admissible pursuit path xP (·) such that

xP (t) = y for some t ∈ [0, τ).

Proof. 1. We construct a τ -admissible pursuit path from a time optimal path for the minimum
arrival time problem corresponding to (∆R∗). Choose a point y ∈ R∗, and define T, τ > 0 as

(14) T := wR∗(y;x0
P ) < t∗(y;x0

E) =: τ.

Let xP (·) be the time optimal path from x0
P = xP (0) to y = xP (T ) such that {xP (t) | t ∈ [0, T ]} ⊆

R∗. Then

(15) t = wR∗(xP (t);x0
P ) < t∗(xP (t);x0

E), for t ∈ [0, T ].

The first equality follows from a property of time-optimal paths, c.f. Corollary 2.3 in [Vla06]. For
t > T , set xP (t) = y, i.e. P is stationary at y. Then, from Definition (3.1),

t < t∗(y;x0
E) = t∗(xP (t);x0

E), for t ∈ [T, τ).

Thus, xP (·) is a τ -admissible pursuit path such that xP (T ) = y for T ∈ [0, τ).
2. If such a τ -admissible pursuit path existed, then wR∗(y;x0

P ) < t∗(y;x0
E); this contradicts the

maximality of R∗. �

Remark 3.7. Suppose part 1 of Lemma 3.6 did not assume the existence of a time-optimal path from
x0
P to y in R∗. In the spirit of Remark 2.2, we can modify Definition 3.3 and the proof in Lemma 3.6

to characterize a sequence of paths in R∗ satisfying (15) in the limit. Namely, for fixed δ > 0 define
R∗δ ⊂ Ωfree to be the maximal set containing x0

P such that

(16) wδR∗δ (x;x0
P ) < t∗(x;x0

E)− δ, for all x ∈ R∗δ .

It can be verified that
⋃
δ>0R

∗
δ = R∗. Then, consider xε,δP (·), an ε-time suboptimal path in R∗δ . It

can be shown that
t < t∗(xε,δP (t);x0

E)− δ/2, for t ∈ [0, T ].

Thus, the limiting path as ε→ 0 followed by δ → 0 satisfies the conditions in (15). The rest of the
proof follows with the same argument as in the earlier proof.

We close this subsection with the proof of Theorem 3.5.

Proof of Theorem 3.5. By Lemma 3.6 and Remark 3.7, all [0, τ) time portions of τ -admissible pur-
suit paths lie inside R∗. Therefore, P’s static value is bounded above by supx∈R∗ t

∗(x;x0
E), i.e.

vs(x
0
E , x

0
P ) ≤ supx∈R∗ t

∗(x;x0
E).

We claim that vs(x0
E , x

0
P ) ≥ supx∈R∗ t

∗(x;x0
E). Consider a sequence {yi}∞i=0 in R∗ converging

to y ∈ R∗ so that τi := t∗(yi;x0
E) → supx∈R∗ t

∗(x;x0
E) as i → ∞. By Lemma 3.6, there is a τi-

admissible pursuit path for each i = 0, 1, 2, . . . . This implies that vs(x0
E , x

0
P ) ≥ τi for all i. Taking

i→∞, we have the desired inequality. �

3.2. Optimal paths. In this section, we discuss a characterization of optimal paths of P and E for
the static game.

From the proof of Theorem 3.5, each of P’s optimal paths will reach an optimal final point xfP ∈ R∗
such that there exists a sequence {yi}∞i=0 in R∗ converging to xfP , and t

∗(yi;x0
E)→ supx∈R∗ t

∗(x;x0
E)

as i→∞. We shall denote all possible optimal final points as “argsupx∈R∗ t
∗(x;x0

E)”.
As for E’s optimal paths, we first recall the optimal control value function uE is defined in (2).

Since E has a strategy to become occluded from P at time vs(x0
E , x

0
P ) (see Theorem 3.5), the final

state xfE would be any point that is reachable from x0
E within time vs(x0

E , x
0
P ) and isoccluded from

the point xfP , i.e.
xfE ∈ DxfP ∩ {x | uE(x) ≤ vs(x0

E , x
0
P )}.

The set on the right hand side is non-empty: t∗(xfP ;x0
E) = vs(x

0
E , x

0
P ) implies that there exists a

σE ∈ A for E to occlude from the vantage point xfP at time vs(x0
E , x

0
P ). The optimal path for E is

therefore its time-optimal path from x0
E to xfE in Ωfree.
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3.3. Construction of R∗. Recall that R∗ is the maximal set such that the function wR∗ satisfies
the inequality (12). This characterization, however, is not constructive. To this end, consider a
sequence of sets {Ri}∞i=0 defined as follows:

(17)
R0 := {x ∈ Ωfree | uP (x) < t∗(x;x0

E)},
Ri+1 := {x ∈ Ωfree | wRi(x;x0

P ) < t∗(x;x0
E)}

where uP (x) is the minimum time for P to arrive at x from the starting location x0
P , defined as

per (3).
Lemma 3.8. R0 ⊇ R∗.
Proof. We prove by a contrapositive argument. Suppose we have uP (x;x0

P ) ≥ t∗(x;x0
E), i.e. x ∈

Ωfree\R0. Then, no path for P can reach x before t∗(x;x0
E), the time necessary for E to become

occluded from x. This implies that no point on the [0, τ) portion of any τ -admissible pursuit path
would coincide with x. Thus, by Lemma 3.6, x ∈ Ωfree\R∗. �

The following theorem proves that Ri converges monotonically to a set that is contained in R∗
and that contains R∗:
Theorem 3.9. The sequence {Ri}∞i=0 satisfies

1. Ri+1 ⊆ Ri for all i = 0, 1, 2, . . . , and
2. R∗ ⊆ ⋂∞

i=1Ri ⊆ R∗.
Remark 3.10. For numerical purposes, when the set R∞ :=

⋂∞
i=1Ri is approximated by discrete

points on a finite grid, R∗ and R∗ are indistinguishable. Therefore, when applying Theorem 3.5 in
the forthcoming algorithm (see Algorithm 1), we are justified in treating R∞ to be R∗.

Proof of Theorem 3.9. 1. By Lemma 3.8, the initial set R0 is a superset of R∗. Then we note that
(18)
Ri+1 = {x ∈ Ωfree | wRi(x;x0

P ) < t∗(x;x0
E)} ⊆ {x ∈ Ωfree | wRi(x;x0

P ) <∞} ⊆ Ri, i = 0, 1, 2, · · · .
The last inclusion follows from Definition 3.2 that wRi is infinite in Ωfree\Ri. Define R∞ :=

⋂∞
i=0Ri.

2. To see that R∞ ⊇ R∗, we show by induction that Ri ⊇ R∗ for all i = 0, 1, 2 . . . . The base
case i = 0 was proved in Lemma 3.8. Assume Ri ⊇ R∗. Then, wRi(x;x0

P ) ≤ wR∗(x;x0
P ) for all

x ∈ R∗. From Definition 3.3, wR∗(y;x0
P ) < t∗(y;x0

E) for all y ∈ R∗ ⊆ Ri. The last two facts imply
wRi(y;x0

P ) < wR∗(y;x0
P ), so y ∈ Ri+1. Therefore, Ri+1 ⊇ R∗.

Next, we show R∞ ⊆ R∗. Fix a δ > 0 small and define the sequence of sets {Rδi }∞i=0 as follows:

(19)
Rδ0 := {x ∈ Ωfree | uP (x;x0

P ) < t∗(x;x0
E)− δ},

Rδi+1 := {x ∈ Ωfree | wRδi (x;x0
P ) < t∗(x;x0

E)− δ}, i = 0, 1, 2, . . . .

We define Rδ∞ :=
⋂∞
i=0R

δ
i . The inclusions Rδi+1 ⊆ Rδi can be shown via a similar argument in (18).

We claim that

(20) Rδ∞ = {x ∈ Ωfree | wRδ∞(x;x0
P ) < t∗(x;x0

E)}.
Thus, by the maximality of R∗, we have Rδ∞ ⊆ R∗. Since R∞ ⊆

⋃
δ>0R

δ∞ and
⋃
δ>0R

δ
∞ ⊆ R∗, we

conclude that
R∞ ⊆

⋃
δ>0

Rδ∞ ⊆ R∗,

as desired. To show (20), first note that

Rδ∞ =

∞⋂
i=0

{x ∈ Ωfree | wRδi (x;x0
P ) < t∗(x;x0

E)− δ},

⊆ {x ∈ Ωfree | wRδ∞(x;x0
P ) ≤ t∗(x;x0

E)− δ},
⊆ {x ∈ Ωfree | wRδ∞(x;x0

P ) < t∗(x;x0
E)}.

Next, to show Rδ∞ ⊇ {x ∈ Ωfree | wRδ∞(x;x0
P ) < t∗(x;x0

E)}, take any y ∈ Ωfree such that
wRδ∞(y;x0

P ) < t∗(y;x0
E); clearly wRδ∞(y;x0

P ) is finite, therefore y ∈ Rδ∞. This proves (20). �
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3.4. Algorithm and examples. We summarize the steps described in the previous sections in
Algorithm 1. Note that we have omitted details on computing optimal control value functions and
time-optimal paths within the algorithm; this is in the spirit of both simplifying the presentation
and emphasizing the independence of the algorithm to particular computational methods.

Algorithm 1: Algorithm for the static visibility-based surveillance-evasion game.
Input : Domain information Ω = Ωfree ∪ Ωobs.

Initial states x0
E , x

0
P and dynamics fE , fP .

Output: Optimal occlusion time T = vs(x
0
E , x

0
P ).

Optimal paths x∗E , x
∗
P : [0, T ]→ Ωfree.

Step 1
Compute functions uE(x), uP (x), t∗(x;x0

E) on x ∈ Ωfree;

Step 2 (construct R∗)
R0 := {x | uP (x) ≤ t∗(x;x0

E)}
foreach i = 0, 1, 2, . . . until Ri stop changing do

Compute wRi on Ri;
Ri+1 := {x | wRi(x) < t∗(x;x0

E)};
R∗ := Ri+1;

Step 3 (extract static value and optimal paths)
Return T := supx∈R∗ t

∗(x;x0
E);

Find xfP ∈ arg supx∈R∗ t
∗(x;x0

E);
Return x∗P (·), the time-optimal path from x0

P to xfP in R∗;
Choose xfE ∈ DxfP ∩ {x | uE(x) ≤ T};
Return x∗E(·), the time-optimal path from x0

E to xfP in Ωfree;

Remark 3.11. Since wRi is simply a minimum arrival time value function, it can be computed
efficiently by solving a Hamilton-Jacobi equation numerically, see Remark 2.1.

Remark 3.12. If state-of-the-art numerical Hamilton-Jacobi solvers are employed in Step 1 to solve
uE(·), uP (·) and t∗(·;x0

E), the bulk of the computation would be spend in the latter function; it
involves the computation of Dx (see Remark 3.11) and the minimum arrival time function to Dx
from y for each x, y ∈ Ωfree. If Ωfree ⊂ R2 is discretized on a N × N grid, this would involve
at least O(N4) operations: O(N2) for computing the level set function representation for Dx (see
Appendix A) and at least O(N2) for solving the minimum arrival time to Dx, c.f. [TCOZ03]. While
the worst-case computational complexity is comparable to solving the feedback strategy game via
a Hamilton-Jacobi-Isaacs equation, we mention a few advantages of solving the static game using
Algorithm 1:

1. The most costly part of the algorithm is easily parallelizable: t∗(x;x0
E) can be evaluated

independently for each discrete node x in Ωfree.
2. Small memory footprint: the memory complexity is only O(N2) since for each node x, the

level-set representations of Dx and the corresponding minimum arrival time function need
not be stored once t∗(x;x0

E) is evaluated.
3. Exact solutions: for domains with simple geometry (e.g. circles, polygonal obstacle bound-

aries) and constant speeds, it may be possible to derive an analytical formula for t∗(x;x0
E)

for x ∈ Ωfree; see Examples 1 and 2 below.

Next, we present three examples demonstrating our algorithm. In all test cases, Ω = [−1, 1]2.
Computations were performed on a desktop running on a 3.33 GHz dual-core CPU with 4 GB of
RAM memory. For examples 1 and 2, computations took less than a second, since an exact formula
for t∗(·;x0

E) was employed. For example 3, the complete computation took approximately 5 minutes.
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3.4.1. Example 1: circular obstacle. The first example concerns a single circular obstacle, with E
and P placed as shown in Figure 2 (a).

Due to the simple geometry, it is possible to analytically derive a formula for t∗(x;x0
E) for x ∈ Ωfree.

All other functions, uE , uP and wRi (i = 0, 1, . . . ) were approximated on a uniform cartesian grid of
size 4002. The function t∗(·;x0

E) is shown in Figure 3 (a). In Figure 3 (b), the computed R∗ using
the algorithm 17 is plotted, as well as the optimal paths of E and P.
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Figure 2. Obstacle (shaded) and initial states for (a) Example 1 and (b) Example 2.

(a) (b)

Figure 3. Example 1. (a) Surface plot of t∗(·;x0
E), where x0

E = (0.8, 0.6). (b) A
plot illustrating R∗ (blue curve), t∗(·;x0

E) (background), xfE (blue circle), xfP (blue
square) and the optimal paths of P (blue dotted curve) and E (red dotted curve),
where the isotropic speeds are fE = 1, fP = 1.2. The purple curve represents the
visibility region from the vantage point xfP .

3.4.2. Example 2: two corridors. Next we consider a case where x0
E , x

0
P and Ωfree are shown in

Figure 2 (b). Again, due to the simplicity of the geometry of the domain, we derived an analytical
formula for t∗(x, x0

E) for x ∈ Ωfree.
For the sake of analyzing the solution, we call the set S to be the square (x, y) ∈ [−0.25, 0]×[0, 0.25]

(the north-east, south-west and south-east vertices of S coincide with the vertices near the origin
of the three obstacles). Also, we call C1 the set of points (x, y) ∈ [0, 1]× [0, 0.25] in the “horizontal
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corridor” between the upper right and bottom right rectangular obstacles. Likewise, we call C2 the
set of points (x, y) ∈ [−0.25, 0]× [−1, 0] in the “vertical corridor” between the lower left and bottom
right rectangular obstacles. Note that the set of states where P has the greatest visibility of domain
is S; this is reflected by the peak in t∗(x;x0

E) for x ∈ S, shown in Figure 4 (a) and (b). This
prompts a conservative P to move towards S via a time-optimal path, and remain stationary until
the game terminates. Indeed, if P “commits” to entering C1 then E would counter by moving into
C2, thereby ending the game prematurely; a similar argument follows if P commits to entering C2.
Consequently, E’s final state xfE to become occluded from a P in S would either be the south-west
or north-east vertex of the bottom right obstacle, whichever is closer to x0

E ; in the present example,
xfE is the former.

(a) (b)

Figure 4. Example 3. (a) Surface plot of t∗(·;x0
E), where x0

E = (−0.6, 0.15). (b) A
plot illustrating R∗ (blue curve), t∗(·;x0

E) (background), xfE (blue circle), xfP (blue
square) and optimal paths of P (blue dotted curve) and E (red dotted curve), where
the isotropic speeds are fE = 1, fP = 1.2. The purple curves represent the visibility
region from the vantage point xfP .

3.4.3. Example 3: inhomogeneous speeds. In Figure 5, we illustrate how inhomogenous speed func-
tions fE and fP can be handled using the proposed algorithm. The following isotropic velocity
functions were used: for all σ̂E ∈ A and σ̂P ∈ A,

fE(x, σ̂E) = fP (x, σ̂P ) = f(x) = 1− 0.8 sin(4πx1) sin(4πx2) where x = (x1, x2).

Since an analytical formula for t∗(·;x0
E) is too complicated to derive, it was constructed numerically

via Definition 3.1. All computations were performed on a 2002 domain. Note that, by observing
Figure 5 (b), both players travel where their speeds are the greatest (yellow regions).

4. Applications and extensions

In this section, we present several immediate applications and extensions of the static game
algorithm. In section 4.1, we show that for a generalized version of the visibility pursuit-evasion
game with multiple evaders, the computation scales linearly with the number of players. In section
4.2, we present a feedback control strategy by invoking the static game algorithm iteratively over
short time intervals.

4.1. Multiple evaders. A natural extension to the present algorithm is the visibility based single-
pursuer, multiple-evader (static) game. Suppose there are k evaders, E1,E2, . . . ,Ek, where Ei’s
motion satisfies the initial value problem

ẋEi(t) = fEi(xEi(t), σEi(t))σEi(t), xEi(0) = x0
Ei ∈ Ωfree for each i = 1, 2, . . . , k.
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(a) (b)

Figure 5. Example 2. (a) A plot illustrating R∗ (blue curve), t∗(·;x0
E) (back-

ground), xfE (blue circle), xfP (blue square) and optimal paths of P (blue dotted
curve) and E (red dotted curve), with an intensity plot of t∗(·;x0

E) in the back-
ground, with the speed function f(x). (b) Same plot as (a), except with the speed
function f(x) in the background.

For each i, the control σEi ∈ A is chosen as with the two player game. We assume, for each i, the
velocity fEi satisfies the conditions (A1)-(A3).

Given x0
P , {x0

Ei
}ki=1 and σP ∈ A, {σEi ∈ A}ki=1, consider the payoff function

(21) Jk(x0
E1
, . . . , x0

Ek
, x0
P , σE1

, . . . , σEk , σP ) = min
i=1,...,k

J (x0
Ei , x

0
P , σEi , σP ),

where J is the payoff function for the two-player game (7). Here, the game terminates the first
instance that at least one evader becomes occluded from the pursuer. The key property is that each
Ei plays independently against P, thus solving this game amounts to k instances (for each Ei) of
the two-player game. As with the two-player game, all players choose their complete controls at the
start of the game.

Let t∗(·;x0
Ei

) be the function defined as per (11) with initial state x0
Ei
. Then, analogous to (13),

the τ -admissible pursuit path xP (·) for P among the Ei’s must satisfy t < t∗(xP (t);x0
Ei

) for all
t ∈ [0, τ) and i = 1, . . . , k, or equivalently,

t < min
i=1,...,k

t∗(xP (t);x0
Ei) for all t ∈ [0, τ).

The rest of the algorithm follows the same procedure as with the two-player game, where t∗(x;x0
E)

is replaced by mini=1,...,k t
∗(x;x0

Ei
); the definitions of R∗, wR∗ , etc. can be defined accordingly. For

example, the static value function for k evaders becomes

vk(xE1 , . . . , xEk , x
0
P ) = sup

x∈R∗
min

i=1,...,k
t∗(x;x0

Ei),

and the final state of P is xfP = arg supx∈R∗ mini=1,...,k t
∗(x;x0

Ei
). Furthermore, there exists i ∈

{1, . . . , k} and (a final state) xfEi ∈ Ωfree such that xfEi is reachable by Ei (via a time-optimal path)
in time vk(xE1

, . . . , xEk , x
0
P ) and occluded from xfP .

Remark 4.1. Since each t∗(·;x0
Ei

) can be computed independently on the underlying domain, the
computational complexity for multiple evaders scales linearly with the number of players.

4.2. Applications to a feedback control game and target tracking. Let us return to the
two-player game setting, E versus P. In realistic settings, controls of one or more players are chosen
using feedback controls, rather than open loop controls. To model a feedback control strategy, one
can advance the players over short time intervals according to the optimal controls computed by
Algorithm 1, starting at the current states.
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Figure 6. The solution to a visibility single-pursuer, three-evader static game.

Suppose the player states are sampled at discrete times ∆ = (0 = t0, t1, t2, . . . , tn), where ti < ti+1

for all i = 0, 1, 2, . . . , n. The aforementioned feedback control strategy can be stated as follows.
Suppose E and P initially start at states x0

E and x0
P , respectively. We write the player states in each

time interval as {
xE(t) = x

(i)
E (t− ti),

xP (t) = x
(i)
P (t− ti),

t ∈ [ti, ti+1].

In the time interval [ti, ti+1], the states satisfy the dynamics

(22)

{
ẋ

(i)
E (t) = fE(x

(i)
E (t),Φ(t))Φ(t),

ẋ
(i)
P (t) = fP (x

(i)
P (t),Ψ(t))Ψ(t),

t ∈ [0, ti+1 − ti].

with initial conditions defined recursively

(23) (x
(i)
E (0), x

(i)
P (0)) =

{
(x

(i−1)
E (ti − ti−1), x

(i−1)
P (ti − ti−1)) if i ≥ 1,

(x0
E , x

0
P ) if i = 0.

For fixed states xE , xP ∈ Ωfree, the feedback controls Φ(t) = Φ(xE , xP ; ·) ∈ A and Ψ(t) =
Ψ(xE , xP ; ·) ∈ A are the static game controls computed from the joint state configuration at the
discrete time sets:

(24)
Ψ(xE , xP ; ·) ∈ arg sup

σP∈A
inf
σE∈A

J (xE , xP , σE , σP )

Φ(xE , xP ; ·) ∈ arg inf
σE∈A

J (xE , xP , σE ,Ψ(xE , xP ; ·))).

In Figure 7, We show a comparison of the static and feedback control games on a simple example.
The players both have unit speeds in a square domain [−1, 1]2 with a single circular obstacle.
Here, we sampled and recomputed the controls at equal intervals ∆ = (0,∆t, 2∆t, 3∆t, . . . ) where
∆t = 0.025; the iterative procedure was performed until E became occluded from P. Notice how
the feedback strategy game prolonged the game duration compared to the static game. This makes
intuitive sense: since the static value (8) corresponds to the most conservative strategy for P, the
iterative procedure relaxes this conservatism and thus yields a more favorable outcome for P.

Remark 4.2. In general, the set of optimal controls above are not unique. Take for instance example
2 (the two-corridor example): all time-optimal controls for P that reach a (final) point xfP ∈ S
are optimal controls for the static game. While the static values are all equal for all such optimal
controls, some choices may be more advantageous since it will directly affect the feedback control
in subsequent iterations. As a sensible strategy to uniquely choose among the optimal state game
controls, at each step i, we implement P to choose the control corresponding to the final point xfP
such that ‖xfP − xE(ti)‖2 is minimized, i.e. choose the control to move to the point closest to the
current state of E.
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Figure 7. A comparison between the static and feedback control games. From
left to right: the initial states and obstacles, the optimal static game paths, and
the optimal feedback control game paths. In the feedback control game, we have
plotted the sequence of positions of the players as well as the R∗ at each iteration.

As another illustration, we show snapshots of the optimal paths computed using the iterative
static information pattern described above, in Figure 9. The state constraints, dynamics and initial
conditions are the same as in Figure 4 (the two-corridor example).

Notice that between i = 16 and i = 25, P is forced to stay within S, owing to P’s conservative
nature in the static game; indeed, if P commits down the vertical corridor C2 at i = 16, then E
would counter by reversing course and occlude behind the corner at (0, 0). It is only after E has
passed the midway point of C2 at i = 25, that P deems his commitment down C2 to be worthwhile.

4.2.1. Target tracking. In a realistic setting, one of P or E may move sub-optimally. In the case
where E is sub-optimal, the problem can be seen as a target-tracking problem, where E is the
(moving) target and P is the observer. This can be modeled by modifying the formulation (22)-(24)
so that Φ = Φ(t) ∈ A is some arbitrary prescribed control for E (the oblivious target). That is, at
each discrete time ti, only P chooses its optimal static game control based on the current states of
the system. An numerical result of this approach is shown in Figure 8.

5. Conclusions and future work

In this article, we have presented an efficient algorithm to compute the value and optimal controls
for a class of pursuit-evasion games, called the visibility-based surveillance-evasion game. The novelty
of the algorithm is the decomposition of a game into optimal control problems, which can be solved on
a lower dimensional domain. This decomposition is made possible by the decoupled player dynamics
and the so called static information pattern. Generalizations to inhomogenous speeds and multiple
evaders were presented, as well as applications to target tracking and feedback control games.

The present technique of solving the static game using optimal control was recently applied to
another problem in [THDT12]. There, the upper static value for the game known as capture-the-flag
[HDZT11] was considered. We are currently investigating a more general class of pursuit-evasion
type games that can be solved via a similar decomposition technique.

We are also investigating a more efficient method from computing t∗(·;x0
E), which is the bottleneck

to our algorithm in terms of computation time. Preliminary tests have shown that for cases with
relatively small R∗, the computation time can be significantly reduced. For instance, the test case
shown in Figure 8 can be produced at, on average, approximately 3 seconds per iteration (i.e. for
each ti) using the more efficient approach. Another useful result, in the spirit of Example 2, would
be an algorithm that computes the exact formula for t∗(·;x0

E) in a polygonal domain for an E with
a constant, isotropic speed.
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Appendix A. The level set visibility and shadow functions

In this appendix, we describe a fast sweeping type method for constructing an implicit representa-
tion for Dx0

for an arbitrary vantage point x0 ∈ Ωfree. This implicit representation uses a continuous
level set function, which we write as ξ(·;x0) : Ω→ R, holding the property

(25) ξ(x;x0) ≤ 0⇔ x ∈ Dx0
.

We shall call ξ(·;x0) the shadow function from the vantage point x0 ∈ Ωfree. The minimum arrival
time function to Dx = {x ∈ Ωfree | ξ(x;x0) ≤ 0}, denoted by t∗, can then be conveniently computed
as per the definition (11), by solving an eikonal equation with the boundary conditions defined by ξ.

We begin by assuming that the obstacles are represented as a level set function ψ : Ω→ R,

(26) ψ(x) ≤ 0⇔ x ∈ Ωobs.

We shall refer to such a function as an occluder function. Let Γ = {x | ψ(x) = 0} be the boundary
of the obstacles. For what follows, we assume that Γ is smooth, and ∇ψ(x) 6= 0 on Γ. Consequently,
∇ψ(x)/‖∇ψ(x)‖ = n defines the unit outer normal of Ωobs on Γ.
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Figure 9. Snapshots of the iterative static game algorithm.

Next, we adopt the framework of [TCO+04] by defining the visibility function associated with
the occluder function ψ and the vantage point x0 ∈ Ω:

(27) ϕ(x;x0) = min
y∈L(x,x0)

ψ(y),

where, we take L(x, x0) as the line segment2 between x and x0. Note that, by definition, ϕ(x, y) =
ϕ(y, x). Using this function, we define the visibility of x from the vantage point x0:

(28) ϕ(x;x0) > 0⇔ x is visible from x0.

A graphical illustration of the zero sub-level set of ϕ(·, x0) is shown in Figure 11 (b).

Remark A.1. We point out that, while it may appear that f(x;x0) = max{ϕ(x;x0),−ψ(x)} is a
candidate definition for the shadow function, it does not satisfy (25). Observe that f(x;x0) = 0 for
all x ∈ Γ and in general, Γ 6⊂ Dx0

∪ ∂Dx0
; consider the points x ∈ Γ that are “visible” from the

vantage point, i.e. (x0 − x) · ∇ψ(x) > 0. See also Case V below.

We now describe a method for constructing the shadow function ξ(·;x0) by performing a few
Boolean operations on sets defined by some auxiliary level set functions. Fix a vantage point x0 ∈

2In general, L(x, x0) is the curve representing the path of a ray of light connecting x and x0 influenced by refraction
and/or reflection.
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Ωfree. Define the auxiliary function g(·;x0) : Ω→ R as

g(x;x0) = max{ψ(x), (x0 − x) · ∇ψ(x)}.
Thus g describes the portions of ∂Ωobs that cannot be visible from x0. Let g̃(·;x0) : Ω → R be the
visibility function associated with the occluder function ψ̃(x) = g(x;x0). Then, a candidate shadow
function is given by

(29) ξ(x;x0) = max{−ψ(x), g̃(x;x0)}.
We illustrate the auxiliary function g and the shadow function ξ in Figure 11 (c) and (d). Note
that, this construction of ξ involves solving the visibility function twice and a pointwise maximum
operation twice. Thus, the calculation is O(N) for on a mesh with N grid points.

Now, we show that (25) is satisfied by considering all possible cases for x ∈ Ω. For the purpose
of justifying the construction of ξ above, we define a line γ : [0, s̄]→ Ω, parametrized by arc length,
where

L(x, x0) = {γ(s) | s ∈ [0, s̄]}, γ(0) = x0, γ(s̄) = x.

If x ∈ Dx0 , we also define s1, s2 ∈ [0, s̄] such that γ(s1) is the first entry point into Ωobs and γ(s2)
is the first exit point from Ωobs:

s1 = arg min
s∈[0,s̄]

{γ(s) ∈ Ωobs}, s2 = arg min
s∈[s1,s̄]

{γ(s) ∈ Γ} ≥ s1.

See Figure 10 depicting γ on a simple example. Note that, if s1 = s2, then L(x, x0) is tangent to
Ωobs at γ(s1).

Ωobs

γ(s1)

γ(s2)

Γ

x0 = γ(0)

x = γ(s̄)

Wednesday, November 9, 2011

Figure 10. An example illustrating L(x, x0) = {γ(s) | s ∈ [0, s̄]} where γ(x0) = x0

is the vantage point.

Thus, the consistency of (29) with (25) can be justified by considering the following five cases for
x ∈ Ω:
Case I: x ∈ int(Ωobs). Since ψ(x) < 0 we have ξ(x;x0) > 0, as desired.
Case II: x 6∈ Dx0

. In this case, we have L(x, x0) ⊂ Ωfree, so g(y;x0) ≥ ψ(y) > 0 for all y ∈ L(x, x0).
Thus, g̃(x;x0) > 0. By (29), we conclude that ξ(x;x0) > 0, as desired.

Case III: x ∈ Dx0
. Note that at y = γ(s2) ∈ Γ, we have (x0 − y) · ∇ψ(y) ≤ 0 and ψ(y) = 0.

Therefore, g(y;x0) = 0 and

g̃(x;x0) = min
s∈[0,s̄]

g(γ(s);x0) ≤ g(y;x0) = 0.

Furthermore, since −ψ(y) < 0, we have that ξ(x;x0) ≤ 0 as desired.
Case IV: x ∈ Γ∩∂Dx0

. Here, we necessarily have x = γ(s2). Then, by the same argument as Case
III, we have g(x;x0) = g̃(x;x0) = ψ(x) = 0. Thus, ξ(x;x0) = 0 as desired.

Case V: x ∈ Γ\∂Dx0 . In this case, x = γ(s1) and s1 < s2. Then, (x0 − x) · ∇ψ(x) > 0, so
g(x;x0) > 0. Furthermore, note that g(γ(s);x0) ≥ ψ(γ(s)) > 0 for s ∈ [0, s1). Therefore,
g̃(x;x0) > 0, and we conclude that ξ(x;x0) > 0.
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obstacle function visibility function

(a) Obstacle function (b) Visibility function
auxiliary function shadow function

(c) Auxiliary function (d) Shadow function

Figure 11. Illustration of the construction of the shadow function in R2. The
shaded area is where each function is negative; the small square on the top left of
each plot is the vantage point x0. The boundary of the obstacles Γ are shown as
black contours. (a) The obstacle function ψ, (b) visibility function ϕ(·, x0), (c) the
auxiliary function g(·, x0), and (d) the shadow function ξ(·, x0).
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