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Seismic Data Reconstruction via Matrix

Completion

Yi Yang, Jianwei Ma and Stanley Osher

Abstract

In seismic processing, one goal is to recover missing traces when the data is sparsely and incom-

pletely sampled. We present a method which treats this reconstruction problem from a novel perspective.

By utilizing its connection with the general matrix completion (MC) problem, we build an approximately

low-rank matrix, which can be reconstructed through solving a proper nuclear norm minimization

problem. Two efficient algorithms, accelerated proximal gradient method (APG) and low-rank matrix

fitting (LMaFit) are discussed in this paper. The seismic data can then be recovered by the conversion

of the completed matrix into the original signal space. Numerical experiments show the efficiency and

high performance of data recovery for our model compared with other algorithms.

I. INTRODUCTION

Seismic data is often irregularly sampled along spatial coordinates, which is mostly caused

by dead or severely corrupted traces, surface obstacles, acquisition aperture and economic limit.

Seismic data regularization spatially transforms irregularly acquired data to regularly sampled

data in order to subsequently display, process and interpret it. This is a long-standing and

important problem in seismic processing. Seismic data interpolation and reconstruction is one

particular case of data regularization. Nowadays, the recovery of missing traces has become a

main issue in seismic research, where input data are already measured or observed in a regular

grid and one needs to reconstruct the value in missing traces (i.e., empty bins).

Different approaches have been proposed to solve this problem. Some of these techniques

require converting the data into different domains with certain transform dictionary, such as
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Fourier transform ([1], [2], [3], [4]), curvelet transform ([5], [6], [7]) and shearlet transform

([8]). The idea of L1-norm minimization was applied in ([5], [6], [8]) to reconstruct the missing

traces of seismic data. Another popular technique is the use of prediction filters ([9], [10], [11]),

where low-frequency non-aliased components or observed data are used to build antialiasing

error-prediction filters and then the filters are applied to interpolate high-frequency components

or missing traces. The idea of prediction filters has been extended by many researchers in the past

few years. For instance, Liu and Fomel ([12]) proposed a regularized nonstationary autoregression

for adaptive error-prediction filtering; Naghizadeh and Sacchi ([13]) used multidimensional

prediction filters for seismic data reconstruction and in ([7]) they proposed prediction filters

using curvelet transform instead of Fourier transform.

Recently, rank-reducing methods are used for seismic data reconstruction. Trickett et al. ([14])

presented a truncated singular value decomposition based on rank reduction of constant-frequency

slices for trace interpolation. In ([15]), Oropeza and Sacchi reorganized the seismic data into a

Hankel matrix, and then used multichannel singular spectrum analysis (MSSA) to solve the rank-

reduction problem of the Hankel matrix. The MSSA comes from the generalization of singular

spectrum analysis (SSA) ([16]). Basically, SSA is used for 2D data and MSSA is applied to 3D

data recovery.

Mathematically speaking, this reconstruction problem can be understood in the following way:

we are given a matrix with some missing columns, and we want to complete the matrix by filling

in the missing data. This interpretation has some similarities with the matrix completion (MC)

problem, in which we are given some components of a matrix X and we want to reconstruct

X with its rank as low as possible. In this paper, we will explore the connection in a novel

way such that a lot of efficient MC algorithms can be applied to seismic data recovery. The

technology of rank reduction has been used for data reconstruction in MSSA based methods in

[15], but here we start from different theory and algorithms.

From the mathematical theory of MC, however, one can not simply define the given signal

matrix as an input in MC framework. The main reason is that based on the justification in

[17], it is impossible to reconstruct a matrix when the sampling set avoids any column or row

of X . That is to say, we need at least one nonzero value in each column vector. Unlike the

applications of MC in image inpainting where pixels are randomly missed, we have several

columns missing in seismic data. In order to apply the MC idea, we should first design a pre-
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transformation which transforms the given seismic data with column/trace missing to a new

matrix with pixel missing, i.e., each column and row of the new matrix has at least one nonzero

entry. Besides, sometimes the original signal may have complicated structure and the matrix may

not necessarily be low-rank. Therefore, we should try to explore special structure of the given

data and use pre-transformation to construct a low-rank matrix with proper sampling set.

In this paper, we build a texture matrix through pre-transformation. This new matrix is either

low-rank or can be approximated by a low-rank matrix. With very high probability there is

at least one nonzero entry in each row and column of it. Hence it can be reconstructed via

regular MC algorithms. We can then recover the original signal matrix through transforming the

completed low-rank matrix into the original space. The main contribution of our work is that we

attack seismic reconstruction from a completely new angle. By making the connection with MC

problem, a lot of efficient MC algorithms from convex optimization can be utilized to recover

the seismic data. The proposed method is simpler and faster than existing methods.

This paper is organized as follows. In section II and III, we will give a detailed description

about the MC problem and some commonly used algorithms for solving it. Section IV focuses

on the construction of texture matrix. The performance of our model is illustrated in section V

with comparison to algorithms mentioned in [15]. We will end this work by a short conclusion.

II. MATRIX COMPLETION

Nowadays, a lot of real world models can be categorized as MC problems, such as video

denoising ([18]) etc. The general form of the problem is:

min
X∈Rm×n

rank(X), s.t. Xij = Mij for (i, j) ∈ Ω (1)

Here rank(X) is the number of nonzero singular values of X . Sometimes when noise is involved

in the measurements, the model is adjusted to

min
X∈Rm×n

µ · rank(X) +
1

2
∥PΩ(X)−PΩ(M)∥2F (2)

with a properly tuned parameter µ. Here PΩ stands for the the projection onto the subspace of

matrices with nonzero entries restricted to the index subset Ω, and ∥ · ∥F , the Frobenius norm,
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is defined as

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

|aij|2. (3)

for any matrix A = (aij)m×n. However, solving the above two models are often numerically

expensive. Hence people tend to consider their relaxation:

min
X∈Rm×n

∥X∥∗, s.t. Xij = Mij for (i, j) ∈ Ω (4)

and

min
X∈Rm×n

µ∥X∥∗ +
1

2
∥PΩ(X)−PΩ(M)∥2F (5)

Here ∥X∥∗ stands for the nuclear norm of X , which is the L1 norm of the singular values. As a

matter of fact, similar relaxation also appears in compressed sensing theory, where minimizing

the L1 norm of a vector is used as a relaxation of L0 minimization.

In raw seismic data X = (xij)m×n, the i denotes temporal sampling and j stands for trace

sampling, i.e., the spatial location of receivers. For instance, the first column of X is the 1D

time sequence signal acquired at the first receiver. Each column of X is named as one seismic

trace.

III. FAST ALGORITHMS FOR MC

Lots of algorithms have been proposed to solve (4) and (5), such as linearized Bregman, fixed

point continuation with Bregman iteration etc. See [19], [20], [21], [22] for more details. In this

paper we will focus on the following two, accelerated proximal gradient method (APG, it is

the same as FISTA) and LMaFit. We need to point out that LMaFit is not designed to solve

the standard MC problem. It is actually used for solving the low-rank matrix reconstruction

where the low-rank matrix is parameterized in a factorization form. More details about it will

be provided in the following.

Accelerated proximal gradient method comes from [23], [24], and it was applied to MC

problems in [25]. It is a classic method for solving (5). In order to illustrate this method, let us

briefly introduce the idea of proximal mappings.
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The proximal mapping (prox-operator) of a convex function h is defined as

proxh(u) = argmin
x

h(x) +
1

2
∥x− u∥2. (6)

Let us assume we want to minimize a function f(u) of the form

f(u) = g(u) + h(u), (7)

with a convex and differentiable g(u), and a convex h(u) with inexpensive prox-operator. The

proximal gradient method computes the minimizer of f(u) iteratively via

uk+1 = proxtkh(u
k − tk∇g(uk)), (8)

with a suitable step size tk. For (5), by choosing tk ≡ τ we have

Xk+1 = Sτ (X
k − τ(PΩ(X

k)−PΩ(M))), (9)

Here Sτ (G) = Udiag((σ − µτ)+)V
T and G = Udiag(σ)V T is the singular value decomposion.

APG uses extrapolation on the result from (8) and is usually several times faster than regular

proximal gradient method. In order to obtain the optimal X of (5), in each iteration we update

Xk in the following way:

Y k = Xk + tk−1−1
tk

(Xk −Xk−1)

Gk = Y k − τ(PΩ(Y
k)− PΩ(M))

Xk+1 = Sτ (G
k)

tk+1 =
1+
√

1+4(tk)2

2

. (10)

Here τ has to be chosen properly. We also want to mention that with Bregman iteration, the

solution to (4) can be obtained by solving a sequence of (5) with noise-add-back skill in each

iteration:

Xk+1 = argminX µ∥X∥∗ + 1
2
∥PΩ(X)− PΩ(M

k+1)∥2F
Mk+1 = Mk + PΩ(M)−PΩ(X

k+1)
. (11)

LMaFit, proposed in [26], is an efficient algorithm designed to solve

min
X,Y,Z

∥XY − Z∥2F s.t. Zij = Mij for (i, j) ∈ Ω. (12)
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Here X ∈ Rm×k, Y ∈ Rk×n, and Z ∈ Rm×n, where k is a predicted rank bound. With an

appropriate k, the product of the optimal X and Y from (12) is also a minimizer of (4). X ,

Y , Z can be updated in an alternating fashion. Following the idea of nonlinear successive-over-

relaxation (SOR) algorithm, the author in [26] used weighted average between this update and

the previous iterate. In each iteration, the new X , Y and Z are defined in the following way:

Xk+1
temp = Zk(Y k)†

Xk+1 = ωXk+1
temp + (1− ω)Xk

Y k+1
temp = (Xk+1)†Zk

Y k+1 = ωY k+1
temp + (1− ω)Y k

Zk+1 = Xk+1Y k+1 + PΩ(M −Xk+1Y k+1)

(13)

with weight parameter ω > 1. Here (·)† stands for the pseudo inverse of a matrix. As we can

see, this algorithm avoids singular value decomposition (SVD) in each iteration, which is the

main time cost in most of the algorithms for (4). Hence when timing is the main issue, LMaFit

is undoubtedly a great choice.

IV. MODEL CONSTRUCTION: PRE-TRANSFORMATION

In our discussion we assume that the number of consecutive missing columns in the given

matrix is bounded above by a constant C. This is a reasonable assumption since the data can not

be restored properly if too many successive columns are missing at the same time. As mentioned

in introduction, the motivation of pre-transformation involves two aspects: 1) reshape the data

with column missing to a new format with pixel missing as required by MC theory; 2) after the

transformation, the new data matrix has low rank or can be approximated by a low-rank one. In

this paper, we consider the following texture matrix.

Due to the continuity and integrity of seismic data, it is reasonable to believe that our signal

only has a few texture patterns, which is defined as base texture in [27]. Inspired by it, if we

divide the signal matrix into small r × r patches, each submatrix should be a combination of

these base textures. Furthermore, if we rearrange each patch into a vector with the same ordering,

then these vectors will be (highly) linearly dependent, i.e., the patched matrix has lower rank

or can be approximated with a low-rank matrix. Later we will justify this claim with numerical

test on real data. In [27], Schaeffer and Osher defined the texture matrix as follows:
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Definition 1: Given the original signal X ∈ Rm×n and patch size r, we can divide X into

mn/r2 subblocks, labeled as {Bi}. Each Bi can be rearranged into a column vector wi following

the same ordering. The texture matrix T is defined as

T = [w1, w2, · · · , wmn/r2 ]. (14)

The nuclear norm of T is defined as the texture norm of X . The nuclear norm minimization is

correspondingly shifted to texture norm minimization.

Remark:

• The specific ordering which maps each patch to a vector is not important, as long as it is

consistent. In this paper the patches are labeled in the following way:
B1 B2 · · · Bn/r

Bn/r+1 Bn/r+2 · · · B2n/r

...
... . . . Bmn/r2

 . (15)

And for each patch, e.g. B1, the patch-vector is defined as:

B1 =


x11 x12 · · · x1r

x21 x22 · · · x2r

...
... . . .

xr1 xr2 · · · xrr

 =⇒ (x11, · · · , xr1, x12, · · · , xr2, · · · , xrr)
Tt = w1. (16)

where Tt denotes transpose.

• In the definition of T , the patches are defined in a non-overlapping way. The overlapping

case is not considered for two reasons. Firstly, if we construct the texture matrix T ∈ Rm1×n1

with overlapping patches, we shall have m1n1 > mn, hence the new matrix belongs to a

space with higher dimension than the original one. This increases the complexity of the

problem, and may not be feasible since we must apply MC techniques to this larger matrix

and then transform it back to the original space. More importantly, if each pixel contains

noise, then the robustness from applying patch based rank reduction techniques will be

lost once the patches overlap. The reason is as follows: the overlap causes the patches to

become highly correlated, thus the noise is no longer random and cannot be separated via

MC and other rank reduction techniques. More explanation about this can be found in the
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latest version of [27], to appear soon.

In order to apply MC techniques on the new matrix T , we first need to ensure that if we

choose r properly, with high probability there is at least one nonzero entry for each row and

column of T . If we have a missing column in the new matrix, then one of the patches Bk has to

be all-zero, which means that the consecutive r columns that Bk stays in are all missing. This

can not happen if r is greater than C.

On the other hand, if we have a missing row in the new matrix, then there exists 1 ≤ i ≤ r,

1 ≤ j ≤ r such that Bk(i, j) = 0 for all 1 ≤ k ≤ mn/r2. Hence the jth, (j+r)th, . . . , (j+n−r)th

columns should all be zero. Since we are dealing with column missing, finding the probability

of this case is the same as the following: given a length n vector with missing rate ρ, where

at most C consecutive elements are missing at the same time, we need to find the probability

that there exists j between 1 and r such that the jth, (j + r)th, . . . , (j + n− r)th entries are all

missing.

The exact probability for this case is hard to measure. Here we consider a sampling model

that people often use in application: jittered sampling [6]. We first divide the long vector into

several non-overlapping short vectors of length C/2ρ, and choose ρ ·C/2ρ elements from each

part. In this way at most C/2 consecutively entries are missing from each short vector, hence

the original vector will have at most C consecutive missing entries. Let us choose r > C/2ρ,

then for each j value between 1 and r, the jth, (j + r)th, . . . , (j + n − r)th entries will stay in

different short vectors, and the probability of each element missing is independent and equals

ρ. We then know that for a particular j, the probability of the jth, (j + r)th, . . . , (j + n − r)th

elements all missing is ρn/r. Since j can be any number between 1 and r, the overall probability

is bounded by rρn/r. Therefore, if we have r > max(C,C/2ρ) and n/r large, T will have at

least one nonzero element for each row with extremely high probability. For example, when we

have n = 128, ρ = 0.5 and C = 2, if we choose r = 8, the probability of having one row

missing in T is less than 1.2 · 10−4.

Next we use real data to show that for the original seismic data with no missing traces, the

transformed T can be approximated by a low-rank matrix. When the data has some missing

columns, the associated T may not be close to a low-rank matrix. Here two data sets X1, X2

are considered. For each test matrix, we generate the pre-transformation T with the original data

and the data with missing columns. Different r values are used in our test, and we display the
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singular value plot in the following Figure 1.

(a) X1
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(c) T of X1 with r = 16

(d) X2
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(e) T of X2 with r = 8
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(f) T of X2 with r = 16

Fig. 1: Singular value plots for the texture matrix of seismic data sets X1 and X2. (a) data set
X1, (b) the singular value plots for the texture matrix of X1 (blue) and X1 with missing columns
(red star) with r = 8, (c) the same setting with r = 16. (d) data set X2, (e) the singular value
plots for the texture matrix of X2 (blue) and X2 with missing columns (red star) with r = 8, (f)
the same setting with r = 16.

We can see from Figure 1 that the singular value plots from the original data (blue) always

have sharp decrease. According to out test, for the original data set X1, the ratio between the

first and the 15th singular values is 25.83 for r = 8 case. When r = 16, the ratio between the

first and the 50th singular values is 44.46. For the original data set X2, when we set r = 8, the

ratio between the first and the 15th singular values is 17.19. When r = 16, the ratio between the

first and the 50th singular values is 25.78. When part of the columns are missing, we can see

clearly from the plots that the associated T can hardly be approximated by low-rank matrices.

Based on the shape of the singular value plot and the computed ratio values, it is reasonable

for us to assume that T generated from the original (complete) data can be approximated by a

low-rank matrix.
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V. NUMERICAL RESULTS

We test the above model with different algorithms on real seismic data. In each experiment,

we fix the signal matrix and conduct the comparison with different sampling sets. 50% of the

traces are extracted with jittered sampling and C = 2. The test is conducted with 10 different

sampling sets and we record the mean time cost and signal-to-noise ratio (SNR). SNR is denoted

by 10 log10(∥X∗∥2F/∥X−X∗∥2F ), where X∗ is the original signal matrix and X is the recovered

one. We also display the comparison of one original (missing) trace with reconstructed traces

by different methods.

A. Comparison with SSA based algorithm

In our first test, we compare our model with the SSA based algorithm in [15] (algorithm (11)

in that paper). For simplicity from now on we will use SSA to denote this method. A detailed

description of this algorithm is provided in appendix. For SSA filter, we choose rank threshold

k = 5 for X1 and k = 7 for X2. The number of outer iteration is set to be 10 for X1 and 15

for X2. Since this algorithm tends to take a long time for large data set, we restrict the size of

the signal matrix to 128× 128. APG and LMaFit are applied in our model. The result is shown

below in Figure 2 and 3. The (f) part of each figure is the trace comparison, where we extract

one central missing trace (in red dash line) and compare it with the associated recovered traces

from different algorithms (blue line). The order from left to right is: SSA, APG and LMaFit.

We can see clearly from these figures that for both data sets the texture-patch model requires

much less time and also gives better results. According to the trace comparison, the results from

our model match the true trace perfectly while SSA might miss some parts. We can optimize

the results of SSA by taking more outer iterations, but we have to sacrifice even more in time

cost. For both tests, APG gives the highest SNR with medium time cost. According to the signal

matrix graph, the recovered result from APG is smoother than the other two. When the data

becomes more complicated (X2) with edges and corners, the result from APG and LMaFit are

comparable while LMaFit takes much less time.

B. Test with large data sets

This time the original 512×512 signal matrices are used in the experiment. APG and LMaFit

are tested and compared. When we use X1 (Figure 1 (a)) as input signal, we can recover the
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(a) Original (b) Corrupted (c) Recover by SSA

(d) Recover by APG (e) Recover by LMaFit (f) Trace comparison

Fig. 2: Signal matrix X1 (partial) recovery. We restrict its size to 128 × 128. (a) the original
signal matrix, (b) the corrupted signal, the gray lines are missing traces, (c) the recovered signal
via SSA based algorithm. It takes 40.30s and gives SNR 15.29. (d) the recovered signal via
APG. It takes 2.61s and gives SNR 17.79. (e) the recovered signal via LMaFit. It takes 0.25s
and gives SNR 16.66. (f) comparison of central traces from reconstructed results by different
methods. The recovered traces from our model are much better than the one from SSA.

entire signal matrix with less than 7s for both algorithms. Still, APG gives a higher SNR with

longer time. The results are displayed in Figure 4.

When the original signal becomes more complicated (Figure 1 (b)), both SNR become un-

doubtedly lower while still acceptable. According to Figure 5, this time we would rather choose

LMaFit since it takes less time and gives similar SNR. We may say that when the original signal

has complicated structure, LMaFit should be our choice.

We also consider noisy case for the texture model. X1 is used as input and Gaussian noise is

added to the given data. We define ρ to be the ratio between the variance of the noise and the

L∞ norm of the seismic data. The results for ρ = 0.01 and 0.02 are depicted in Figure 6 and

Figure 7. For both cases, we are able to get acceptable results. We can see that the unconstrained

model is better than the constrained one for the noisy case, since APG always gives a much
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(a) Original (b) Corrupted (c) Recover by SSA

(d) Recover by APG (e) Recover by LMaFit (f) Trace comparison

Fig. 3: Signal matrix X2 (partial) recovery. We restrict its size to 128 × 128. (a) the original
signal matrix, (b) the corrupted signal, (c) the recovered signal via SSA based algorithm. It takes
57.70s and gives SNR 14.22. (d) the recovered signal via APG. It takes 2.56s and gives SNR
17.02. (e) the recovered signal via LMaFit. It takes 0.13s and gives SNR 16.20. (f) comparison
of central traces from reconstructed results by different methods.

(a) Corrupted (b) Recover by APG (c) Recover by LMaFit

Fig. 4: Signal matrix X1 recovery with texture matrix. (a) the corrupted signal, (b) the recovered
signal via APG, (c) the recovered signal via LMaFit. APG takes 6.23s and gives SNR 18.21.
LMaFit takes 2.23s and gives SNR 16.19.

higher SNR and approaches the true missing traces better.
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(a) Corrupted (b) Recover by APG (c) Recover by LMaFit

Fig. 5: Signal matrix X2 recovery with texture matrix. (a) the corrupted signal, (b) the recovered
signal via APG, (c) the recovered signal via LMaFit. APG takes 5.60s and gives SNR 14.10.
LMaFit takes 1.79s and gives SNR 14.04.

(a) Corrupted (b) Recover by APG

(c) Recover by LMaFit (d) Trace comparison

Fig. 6: Signal matrix X1 recovery with texture matrix. Gaussian noise is added to the given data
with ratio ρ = 0.01. (a) the corrupted signal with missing traces and noise, (b) the recovered
signal via APG, (c) the recovered signal via LMaFit, (d) the central trace comparison with APG
on the left and LMaFit on the right. APG takes 5.13s and gives SNR 17.35. LMaFit takes 1.04s
and gives SNR 15.34.

VI. CONCLUSION

In this paper, we discover the connection between seismic data reconstruction and the general

matrix completion problem. We formulate the seismic data reconstruction as a nuclear-norm
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(a) Corrupted (b) Recover by APG

(c) Recover by LMaFit (d) Trace comparison

Fig. 7: Signal matrix X1 recovery with texture matrix. Gaussian noise is added to the given data
with ratio ρ = 0.02. (a) the corrupted signal with missing traces and noise, (b) the recovered
signal via APG, (c) the recovered signal via LMaFit, (d) the central trace comparison with APG
on the left and LMaFit on the right. APG takes 5.10s and gives SNR 15.26. LMaFit takes 0.99s
and gives SNR 12.90.

minimization for the first time. The texture-patch transformation is provided to build the low-

rank matrix with proper sampling sets, which can be recovered with regular MC algorithms.

APG and LMaFit are discussed in this paper, and the performances of these two algorithms are

shown in the numerical experiments. The reconstruction based on texture matrix tends to cost

much less time and give better result compared to SSA based algorithms. When the original

signal has complicated structure, our model gives reasonable result within a really short time. In

this case, our result can be used as initial input for other refined but time-consuming algorithms.

How to build a joint constraint with rank reduction and sparsity transforms (e.g. curvelets),

and how to addresses the problem of interpolating regular missing traces is our next work.
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VIII. APPENDIX: SSA

We first introduce the Hankel matrix construction, which is one step in the SSA filter. For

3D seismic data, a more complicated block Hankel matrix should be built. For a given signal

matrix in f − x (frequency-space) domain:

X =


x1,1 x1,2 · · · x1,n

x2,1 x2,2 · · · x2,n

...
... . . . . . .

xm,1 xm,2 · · · xm,n

 , (17)

the Hankel matrix for row j is constructed via

Hj =


xj,1 xj,2 · · · xj,Kn

xj,2 xj,3 · · · xj,Kn+1

...
... . . . . . .

xj,Ln xj,Ln+1 · · · xj,n

 , (18)

Usually we choose Ln = [n/2] + 1 and Kn = n − Ln + 1 to make Hj close to square. The

SSA filter is defined as follows: for each row j, we first construct the Hankel matrix Hj , and

then apply SVD to get Hj = Udiag(σ)V . Here σi are singular values. Only the first k largest

singular values and the corresponding singular vectors of Hj are kept for the next step, i.e., we

only treat Hk
j = Ukdiag(σ1, · · · , σk)V

k as useful information. The final step is averaging the

antidiagonal of each block of Hk
j to reform the row j. It has been proven in [28] that if the

data consists of k complex exponentials, the associated Hankel matrix of the data is a matrix

of rank k. Usually the noise and missing data will increase the rank of Hankel matrix, hence
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proper rank reduction technique can be used for data denoising and recovery.

Let us define this SSA filter for matrix X as F(X), Xobs as the original given matrix with

missing traces, and PI as the projection onto the given data set. The SSA based algorithm we

used as comparison (Algorithm 11) is illustrated below:

X0 = Xobs (19)

Xk = Xobs + (1−PI)F(Xk−1) (20)

The number of iterations taken for this algorithm is denoted as outer iteration in our discussion.
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