
A multiscale method for highly oscillatory dynamical systems
using a Poincaré map type technique

G. Ariel∗, B. Engquist†, S. Kim†, Y. Lee†, and R. Tsai†

Abstract

We propose a new heterogeneous multiscale method (HMM) which is devised to compute the
effective behavior of a class of highly oscillatory ordinary differential equations (ODEs). Without
the need for identifying hidden slow variables, the proposed method is constructed based on the
following three ideas: a nonstandard splitting of the vector field (the right hand side of the
ODEs); comparison of the solutions of the splitted equations; consrtuction of effective paths in
the state space whose projection onto the slow subspace has the correct dynamics; and a novel
on-the-fly filtering technique for achieving a high order accuracy. Numerical examples are given.

1 Introduction
In many application the preservation of the long-time behavior of the flow is more important than
the approximation of the trajectory or a particle itself. Even for a numerical scheme with a high
order accuracy, the preservation of invariance does not hold automatically. Thus, one of the major
thrusts is in developing numerical methods that allow long time computation of oscillatory solutions
to Hamiltonian systems. These methods typically attempt to approximately preserve some analyt-
ical invariance of the solutions: e.g. the total energy of the system, symplectic structures, or the
reversibility of the flow. Detailed reviews and further references on this active field of geometric inte-
gration can be found in [12, 29, 30, 37],[28, 36, 40], and [15]. Another approach based on asymptotic
expansions in inverse powers of the oscillatory parameter is given in [16] and references within.

Here we develop computational methods for a class of highly oscillatory ODEs, including non-
Hamiltonian systems that are not covered by the standard geometric integrators or the classical
methods for stiff equations. We focus on problems for which the range of scales is so large that the
finest scale cannot be resolved over the entire computational domain. Gear and Kevrekidis introduced
such a technique in [25] and applied it successfully to dissipative problems.We will concentrate on
highly oscillatory problems and build on the framework of E and Engquist [17].

In this paper, we tackle this difficulty by exploiting separation of scales. It requires that enough
information about the fast scale influence on the slow scale dynamics can be obtained by performing
localized simulations over short times, and thereby achieve better efficiency. The numerical complex-
ity of these methods is therefore much smaller than direct simulations of the given systems that induce
the fine scale dynamics. This feature exists implicitly in the classical stiff solvers as the resulting
algebraic systems of equations are solved by efficient nonlinear solvers exploiting special structures.
In the envelope methods [38] for highly oscillatory problems fast oscillations are sampled cleverly
in order to extrapolate in a much larger time scale. Similar techniques are also used in stochastic

∗Gil Ariel
Bar-Ilan University, Ramat Gan, 52900, Israel email:arielg@math.biu.ac.il
†Bjorn Engquist · Seong Jun Kim · Yoonsang Lee · Richard Tsai

Department of Mathematics and Institute for Computational Engineering and Sciences (ICES), The University of
Texas at Austin, TX 78712, USA email: engquist@ices.utexas.edu, skim@math.utexas.edu, ylee@math.utexas.edu,
ytsai@math.utexas.edu

1

differential equations [18]. In a sequence of papers, [1, 3, 4, 5, 6, 21], we have introduced and devel-
oped multiscale algorithms which use a set of slow variables for computing the effective behavior of
a highly oscillatory dynamical system. The set of slow variables can be either analytically derived,
or numerically determined. In addition to our previous work, other approaches to find slow variables
includes, e.g. [8, 9].

The requirements of explicit form of slow variables is no longer needed in the methods proposed
in this paper. Instead, some assumptions are placed on the vector fields defined by the dynamical
systems. The originally given dynamical system is thought of as having a lower order perturbation.
By ignoring a lower order perturbative part of the vector field, an “unperturbed” dynamical system
is defined. It is assumed that the dynamic of the “unperturbed system” is ergodic and yields an
invariant measure on a manifold. The essential part of our new algorithm is to run the original and
the “unperturbed” systems from the same initial conditions for short time intervals, and compare
the resulting solutions. See Figure 2 for an illustration. Furthermore, by reversing the “unperturbed
problems, the “unperturbed” system yields new initial data from which a new comparison of the two
dynamical systems can be performed as described earlier. We then construct locally an effective path
along which the evolutions of the original system’s slow variables are accurately captured. Moreover,
our algorithm achieve higher order accuracy by connecting these ideas with a novel filtering technique.

We remark that our method shares some formal procedural similarity to many algorithms that
use splitting techniques, but ours is fundamentally different from these algorithms. The impulse
method [24] and FLAVORS [41] are two of the well-known methods using splitting technique. The
impulse method for Newtonian dynamics splits the force field into fast and slow parts. As with
the conventional splitting strategy, the basic impulse algorithm then integrates alternately in time
intervals of equal length, the fast equation and the slow equation; the integration for the fast equation
starts with the solution generated by the slow equation, and vice versa. In the context of impulse
method, it is assumed that the slow part of the vector field comes from long range interaction potential
and is relatively costly to evaluate compared to the fast force. In this paper, the focus is on bypassing
the need to evaluate the fast forces in time intervals that are asymptotically longer than the shortest
periods in the oscillations, which is also dealt with in FLAVORS. FLAVORS integrate the whole
system and the splitted non-stiff system alternately as well. More precisely, during the integration,
stiff forces in the given system are “turned on” over a microscopic time interval time and then “turned
off” over a mesoscopic time step. As in the impulse method, the solution produced at the end of a
microscopic interval by “turning on” the stiff force in the system is continued by serving as the initial
condition for the whole system in the following mesoscopic time integration.

We emphasize that while our algorithm does require splitting of the vector field, our ultimate
numerical solutions are not constructed from continuing alternately the solutions computed by the
splitted equations. Furthermore, we point out that both the impulse methods and FLAVORS are
lower order methods. In essence FLAVORS can be regarded as a Monte-Carlo type algorithm while
our method is deterministic in nature and does compute higher order accurate solutions.

The layout of the paper is as follows. In the remaining of this section, we present the basic ideas
in designing an HMM. In Section 2, we present our new algorithm for tracking slow variables. This
is based on splitting the original equation (1.1) into stiff and non-stiff parts. In order to achieve high
order accuracy, a novel on-the-fly filtering technique is introduced in Section 2.1.2. Section 3 presents
several numerical examples. Here we compare our method with existing methods, e.g., FLAVORS.
We conclude in Section 4.

1.1 The HMM framework
We consider the computations of the effective long time properties of a class of dynamical system,
formally written in the form

d

dt
u = ε−1f1(u) + f0(u), (1.1)

2

with initial condition u(0) = u0 ∈ D0 ⊂ Rd. It is assumed that a unique bounded solution exists in a
time segment I = [0, T]. In many examples, it is not clear how to characterize the slow parts of the
dynamics in systems (1.1). To this end we define slow variables as below.

Significant amplication of numerical errors occurs when a classical integrator is applied to ap-
proximate the long-time behavior of (1.1) The accuracy and stability requirements of the integrator
dictate the use of a time step of order ε due to the stiff part. This fact implies that the computational
complexity for (1.1) over a fixed time T is at least of the order of ε−1. However, in many situations,
one is interested only in a set of slowly changing quantities U that are derived from the solutions
of the given stiff system (1.1). In the case where U constitute of a set of functions of u, they are
commonly referred to as slow variables of the system. See for example [2, 3, 23, 26, 33, 34, 35]. For
example, U could be the averaged kinetic energy of a particle system u. Formally, slow variables of
a dynamical system can be defined as below.

Definition 1. Let u(t) ∈ D0 denote the solution of (1.1) for some initial conditions. A smooth
function a(t) is to be slow if |da/dt| 5 C for some constant C independent of ε in t ∈ I. Moreover,
a smooth function ξ(u) : D0 → R is called a slow variable with respect to u(t) if ξ(t) = ξ(u(t)) is
slow.

Our objective is to construct and analyze ODE solvers that integrate the system

d

dt
U = F (U,D), (1.2)

where D is the data that can be computed by solving (1.1) locally in time. U may be some function or
functional of u, and is called the macroscopic variable. U typically describes some effective behavior
of (1.1) that is of relevance to the application.

If F is well-defined and has convenient explicit mathematical expression, then there is no need
to solve the stiff system (1.1); one only needs to solve (1.2). In many situations, the dependence
of U on u is not explicitly available. Our proposed strategy involves setting up a formal numerical
discretization for (1.2), and evaluate F from short time histories of u with properly chosen initial
conditions.

We will generalize the scope of this type of algorithms by providing a more general systematic
analysis that is applicable to a much wider class of applications that includes some systems from
molecular dynamics. In the HMM framework [1, 3, 21], one assumes a macroscopic model

F (U,D) = 0, U ∈ Ω(M) (1.3)

which may not be explicitly given, but can be evaluated from a given microscopic model,

f(u, d) = 0, u ∈ Ω(m) (1.4)

where u are the microscopic variables. D = D(u) and d = d(U) denote the set of data or auxiliary
conditions that further couple the macro- and microscopic models. Model (1.3) is formally discretized
at a macroscopic scale, and the adopted numerical scheme dictates when the necessary information
D(u) should be acquired from solving (1.4), locally on the microscopic scale with auxiliary conditions
d(U). As part of d(U) and D(u), the macro- and microscopic variables are related by reconstruction
and compression operators:

R(U,DR) = u, Q(u) = U, Q(R(U,DR)) = U, (1.5)

where DR are the needed data that can be evaluated from u. Errors of this type of schemes generally
take the structure

Error = EH + Eh + EHMM ,

where EH is the error of the macroscopic model (1.3), Eh is the errors from solving (1.4), and EHMM

contains the errors in the the multiscale model, including the passing of information through R and

3

x

Macro-scheme

micro-scheme
x0

n

H

⌘h

x

x0
n

H

⌘

�t
Macro-scheme

micro-scheme

U U

Figure 1: Two typical structures of the proposed multiscale algorithm. The structure on the left is
for dissipative problems.

Q. This approach has been used in a number of applications, such as contact line problems, epitaxial
growth, thermal expansions, combustion, reviewed in [43], and homogenizations of wave propagation
in long time intervals [20], and coupling network models for macroscopic multiphase flows in porous
media [13, 14].

Figure 1 shows two typical structures of such algorithms. In our context, an ODE solver for U
lies on the upper axis and constructs approximations of U at the grid points depicted there. The
fine meshes on the lower axis depict the very short evolutions of (1.1) with initial values determined
by R(U(tn)). The reconstruction operator then takes each short time evolution of u and evaluates F
and U . The algorithms in [19],[25], and [38] are also of a similar structure. As a simple example, the
forward Euler scheme applied to (1.2) would appear to be

Un+1 = Un +H · F (Un), (1.6)

where F contains the passage of QΦtR(Un); reconstruction R, evolution Φt, and compression Q, and
H is the step size. If each evolution Φt of the full scale system (1.1) is reasonably short, the overall
complexity of such type of solvers would be smaller than solving the stiff system (1.1) for all time,
thereby gaining computational efficiency.

Essential questions that need to be resolve for each scheme include:

• If only the microscopic model is given, how to systematically derive a corresponding macroscopic
model for the application in question? What are R and Q?

• With the system for u, and a choice of U(u), is F well-defined by the procedure defined above?
If not, how can it be properly defined?

• How long should each evolution be computed?

• What do consistency, stability. and convergence mean?

For a fixed ε > 0, all well known methods, assuming U = u, will converge as the step-size H → 0, and
there is no difference between stiff and non-stiff problems. In the related work [1, 3, 21], convergence
for very stiff problems (ε� H) is defined by following error:

E(H) = max
0≤tn≤T

(sup
0<ε<ε0(H)

|U(tn)− Un|). (1.7)

Here, ε0(H) is a positive function of H, serving as an upper bound for the range of ε, and U(tn) and
Un denote respectively the analytical solution and the discrete solution at tn. With this notion, it
is clear that a sensible method has to utilize the slow varying property of U and generate accurate
approximation with a complexity sublinear to ε−1.

4

1.2 Slow variables and invariant measures
We start by considering a class of system that has an explicit slow-fast grouping in the solution’s
components: {

d
dtx = ε−1f(x, z, t) + g(x, z, t),
d
dtz = h(x, z, t).

(1.8)

Here the x components are real valued and stay bounded but are highly oscillatory, and the z
components are called the slow variables in the system, since their time derivatives are formally
bounded. If for fixed z, x(t) yields an invariant measure µ supported on some manifold M(z) of
the same dimension as that of x, then z(t) can be consistently approximated in any constant time
interval by an averaged equation

d

dt
z̄ = h̄(z̄, t) :=

ˆ
M(z̄)

h(x, z̄, t)dµ(x, z̄). (1.9)

Such systems are widely studied to build multiscale scale methods. See [19][42]. In this case, it is
reasonable to use z̄ as the macroscopic variable; i.e. U = z̄ ' z, and R(U,DR) = (x∗, z) where DR

gives the value x∗ ∈M. For example, x∗ may be taken from the x values in the previous microscale
simulation. The compression Q may simply be Q(x, z) = z. The operator F in (1.6) plays the role
of approximating the average right hand side by time averaging the microscopic evolution using a
suitable filtering kernel. From the computational point of view, averaging methods inspire efficient
numerical schemes for integrating the slow components of slow-fast systems without fully resolving
all fast oscillations.

However, if there are resonances among the oscillations, x(t) is likely not to remain on any
invariant manifold [34], and more sophistication in the algorithm is needed. One can see the essence
of this problem from the simple example,{

d
dtx = iε−1x+ g(x), x(0) = 1,
d
dtz = h(x), z(0) = z0.

=⇒
{

d
dtw = e−

i
ε tg(e

i
ε tw), x(t) = e

i
ε tw(t),

d
dtz = h(e

i
ε tw), z(0) = z0.

Let us formally decompose e−
i
ε tg(e

i
ε tw) = ḡ(w) + α(e

i
ε t, w), where ḡ does not depend on any fast

oscillations but α has only fast oscillations. Resonance in this system corresponds to the case where
ḡ is non-zero. If ḡ ≡ 0, w(t) stays close to 1, due to the strong self-averaging in α. Thus (1.9)
corresponds to averaging h over the unit circle, and dµ is the arc-length element. Consequently, the
averaging has to be performed with the correct measure

d

dt
z̄ = h̄(z̄, t) :=

ˆ
M(t)

h(x, z̄, t)dµ(x, z̄; t).

For example, if g(x) = x, then ḡ(w) = w, and α ≡ 0. Consequently,M(t) is a circle with radius equal
to w(t) = exp(t).Without the knowledge of w(t), it is impossible to define a consistent reconstruction
operator R, and consequently, it is impossible to build a convergent multiscale algorithm. In some
literature, the issue caused by resonance is referred to as the system having hidden slow variables
[1, 23, 21],[41]. It is essential that a multiscale method computes accurately the effect of the hidden
slow variables.

We continue our discussion using the previous example, but instead, we rewrite the equation for
x as a system in R2 : {

ẋ1 = ε−1x2 + x1,

ẋ2 = −ε−1x1 + x2,

with initial conditions (x1(0), x2(0)) = (0, 1). Thus (x1(t), x2(t)) = (et sin ε−1t, et cos ε−1t).
Taking I = x2

1 +x2
2, we notice that I has a bounded derivative along the trajectory of the solution;

i.e., İ := (d/dt)I(x1(t), x2(t)) = 2I is independent of ε. Since I does not appear explicitly in the

5

given ODEs, it is regarded as a hidden slow variable. For this particular example one can easily solve
for I, I(t) = I(0)e2t. In fact, the uniform bound on İ indicates the slow nature of I(x1(t), x2(t))
when compared to the fast oscillations in (x1(t), x2(t)). This type of characterization of the effective
dynamics of highly oscillation systems are commonly used in the literature. In this example it was
easy to find the slow quantity I.

We refer the reader to [1, 3] for designing multiscale algorithms that compute the effective behavior
of highly oscillatory dynamical systems by using slow variables. [3] shows how we identify polynomial
slow variables in (1.1) and how we use the solution of (1.1) locally in time to approximate an assumed
effective equation. In particular, for autonomous systems, a diffeomorphism Ψ : u → (ξ(u), φ(u)) of
(1.1) from Rd onto Rd−1 × S1 is constructed so that{

ξ̇ = g0(ξ, η), ξ(0) = ξ0,

η̇ = ε−1g1(ξ, η) + g2(ξ, η), η(0) = η0

(1.10)

and all smooth slow variables depends on ξ up to some bounded lower order perturbative terms.
Consequently, this set of slow variables characterizes the slowly changing effective behavior of the
trajectory of the given oscillatory dynamical system. Typically, one may expect that the values of
a slow variable ξ along the dynamical system’s solutions, ξ ◦ u, converge as ε → 0. We shall denote
this limit as ξ̄(t;u0). This expectation may come directly from the averaging theory [39].

In designing multiscale algorithms for this type of problems, it is often convenient to aim at
constructing accurate approximation of ξ̄ by suitable filtering of the oscillations in u(t). This typically
involves numerically averaging over the fast oscillations in the system. The resulting HMMs are quite
efficient as reported in our previous work. Nevertheless, for large systems, analytical or numerical
determination of a suitable close set of slow variables whose dynamics are closed along u(t) can be
difficult. The purpose of this paper is to introduce a new type of HMMs which do not use slow
variables in the computation.

2 The BF HMM scheme
We consider the computation of the effective long time properties of a class of dynamical system,
formally written in the form

d

dt
xε = ε−1f1(xε) + f0(xε, t; ε), (2.1)

with initial condition xε(0) = x0 ∈ D0 ⊂ Rd.

Assumption 1. The trajectories of the unperturbed equation

d

dt
y = ε−1f1(y), (2.2)

are ergodic on some invariant manifoldM(y0), where y(0) = y0 is the initial condition. Furthermore,
for points in D0, the Jacobian of f1 has only purely imaginary eigenvalues bounded away from 0,
independent of ε.

Assumption 2. The invariant manifoldM of (2.2) can be identified by the level sets of ξ1, ξ2, · · · , ξk
with k < d which are slow variables with respect to xε(t).

Thus, for each time t, we may identify the manifold

M(t) = ∩kj=1{z ∈ Rd : ξj(z) = ξj ◦ xε(t)},

and if we solve (2.1) and (2.2) with the same initial condition lying on M(t), it is then possible to
trackM(t) by comparison of xε(t) and y(t) without explicitly knowing the slow variables. Thus the

6

evolution of the slow variables, or equivalently, that ofM(t), can be tracked at least locally in state
space by a path γ(s) which crossesM(t) for at s = t. Note that such γ is not unique and we shall
construct one in the state space such that for any slow variable ξ, and finite time interval, γ satisfies
the following conditions:

1. (Consistency) ξ ◦ γ(t) = ξ ◦ xε(t);

2. (Effectiveness)
∣∣∣d(j)γdt(j)

∣∣∣ ≤ C, for 1 ≤ j ≤ k for some positive integer k.

We shall refer γ as an effective path of the given dynamical system.
It has been observed in [3] that such a path can be constructed using an effectively closed system

of explicitly identified slow variables. Furthermore, the constructed path is orthogonal to the level
sets of the slow variables in the limit as ε → 0. Our new algorithm does not require explicit form of
any slow variables. Instead, our new algorithm compares short time solutions of (2.1) and (2.2) to
generate a sequence of points whose interpolation defines an approximation of γ. In the following
algorithms, γ is not necessarily orthogonal to the level sets of slow variables. As we shall see further
below, the more sophisticated form of our algorithm requires both the forward and backward in time
solutions of (2.1) and (2.2). Thus, we shall call our algorithms BF HMMs for brevity.

Our basic algorithm is illustrated in Figure 2 and summarized below. This first algorithm does
not involve any solution of the equations involved backward in time, but we shall still call it a BF
HMM. We remark here that Algorithm 1 described below shares a similar strategy is that proposed
in [7] for a different problem.

Algorithm 1. (Forward Euler BF HMM)

1. (Forward Euler macro-solver) Compute γn+1 from γn at tn = nH.

γn+1 = yn(∆) +HFn,

where
Fn :=

xn(∆)− yn(∆)

∆
,

and xn(∆) and yn(∆) are evaluated from the micro-solver.

2. (Micro-solver) At tn = nH, solve

d

dt
xn = ε−1f1(xn) + f0(xn), xn(0) = γn,

and
d

dt
yn = ε−1f1(yn), yn(0) = γn,

for t ∈ [tn, tn + ∆] with 0 < ε� ∆� H.

3. Repeat.

7

y(�)

x(�)

x0

�(t)

Figure 2: γ(∆) := x(∆),γ(0) := y(∆), and γ(−∆) := x(−∆; y(∆)).

Example 1. Our simple example to demonstrate the consistency of the Forward Euler BF HMM is
an expanding spiral [1] in C.

d

dt
xε = iε−1xε + xε, xε(0) = x0 (2.3)

with x0 > 0 independent of ε. We transform xε into (ξ, θ) where ξ = |xε| and θ = arg(xε), and obtain{
ξ̇ = ξ, ξ(0) = |x0|,
θ̇ = ε−1, θ(0) = arg(x0).

(2.4)

By Definition 1, ξ is a slow variable. In Step 1, we assume that all micro simulations of x and y are
exact over [tn, tn + ∆], ∆� H. Then the local truncation error in approximating a slow variable ξ
is given by∣∣∣∣ξ ◦ xε(tn+1)− ξ ◦

(
yn(∆) +H · xn(∆)− yn(∆)

∆

)∣∣∣∣ =

∣∣∣∣etn+H − etn
(

1 +H · e
∆ − 1

∆

)∣∣∣∣
=

∣∣∣∣etn (H2 −∆ ·H
2

+ · · ·
)∣∣∣∣

≤ CH2

for some positive constant C. Thus to leading order in H2, Forward Euler BF HMM yields a correct
γ(t) for the slow variable ξ.

2.1 Higher order schemes
In this section we describe the construction of high order accurate BF HMMs which has sublinear
complexity in constant time intervals. In Algorithm 1, forward Euler scheme is used to compute the
effective path γ that passes through y(∆). A lower order approximation of dγ/dt when it crosses
y(∆) is approximated by Fn, which is a linear approximation. Thus, higher order BF HMMs require
higher order approximation of dγ/dt. In order to do that, we systematically solve (2.1) and (2.2)
both forward and backward in time to obtain points lying on an effective path that crosses a chosen
point. Below, we outline this general procedure:

8

• The chosen macroscopic integrator is used to construct an effective path γ that crosses a
chosen point γ∗0 , which may wither be given by the macroscopic intergrator directly, or come
from solving (2.2) for a short time. The values of d

dtγ at various quadrature points needed by
the macro-integrator are computed as below.

• From the initial condition γ(t∗) =: γ∗0 . A sequence of points in the state space, denoted by γ∗k ,
k = 0,±1, · · · ,±p, is generated by the microscopic solver solving (2.1) and (2.2) for short time
intervals of length ∆. The generation of γ∗k will be described in detail later.

• d
dtγ(t) is approximated by d

dtγ
∗
∆(t) for t ∈ [t∗ − p∆, t∗ + p∆], where γ∗∆(t) is an interpolation

of γ∗k at t = t∗ + k∆.

For simplicity of presentation, we only describe the procedure for k > 0. Assume that the value of
γ(t∗) is given, we start by defining γ∗0 := γ(t∗).

• For k = 0, 1, · · · , p− 1,

1. Solve equation (2.1) for xε using γ∗k as the initial condition at t = k∆, and obtain the
solution at time (k + 1)∆, denoted by xε(∆; γ∗k).

2. Solve equation (2.2) for y backward in time, from t = (k+ 1)∆ to k∆, with the condition
x(∆; γ∗k). Denote the solution at t = k∆ by y(−∆; γ∗k).

• Define γ∗k+1 := y(−∆; γ∗k).

The procedure for k < 0 involves first solving y backward in time, and then solving xε forward in
time. This type of construction involving forward-backward flow can be recognized using the diagram
shown in Figure 3. In Figure 4, we show two projections of γ thus constructed for the stellar orbits
problem. See Section 3.2 for the stellar orbits model.

�⇤
0

x✏(�; �⇤
0)

x0

�⇤
0

�⇤
1

�⇤
2

�⇤
�1

�⇤
�2

x✏(�; �⇤
0)

x✏(�; �⇤
1)

x✏(��; �⇤
0)

x✏(��; �⇤
�1)

Figure 3: An illustration of the BF HMM construction for approximating an effective path that
passes through γ∗0 . This construction will take place at every microscopic simulation in a BF HMM
algorithm. Mappings that involve backward in time solutions of either (2.1) and (2.2) are depicted
by the dashed arrow curves. (Left) This diagram summarizes the evaluation of Fn in Algorithm
1. Together with the chosen Forward Euler macro-solver, the structure corresponds to the HMM
structure shown in the left subfigure of Figure 1. (Right) Blue curves symbolizes mappings that
involve the solutions of (2.2). The red curve depicts the trajectory of the computed effective path.

9

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x
1

v
1

−2 −1 0 1 2

−2

−1

0

1

2

x
2

v
2

Figure 4: Projections of γ(t) onto the x1-v1 and the x2-v2 planes, are shown by the solid curve. The
level sets of the slow variables are shown by the dotted contours. γ is computed by a second order
explicit Runge-Kutta method using macroscopic time step size H = 0.25, ε = 10−4. See Algorithm 2
for generating solid curves and Section 3.2 for the stellar orbits equation.

2.1.1 A sampling issue

In a typical application, the slow variables along xε(t) will possess O(ε) oscillations around a smooth
average; i.e. one cannot expect that | dνdtν ξ ◦ xε| is bounded uniformly in ε for ν ≥ 2. Since slow
variables are functions that do not depend on ε, the boundedness of | dνdtν ξ ◦ xε| = | dνdtν ξ ◦ γ| thus
determines the boundedness of γ(ν)(t). In other words, for most applications, the effective path γ(t)
constructed by the algorithm outlined above will have fast oscillations of O(ε) amplitudes. This poses
some restriction to the lengths of ∆ and the macroscopic step size, H.

Nevertheless, the O(ε) oscillations will be sampled very irregularly by the interpolation points γ∗k
and will typically lead to an O(ε/∆) error in the approximation of dξ̄/dt regardless of how many
points we use in an interpolation. This limitation of accuracy can be lifted by a novel filtering
technique described in the following section, or by additional knowledge of the periodicities of the
fast oscillations in ξ ◦ xε(t).

0.23 0.235 0.24 0.245 0.25 0.255 0.26 0.265 0.27

−5

0

5

x 10
−4

0.23 0.235 0.24 0.245 0.25 0.255 0.26 0.265 0.27

−5

0

5

x 10
−4

Figure 5: The blue curves are the trajectories of ξ1 ◦ xε(t) with ε = 10−3, showing fast oscillations
with small amplitudes. The top plot shows the result obtained without the new filtering. The bottom
plot is obtained with the new filtering.

10

2.1.2 A novel on-the-fly filtering approach

As we see from the discussion in Section 2.1.1, the bottleneck in accuracy of this new algorithm
is a consequence of the small-amplitude fast oscillations in ξ ◦ xε(t). The accuracy of the proposed
algorithm can be improved if γk sample implicitly the smooth average ξ̄ instead. Since we assume
no explicit knowledge about the slow variables, ξ̄ must be computed intrinsically.

Our idea is to average the vector field defined by the dynamical system “on-the-fly”. More precisely,
we propose to replace the (2.1) by a filtered equation

d

dt
x̃ =

1

ε
f1(x̃) +K∆(t)f0(x̃, t,

t

ε
), (2.5)

with the identical initial condition as xε; i.e. x̃(t∗) = xε(t∗). In the forward in time simulations for
time interval t∗ ≤ t ≤ t∗ + ∆, the filter K∆(t) will vanish outside of that interval. Similarly, in the
backward in time simulations, the filter will be support in t∗ − ∆ ≤ t ≤ t∗. We will develop the
appropriate filters so that the smooth average ξ̄(t) of ξ ◦ xε(t) is approximated accurately by ξ ◦ x̃(t)
at t = t∗ ±∆.

The mechanism of this approach can be understood by comparing

x′ =
i

ε
x+ c(t,

t

ε
)x,

and the corresponding filtered equation in the interval 0 ≤ t ≤ ∆. With x = e
i
ε tw and x̃ = e

i
ε tw̃, we

have
w′ = c(t,

t

ε
)w, and w̃′ = K∆(t)c(t,

t

ε
)w̃.

Suppose c(t, t/ε) = c̄(t) + α(t/ε), where α is a periodic function with zero average. Then

w(t) = w0 exp(

ˆ t

0

c̄(s)ds+

ˆ t

0

α(
s

ε
)ds) = y0 exp(

ˆ t

0

c̄(s)ds) +O(ε)), (2.6)

w̃(t) = w0 exp(

ˆ t

0

K∆(s)c̄(s)ds+

ˆ t

0

K∆(s)α(
s

ε
)ds). (2.7)

In this example, the lower order term containing α in the right hand side of (2.6) causes the sampling
issue mentioned above. Thus, our main objective is to build high order scheme that computes the
smooth part of w; i.e.

w̄(t) := w0 exp(

ˆ t

0

c̄(s)ds).

In the algorithm that we outlined above, we only need that the value of w̃(t) to be close to w̄(t)
at t = ∆, the filter K∆ should perform two specific types of approximations corresponding to the
integrals involving c̄ and α.

The theory of averaging out oscillations that appears in the integral for α(t/ε) is developed in [22].
It requires that K∆ is compactly supported in the interval [0,∆], and the effectiveness of averaging
out the oscillations in α is determined by the regularity of K∆ at s = 0 and ∆; i.e.

dk

dtk
K∆(0) =

dk

dtk
K∆(∆) = 0, k = 0, 1, . . . , q, (2.8)

which imply, using integration by parts,∣∣∣∣∣
ˆ ∆

0

K∆(s)α(
s

ε
)ds

∣∣∣∣∣ ≤ C · εq

∆q−1
. (2.9)

11

High order accurate approximation of the integration of c̄ requires different conditions. Taylor
expansion of c̄(t) around t = ∆ gives c̄(t) = c̄(∆) + (t−∆)c̄′(∆) + ... and

ˆ ∆

0

c̄(s)ds =
∑
j

c̄(j)(∆)

j!

ˆ ∆

0

(s−∆)jds,

ˆ ∆

0

K∆(s)c̄(s)ds =
∑
j

c̄(j)(∆)

j!

ˆ ∆

0

K∆(s)(s−∆)jds.

Thus for this type of problems, we may require what we called the quadrature moment conditions for
the filter K∆: ˆ ∆

0

K∆(s)sjds =

ˆ ∆

0

sjds, j = 0, 1, 2, · · · , p. (2.10)

For convenience of presentation below, let K̃p,q(I) denote the space of normalized Cq functions,
supported on I that have p moments specified by

ˆ
K(t)trdt =

ˆ
I

trdt =
1

r + 1
, 0 ≤ r ≤ p. (2.11)

For ∆ > 0, K∆(t) denotes a rescaling of K as K∆(t) = K(∆−1t).
We remark the estimate in (2.9) shows that it is more important to use a filter with higher

regularity, as it directly impacts on how the error | djdtj ξ ◦ x̃ − d
dt ξ̄| depends on ε, and consequently,

how the sizes of ∆ and the step size H for the macro-solver should be chosen.
Figure 5 demonstrates a scenario for the stellar orbits example. In it, the blue curves correspond

to the the values of the slow variable ξ1 ◦ x(t) defined in Section 3.2. The red circles show the values
of ξ1(γk) at times tn + k∆, and the dotted red curves are the quadratic interpolants of these values.
The bottom plot in Figure 5 is obtained with the strategy to be discussed below.

Algorithm 2. Midpoint rule BF HMM

1. (Midpoint rule macro-solver) Compute γn+1 from γn at tn = nH.

γn+ 1
2

= γn +
H

2
FHMM (γn, tn),

γn+1 = γn +HFHMM (γn+ 1
2
, tn +

H

2
)

where FHMM is defined below.

2. (Micro-solver) Evaluation of FHMM (γ∗0 , t
∗). With a chosen filter K∆ ∈ K̃p,q([0,∆]), p, q ≥ 1,

and ∆ > 0:

(a) (Forward solution of the perturbed equation) Solve

d

dt
x̃ = ε−1f1(x̃) +K∆(t− t∗)f0(x̃, t,

t

ε
), x̃(t∗) = γ∗0

for t ∈ [t∗, t∗ + ∆]. Denote the solution at t = t∗ + ∆ by x̃(∆; γ∗0).

(b) (Backward solution of the perturbed equation) Solve

d

dt
x̃ = ε−1f1(x̃) +K∆(t− t∗)f0(x̃, t,

t

ε
), x̃(t∗) = γ∗0

for t ∈ [t∗ −∆, t∗]. Denote the solution at t = t∗ −∆ by x̃(−∆; γ∗0).

12

(c) (Forward solution of the unperturbed equation) Solve

d

dt
yF = ε−1f1(yF), yF (t∗ −∆) = x̃(−∆; γ∗0)

for t ∈ [t∗ −∆, t∗]. Denote the solution yF (t∗) by γ∗−1.

(d) (Backward solution of the unperturbed equation) Solve

d

dt
yB = ε−1f(yB), yB(t∗ + ∆) = x̃(∆; γ∗0)

for t ∈ [t∗, t∗ + ∆]. Denote the solution yF (t∗) by γ∗1 .

(e) Evaluate FHMM :

FHMM (γ∗0 , t
∗) :=

γ∗1 − γ∗−1

2∆
.

3. Repeat.

Algorithm 3. (Explicit s-stage Runge Kutta BF HMM)

1. (Macro-solver: An explicit s-stage m-th order Runge-Kutta method defined by the Butcher’s
tableau involving the coefficients (ai,j), bi, and cj , 1 ≤ i, j ≤ s.)
Computes γn+1 from the given value γn at t = tn.

γn+1 = γn +H

s∑
i=1

biki,

where

kj = FHMM (γn +H

j−1∑
`=1

aj`k`, tn + cjH), j = 1, 2, · · · , s.

The values of FHMM are computed from microscopic simulations.

2. (Micro-solver) Evaluate FHMM (γ∗0 , t
∗) at the given values of γ∗0 and t∗.

Let S∆
t∗ be the operator that maps a given initial data at t = t∗ to the solution of the filtered

perturbed equation (2.5) to t∗+ ∆, and let S̃∆
t∗ be the operator that has the analogous function

for the unperturbed equation (2.2). Define

γ∗j :=
(
S̃−∆
t∗+∆S

∆
t∗

)j
γ∗0 ,

γ∗−k :=
(
S̃∆
t∗−∆S

−∆
t∗

)k
γ∗0 .

Let γ∆(t) be an interpolant of γj at t∗ + j∆. Then

FHMM (γ∗0 , t
∗) :=

d

dt
γ∆(t∗).

2.1.3 Formal accuracy estimate

Here we summarize errors produced by Algorithm 3.

• Global error in macro-simulation: Using an α-th order method with step size H, is given by
Hα.

13

• Global error in each micro-simulation: Using an β-th order method with step size h, we solve
equations of x(t) and y(t) over micro interval ∆. The global error is of order ∆hβ

εβ+1 .

• Filtering errors, by which we refer to the errors made in constructing γ∗k . Using a filter K∆(t) ∈
K̃p,q with p, q ≥ 1, we have a residual from averaging the oscillations of order εq

∆q−1 , and
quadrature error of order at most ∆.

• Error in approximation of γ′(t) via interpolation: interpolating n+ 1 points by an n-th degree
polynomial leads to an error of order ∆n.

In our setup for the multiscale problems, we consider a regime: 0 ≤ t ≤ T , ε → 0, T ∼ O(1),
∆ ∼ O(ε), and H ∼ O(1), assuming that ξ̄(t) has ν derivatives bounded uniformly independent of
ε, and ν ≥ α. In this regime, the dominating error terms would be that from micro-solver O(h/ε)β ,
the filtering errors O(ε), and the error from the macro-solver O(Hα).

3 Numerical examples
In this section, we apply our BF HMM algorithm described in Section 2 to ODE systems and compare
it with other methods.

3.1 Expanding spiral
Consider in the complex plane the following equation

ẋ = iε−1x+ Re(x) · x+ x|x|−1, (3.1)

with the initial value x(0) = 0.5. As in Example 1, the dynamics of x(t) can be analyzed by the
corresponding system of slow and fast variables:{

ξ̇ = ξ2 cos θ + 1, ξ(0) = 0.5,

θ̇ = ε−1, θ(0) = 0.
(3.2)

We see immediately that in constant time interval, ξ is well approximated by ξ̄ such that

˙̄ξ = 1, ξ̄(0) = 0.5. (3.3)

The small-amplitude fast oscillations in ξ ◦ x(t) are illustrated in Figure 6. In this example, we used
Algorithm 1, the Forward Euler BF HMM to compute the solution; however, in each mico-simulation
the micro-solver integrates the filtered equation

ẋn = iε−1xn +K∆(t− tn)
(
Re(xn) · xn + xn|xn|−1

)
, tn ≤ t ≤ tn + ∆,

with the parameters in Table 1 and a filter K ∈ K̃1,5.
In Table 2, we show the accuracy in the approximations of the averaged slow variable ξ̄ obtained

with filters of different regularity.

Table 1: (Section 3.1) BF HMM parameters

ε T ∆ H Micro solver RelTol(ODE45 parameter) Macro solver
10−4 10 60ε 1 ODE45 1e-8 Forward Euler

14

1 1.001 1.002 1.003 1.004 1.005 1.006

1.5

1.501

1.502

1.503

1.504

1.505

1.506

t

(a) Plot of ξ ◦ x(t) over t ∈ [1, 1 + ∆].

3 3.001 3.002 3.003 3.004 3.005 3.006
3.498

3.5

3.502

3.504

3.506

3.508

t

(b) Plot of ξ ◦ x(t) over t ∈ [3, 3 + ∆].

Figure 6: (Section 3.1) The dynamics of the slow variable ξ. Circles are results of the Forward Euler
BF HMM in the respective time intervals. The dotted lines are the linear interpolants of these values.
An amplitude of the fast oscillations around ξ̄ increases as time goes by.

Table 2: Table of ||ξ̄(·)− ξ ◦ γ(·)||L∞([0,10]) with various kernels. An estimation error decreases with
higher regularity conditions.

q = 1 2 3 4 5
p = 1 1.1e-2 9.7e-4 7.6e-4 2.2e-4 1.3e-4

3.2 A simplified model for stellar orbits in a galaxy
The following extensively analyzed system is taken from the theory of stellar orbits in a galaxy (see
[32, 31]): {

r′′1 + a2r1 = εr2
2,

r′′2 + b2r2 = 2εr1r2, 0 < t̃ < T/ε.

Here r1(0, ε) = r2(0, ε) = 1, r′1(0, ε) = r′2(0, ε) = 0; r1 stands for the radial displacement of the orbit
of a star from a reference circular orbit, and r2 stands for the deviation of the orbit from the galactic
plane. The time variable t̃ actually denotes the angle of the planets in a reference coordinate system.
After a rescaling of time, the system can be written in the following form

x′ = ε−1


0 a 0 0
−a 0 0 0
0 0 0 b
0 0 −b 0

x +


0

x2
2/a
0

2x1x2/b

 , x(0) =


1
0
1
0

 , (3.4)

where x = [x1, v1, x2, v2]t. One seeks approximation of the effective properties that take place in
a constant time interval. When a = 2 and b = 1, resonance of oscillatory modes take effect in the
lower order term. Using the numerical algorithm proposed in [3], three functionally independent slow
variables are identified to be

ξ1 = x2
1 + v2

1 , ξ2 = x2
2 + v2

2 , ξ3 = x1x
2
2 + 2v1x2v2 − x1v

2
2 . (3.5)

where ξi :R4 → R, i = 1, 2, 3.
In Figure 3.2, we present a result computed by our method and compare it with the results

computed by FLAVORS [41] with two different sets of parameters. Figure 7a shows the BF HMM
Mid-ODE45 (Midpoint rule macro-solver and ODE45 micro-solver with quadratic polynomial inter-
polation for γ) result computed with the parameters tabulated in Table 3 and a kernel K ∈ K̃1,5. The

15

resulting error in the slow variables is max
i=1,2,3

||ξi(·) − ξi ◦ γ(·)||L∞([0,14])= 0.063. The computational

time on a one-year old desktop is about 5.9s.
In Figure 7b, we show the result computed by FLAVORS with the parameters within the recom-

mended regimes. To be more precise, as stated in [41], the required conditions for FLAVORS are as
follows:

∆� ε� H � 1 and
(

∆

ε

)2

� H � ∆

ε
. (3.6)

In [41], the proposed empirical choice is given by ∆ = γε, H = γ∆
ε where γ is small (0.1, for

instance). Figure 7b is from their empirical choice ∆ = γε, H = γ∆
ε where γ = 0.1. We obtained

max
i=1,2,3

||ξi(·)− ξi ◦ x̃(·)||L∞([0,14])=0.56. The computational time on the same machine is about 3.1s.

In Figure 7c, we show the result computed by FLAVOR by a set of parameters which do not fall
in the recommendation. With the parameters shown in the Figure, we obtained max

i=1,2,3
||ξi(·) − ξi ◦

x̃(·)||L∞([0,14])=0.23. The computational time is about 8.4s.

Table 3: (Section 3.2) BF HMM parameters for Section 3.2

ε T h ∆ H Micro solver RelTol Macro solver
10−4 14 ε/30 7ε 0.25 ODE45 1e-5 Midpoint rule

3.3 The Fermi-Pasta-Ulam problem
The Fermi-Pasta-Ulam problem is a dynamical system which revealed highly unexpected behavior.
We consider a chain of 2k springs connected with alternating soft nonlinear and stiff linear springs,
and both ends are fixed. This problem has been a test bed for evaluating the long-time performance
of geometric integrators [28]. The model is derived from the following Hamiltonian:

H(p, q) =
1

2

2k∑
i=1

p2
i +

1

4
ε−2

k∑
i=1

(q2i − q2i−1)2 +

k∑
i=1

(q2i+1 − q2i)
4. (3.7)

Using the change of variables given in [3], we have the following equations of motion
ẏi = ui,

ẋi = ε−1vi,

u̇i = −(yi − εxi − yi−1 − εxi−1)3 + (yi+1 − εxi+1 − yi − εxi)3,

v̇i = −ε−1xi + (yi − εxi − yi−1 − εxi−1)3 + (yi+1 − εxi+1 − yi − εxi)3.

(3.8)

Both fixed ends yield y0 = x0 = yk+1 = xk+1 = 0 and we choose k = 3 for an illustration. Initial
conditions are y1 = x1 = u1 = 1 and zero otherwise. Total energies of the stiff springs are given by

Ii = x2
i + v2

i , i = 1, 2, 3 (3.9)

where Ii :R12 → R. See [10, 11, 27] and references therein for some recent progress. With ε denoting
the time scale of the fast oscillations, the nontrivial energy transfer take place in the very long ε−1

time scale. Even if one could afford the long computational time, it is unclear if the computational
results retain enough effective accuracy. The FPU is a good model problem to study the proposed
new algorithm for computation in O(ε−1) timescale.

Figure 8 shows the energy exchange of the stiff springs over T = ε−1, with ε = 2 · 10−3. We
compare the results computed by the BF HMM Verlet-ODE45 (Verlet macro-solver and ODE45
micro-solver with quadratic polynomial interpolation for γ) with those by an exponential integrator

16

0 2 4 6 8 10 12 14
0

1

2

3

4

5

t

(a) BF HMM Mid-ODE45 with ∆ = 7ε, H = 0.25.

0 2 4 6 8 10 12 14
0

1

2

3

4

5

t

(b) FLAVORS Mid-ODE45 with ∆ = γε, H = γ∆
ε

, γ =
0.1.

0 2 4 6 8 10 12 14
0

1

2

3

4

5

t

(c) FLAVORS Mid-ODE45 with ∆ = 20ε, H = 0.05.

Figure 7: (Section 3.2) The dynamics of the slow variables ξ1, ξ2 and ξ3 in (3.4). Subfigures (b) and
(c) FLAVORS fail to preserve the geometrical structure of the flow.

by Deuflhard [28] with the stepsize h = 5ε10−7, which we used as a reference solution. We point out
here that in order to obtain a reliable reference numerical solution, the aforementioned step size is
needed. Furthermore, we had to use 128-bit precision for the variables in our computation in order to
retain reasonable significant digits at time T in our computation with the exponential integrator. The
BF HMM result is computed with the parameters given in Table 4, and with the filter Kcos ∈ K̃1,1

for the filtered equation that corresponds to (3.8). In this setup, the BF HMM runs approximately
30,000 times faster. The difference in the stiff springs’ total energy between the HMM solution and
the reference solution measured in the supremum norm is max

i=1,2,3
||Ii(·)− Ii ◦ γ(·)||L∞([0,ε−1]) = 0.027.

In Figure 9, with ε = 5 · 10−3 , we show a result computed by the same BF HMM algorithm for
longer time and demonstrate the stability of our algorithm in a longer time interval. See Table 5 for
simulation parameters.

Table 4: (Section 3.3) BF HMM parameters for Figure 8.

ε T h ∆ H Micro solver RelTol Macro solver
2 · 10−3 ε−1 ε/10 6πε 1/3 ODE45 1e-7 Verlet

17

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

Figure 8: (Section 3.3) The solid lines correspond to DNS solution with an exponential integrator.
Dotted lines correspond to the HMM.

Table 5: (Section 3.3) BF HMM parameters for Figure 9.

ε T h ∆ H Micro solver RelTol Macro solver
5 · 10−3 7 · ε−1 ε/10 15ε 0.3 ODE45 1e-7 Verlet

0 200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

t

Figure 9: (Section 3.3) Long time simulation by BF HMM Verlet-ODE45 to T = 7ε−1.

4 Summary
We introduce and analyze a new class of multiscale methods that use a technique related to the
construction of a Poincaré map. The proposed algorithms compute the effective slow behavior of
highly oscillatory dynamical systems built on the HMM framework. The main idea of this paper is
the following:

• The essential invariant manifolds are defined by the slow variables, and from the given initial
data, the highly oscillatory dynamical system has an effective evolution across the different
essential invariant manifolds.

• We construct an effective path by considering the solutions of the equations with and without
lower order perturbation. This path discloses information about an effective evolution of the
invariant manifolds in state space.

18

• A novel on-the-fly filtering technique is applied for achieving high order accuracy beyond other
approaches that rely only on dynamical system’s self-averaging property.

Finally, we point out that the proposed HMM methods are not limited to the few simple schemes that
we presented here. One can use this methodology to build an HMM scheme for problems with more
than two separated scales, and to capture numerically the slow behavior of stiff stochastic differential
equations. Rigorous analysis of the proposed methods and their generalization will be reported in a
forthcoming paper by the authors.

5 Acknowledgments
Kim and Tsai are partially supported by NSF grants DMS-0914840 and DMS-0914465. Engquist was
partially supported by NSF grant DMS-0714612.

References
[1] G. Ariel, B. Engquist, H.-O. Kreiss, and R. Tsai. Multiscale computations for highly oscillatory

problems. In Multiscale modeling and simulation in science, volume 66 of Lect. Notes Comput.
Sci. Eng., pages 237–287. Springer, Berlin, 2009.

[2] G. Ariel, B. Engquist, and R. Tsai. Numerical multiscale methods for coupled oscillators. Mul-
tiscale Model. Simul., 7(3):1387–1404, 2008.

[3] G. Ariel, B. Engquist, and R. Tsai. A multiscale method for highly oscillatory ordinary differ-
ential equations with resonance. Math. Comp., 78:929–956, 2009.

[4] G. Ariel, B. Engquist, and R. Tsai. Numerical multiscale methods for coupled oscillators. Multi.
Mod. Simul., 7:1387–1404, 2009.

[5] G. Ariel, B. Engquist, and R. Tsai. A reversible multiscale integration method. Comm. Math.
Sci., 7(3):595–610, 2009.

[6] G. Ariel, B. Engquist, and R. Tsai. Oscillatory systems with three separated time scales –
analysis and computation. In B. Engquist, O. Runborg, and Y.H. R. Tsai, editors, Numerical
analysis of multiscale computations, volume 82 of Lecture Notes in Computational Science and
Engineering. Springer-Verlag, 2011.

[7] G. Ariel and E. Vanden-Eijnden. Accelerated simulation of a heavy particle in a gas of elastic
spheres. Multiscale Model. Simul., 7(1):349–361, 2008.

[8] Z. Artstein, I. G. Kevrekidis, M. Slemrod, and E. S. Titi. Slow observables of singularly perturbed
differential equations. Nonlinearity, 20(11):2463–2481, 2007.

[9] Z Artstein, J. Linshiz, and E. S. Titi. Young measure approach to computing slowly advancing
fast oscillations. Multiscale Model. Simul., 6(4):1085–1097, 2007.

[10] D. Bambusi and A. Ponno. On metastability in FPU. Comm. Math. Phys., 264(2):539–561,
2006.

[11] D. Bambusi and A. Ponno. Resonance, metastability and blow up in FPU. In The Fermi-
Pasta-Ulam problem, volume 728 of Lecture Notes in Phys., pages 191–205. Springer, Berlin,
2008.

[12] S. D. Bond and B. J. Leimkuhler. Molecular dynamics and the accuracy of numerically computed
averages. Acta Numer., 16:1–65, 2007.

19

[13] C. Chu, B. Engquist, M. Prodanovic, and R. Tsai. A multiscale method coupling network and
continuum models in porous media I – single phase flow. Under review, 2011.

[14] C. Chu, B. Engquist, M. Prodanovic, and R. Tsai. A multiscale method coupling network and
continuum models in porous media II – single and two phase phase flow. Under review, 2011.

[15] D. Cohen, T. Jahnke, K. Lorenz, and C. Lubich. Numerical integrators for highly oscillatory
hamiltonian systems: A review. In Analysis, Modeling and Simulation of Multiscale Problems,
pages 553–576. Springer Berlin Heidelberg, 2006.

[16] M. Condon, A. Deaño, and A. Iserles. On second-order differential equations with highly oscil-
latory forcing terms. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 466(2118):1809–1828,
2010.

[17] W. E and B. Engquist. The heterogeneous multiscale methods. Commun. Math. Sci., 1(1):87–
132, 2003.

[18] W. E and E. Vanden-Eijnden. Numerical techniques for multiscale dynamical systems with
stochastic effects. Comm. Math. Sci., 1(2):385–391, 2003.

[19] Weinan E. Analysis of the heterogeneous multiscale method for ordinary differential equations.
Commun. Math. Sci., 1(3):423–436, 2003.

[20] B. Engquist, H. Holst, and O. Runborg. Multiscale methods for wave propagation in hetero-
geneous media over long time. In B. Engquist, O. Runborg, and R. Tsai, editors, Numerical
analysis of multiscale computations, volume 82 of Lect. Notes Comput. Sci. Eng. Springer-Verlag,
2011.

[21] B. Engquist and Y.-H. Tsai. Heterogeneous multiscale methods for stiff ordinary differential
equations. Math. Comp., 74(252):1707–1742, 2005.

[22] B. Engquist and Y.-H. Tsai. Heterogeneous multiscale methods for stiff ordinary differential
equations. Math. Comp., 74(252):1707–1742 (electronic), 2005.

[23] I. Fatkullin and E. Vanden-Eijnden. A computational strategy for multiscale chaotic systems
with applications to Lorenz 96 model. J. Comp. Phys., 200:605–638, 2004.

[24] B. García-Archilla, J. M. Sanz-Serna, and R. D. Skeel. Long-time-step methods for oscillatory
differential equations. SIAM J. Sci. Comput., 20(3):930–963, 1999.

[25] C. W. Gear and I. G. Kevrekidis. Projective methods for stiff differential equations: problems
with gaps in their eigenvalue spectrum. SIAM J. Sci. Comput., 24(4):1091–1106 (electronic),
2003.

[26] C. W. Gear and I. G. Kevrekidis. Constraint-defined manifolds: a legacy code approach to
low-dimensional computation. J. Sci. Comput., 25(1-2):17–28, 2005.

[27] E. Hairer and C. Lubich. On the energy distribution in Fermi-Pasta-Ulam lattices. Preprint,
2010.

[28] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration, volume 31 of Springer
Series in Computational Mathematics. Springer-Verlag, Berlin, 2002.

[29] M. Hochbruck and A. Ostermann. Exponential integrators. Acta Numer., 19:209–286, 2010.

[30] A. Iserles, H. Munthe-Kaas, S.P. Nørsett, and A. Zanna. Lie-group methods. In Acta numerica,
2000, volume 9 of Acta Numer., pages 215–365. Cambridge Univ. Press, Cambridge, 2000.

20

[31] J. Kevorkian and J. D. Cole. Perturbation methods in applied mathematics, volume 34 of Applied
Mathematical Sciences. Springer-Verlag, New York, 1981.

[32] J. Kevorkian and J. D. Cole. Multiple scale and singular perturbation methods, volume 114 of
Applied Mathematical Sciences. Springer-Verlag, New York, 1996.

[33] H.-O. Kreiss. Problems with different time scales for ordinary differential equations. SIAM J.
Numer. Anal., 16(6):980–998, 1979.

[34] H.-O. Kreiss. Problems with different time scales. In Acta numerica, 1992, pages 101–139.
Cambridge Univ. Press, 1992.

[35] H.-O. Kreiss and J. Lorenz. Manifolds of slow solutions for highly oscillatory problems. Indiana
Univ. Math. J., 42(4):1169–1191, 1993.

[36] B. Leimkuhler and S. Reich. Simulating Hamiltonian dynamics, volume 14 of Cambridge Mono-
graphs on Applied and Computational Mathematics. Cambridge University Press, Cambridge,
2004.

[37] J.E. Marsden and M. West. Discrete mechanics and variational integrators. Acta Numerica,
pages 357–514, 2001.

[38] L. R. Petzold, L. O. Jay, and J. Yen. Numerical solution of highly oscillatory ordinary differential
equations. In Acta numerica, 1997, volume 6 of Acta Numer., pages 437–483. Cambridge Univ.
Press, Cambridge, 1997.

[39] J. A. Sanders and F. Verhulst. Averaging Methods in Nonlinear Dynamical Systems, volume 59
of Applied Mathematical Sciences. Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1985.

[40] J. M. Sanz-Serna and M. P. Calvo. Numerical Hamiltonian problems, volume 7 of Applied
Mathematics and Mathematical Computation. Chapman & Hall, London, 1994.

[41] M. Tao, H. Owhadi, and J. Marsden. Nonintrusive and structure preserving multiscale inte-
gration of stiff ODEs, SDEs, and Hamiltonian systems with hidden slow dynamics via flow
averaging. Multiscale Model. Simul., 8(4):1269–1324, 2010.

[42] E. Vanden-Eijnden. Numerical techniques for multi-scale dynamical systems with stochastic
effects. Comm. Math. Sci., 1:385–391, 2003.

[43] X. Li W. Ren W. E, B. Engquist and E. Vanden-Eijnden. Heterogeneous multiscale methods:
A review. Commun. Comput. Phys., 2(3):367–450, 2007.

21

