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Abstract. The Mumford-Shah model is one of the most important image segmentation models,
and has been studied extensively in the last twenty years. In this paper, we propose a convex
segmentation model based on the Mumford-Shah model. Our model can be seen as finding a smooth
approximation g to the piecewise smooth solution of the Mumford-Shah model. Once g is obtained,
the two-phase or multiphase segmentation is done by thresholding g. The thresholds can be given
by the users to reveal specific features in the image or they can be obtained automatically using a
K-means method. Because of the convexity of the model, g can be solved efficiently by techniques like
the split-Bregman algorithm or the Chambolle-Pock method. We prove that our model is convergent
and the solution g is always unique. In our method, there is no need to specify the number of
segments K (K ≥ 2) before finding g. We can obtain any K-phase segmentations by choosing
(K − 1) thresholds after g is found; and there is no need to recompute g if the thresholds are
changed. Experimental results show that our method performs better than many standard 2-phase
or multi-phase segmentation methods for very general images, including anti-mass, tubular, noisy,
and blurry images.
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1. Introduction. Let Ω ⊂ R
2 be a bounded open connected set, Γ be a compact

curve in Ω, and f : Ω → R be a given image. Without loss of generality, we restrict the
range of f in [0,1] and hence f ∈ L∞(Ω). In 1989, Mumford and Shah [34] proposed
to solve the segmentation problem by minimizing the following energy:

EMS(g,Γ) =
λ

2

∫

Ω

(f − g)2dx+
µ

2

∫

Ω\Γ

|∇g|2dx+ Length(Γ), (1.1)

where λ and µ are positive parameters, and g : Ω → R is continuous or even differ-
entiable in Ω \ Γ but may be discontinuous across Γ. Here, the length of Γ can be
written as H1(Γ), the 1-dimensional Hausdorff measure in R

2, see [3]. Because model
(1.1) is nonconvex, it is very challenging to find or approximate its minimizer.

In [1], the Mumford-Shah energy (1.1) was approximated by a sequence of simper
elliptic variational problems where the length of Γ was replaced by a phase field
energy. Later, non-local approximation of (1.1) was proposed in [10, 22, 33]. By
using a family of continuous and non-decreasing functions, they avoid computing Γ
explicitly. In particular, their methods solve an anisotropic variant of the Mumford-
Shah model (1.1). In [9], numerical approaches based on a discrete functional were
considered for solving (1.1). Recently, a novel primal-dual algorithm based on a convex
representation of (1.1) was proposed. It can solve (1.1) accurately. However, for a
128× 128 image, it requires 600 seconds on a TEsla C1060 GPU machine. Until now,
the bottleneck of solving (1.1) is still that the model itself is nonconvex.
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Over the years, people have tried to simplify the model (1.1). For example, if
we restrict ∇g ≡ 0 on Ω \ Γ, then this results in a piecewise constant Mumford-Shah
model. Recently, in [36] a convex relaxation approach was proposed to solve it. In
[14], the method of active contours without edges (Chan-Vese model) was introduced.
It actually solves the piecewise constant Mumford-Shah model but restricting the
solution to be a piecewise constant solution with only two constants. Multiphase
Chan-Vese segmentation methods were proposed thereafter, see [39, 40]. These meth-
ods work well for certain image segmentation tasks, for example the cartoon image.
However, the main drawback of these methods is that they can easily get stuck in local
minima. In order to overcome this problem, convex relaxation approaches [6, 12] and
the graph cut method [24] were proposed. There are also many other models based
on the Chan-Vese model [14, 39], for example, two-phase segmentation algorithms
in [17, 42, 43] and multiphase segmentation algorithms in [2, 7, 28, 29, 30, 38, 44].
Specifically, in [28], the multiphase Chan-Vese model was convexified by using fuzzy
membership functions. In [38], a new regularization term was introduced which allows
choosing the number of phases automatically. In [42, 43, 44], efficient methods based
on the fast continuous max-flow method were proposed. In [17], the length term was
replaced by a term involving framelets. The interested readers can read the references
therein or [3] for more details.

In this paper, instead of tackling the challenging problem of finding an accurate
piecewise smooth solution for the Mumford-Shah model (1.1), we propose to approx-
imate the model by the model:

inf
g

{

λ

2

∫

Ω

(f −Ag)2dx+
µ

2

∫

Ω

|∇g|2dx +

∫

Ω

|∇g|dx

}

, (1.2)

where A can be the identity operator or a blurring operator. We will see that our
model is closely related to (1.1). We remark that our model is convex and the so-
lution g is a smooth function. Once g is found, then the segmentation is obtained
by segmenting g using properly chosen threshold(s). To segment g into K segments,
K ≥ 2, we require (K − 1) thresholds which the users can define themselves or ob-
tain automatically by the K-means method [25, 32]. Figure 1.1 shows two multiphase
segmentation results from our method using thresholds from the K-means method.

(a) given image (b) three phases (a) given image (b) four phases

Fig. 1.1. Multiphase segmentation results by our method.

We will prove that under mild condition, our model has one and only one solution
g which can be solved very fast by currently popular algorithms such as the split-
Bregman algorithm [23] or the Chambolle-Pock method [11, 35]. One nice aspect of
our method is that there is no need to recompute g when we change the thresholds
to reveal different features in the image. Another nice aspect is that there is no need
to specify K before finding g. We can obtain any K-phase segmentation by choosing
(K − 1) thresholds after g is computed. In contrast, multiphase methods such as
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[28, 44] require K to be given first; and, if K changes, the minimization problem has
to be solved again.

Our tests in Section 4 show that our method can segment different kinds of images:
anti-mass images, tubular images, images with very high noise, and images with blur
and noise. For the last one, all the multiphase methods we tested [28, 38, 44] fail
while our method can provide a very good result, see Figures 1.1 or 4.8. We will
see that our method is fast comparing to popular two-phase segmentation methods
[8, 14, 17, 43] and multiphase segmentation methods [28, 38, 44].

Note that once g is obtained and the thresholds are given, segmenting g into
K segments require very little time. In fact, the complexity is proportional to the
number of pixels in the image. Hence our method is quite suitable for users to play
around with different thresholds to determine the number of segments they prefer and
the different features within the image they like to reveal. However, we also provide
a K-means method to compute the thresholds automatically for users who prefer an
automated K-phase segmentation algorithm.

Our model provides a better understanding on the link between image segmenta-
tion and image restoration. Indeed, the effectiveness of our method suggests that for
segmentation, a key idea is to extract the cartoon part in the image, i.e. g; and then
cluster g into different phases. Based on this idea, it is likely that a more efficient
segmentation method can be developed in the future along this line.

The rest of the paper is organized as follows. In Section 2, we derive our convex
model (1.2) which is based on the Mumford-Shah model. We then show that our
model has a unique solution. Then we discuss the relationship between our model
with models in image restoration. In Section 3, we give the detail implementation of
our method, and show that the resulting algorithm converges. In Section 4, we com-
pare our method on various synthetic and real images with two-phase segmentation
algorithms [17, 14, 43] and multiphase segmentation methods [28, 38, 44]. Conclusions
are given in Section 5.

2. Our model. Our model is motivated by the following simple but important
observation about binary images: a binary image can be recovered quite well from
its smoothed version by thresholding with a proper threshold. Figure 2.1 is an ex-
ample to illustrate this point. Figure 2.1(a) is the true binary image and 2.1(b) is its
smoothed version obtained by a Gaussian filter with size [5,5] and standard deviation
3. Obviously, pixels values near the boundary are smoothed. However, by using a
threshold of 0.5 to threshold Figure 2.1(b) back to a binary image, we obtain Figure
2.1(c). We see that all the pixels of Figure 2.1(a) except some on the boundary are
correctly recovered, see the difference image in Figure 2.1(d). Inspired by this idea,
we will modify model (1.1) step by step to arrive at our model (1.2). Briefly speaking,
we will use a smooth function to approximate the piecewise smooth solution of model
(1.1), then apply a simple thresholding strategy to carry out the segmentation.

2.1. Derivation of our model. Let Σ = Inside(Γ), then Γ = ∂Σ. We can
rewrite model (1.1) as:

E∗
MS(Σ, g1, g2) :=

λ

2

∫

Σ\Γ

(f − g1)
2dx +

µ

2

∫

Σ\Γ

|∇g1|
2dx+

λ

2

∫

Ω\Σ

(f − g2)
2dx

+
µ

2

∫

Ω\Σ

|∇g2|
2dx+ Per(Σ),

(2.1)
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(a) true (b) given (c) recovered (d) difference

Fig. 2.1. Segmentation from smooth image. (a): true 128 × 128 binary image; (b): given
smoothed image of (a) by a Gaussian filter; (c): segmented binary result from (b) using threshold
0.5; (d): the difference image (a) and (c) where nonzero pixel values are scaled to 1 to reveal them
clearly.

where g1 and g2 are defined on Σ \ Γ and Ω \ Σ respectively, and Per(·) denotes the
perimeter of Σ, i.e. Per(Σ) = Length(Γ). Note that (2.1) is similar to Equation (9)
in [12]. Observe that once Σ is fixed, then g1 and g2 are determined by the following
two minimization problems:

inf
g1∈W 1,2(Σ\Γ)

{

λ

∫

Σ\Γ

(f − g1)
2dx+ µ

∫

Σ\Γ

|∇g1|
2dx

}

(2.2)

and

inf
g2∈W 1,2(Ω\Σ)

{

λ

∫

Ω\Σ

(f − g2)
2dx+ µ

∫

Ω\Σ

|∇g2|
2dx

}

. (2.3)

For the definition of W 1,2(Ω), see [19, Chapter 5]. The existence and uniqueness of
the solutions g1 and g2 are guaranteed by the following proposition.

Proposition 2.1. Let f ∈ L2(Ω). Then the two minimization problems (2.2)
and (2.3) have unique minimizers.

Proof. Since Σ is closed, both the sets Ω \ Σ and Σ \ Γ are open. Using the
conclusions of Proposition 1 in [3] or Proposition 3 in [16], we conclude that problems
(2.2) and (2.3) have unique minimizers.

From the above analysis we can conclude that once the boundary Γ is fixed, i.e.
Σ is fixed, then g1 and g2 are determined uniquely. Note that in [12], the Chan-Vese
model is made convex once the mean values of f inside and outside Γ are fixed. Here,
motivated by Theorem 2 of [12], we can derive and prove a similar theorem as follows
for the Mumford-Shah model (2.1) once g1 and g2 are fixed and smoothly extended
to the whole Ω.

Theorem 2.2. For any given fixed functions g1 and g2 ∈ W 1,2(Ω), a global
minimizer for E∗

MS(Σ, g1, g2) in (2.1) can be found by carrying out the following convex
minimization:

min
0≤u≤1

{
∫

Ω

|∇u|+
1

2

∫

Ω

{

λ(f − g1)
2 + µ|∇g1|

2 − λ(f − g2)
2 − µ|∇g2|

2
}

u(x)

}

,

(2.4)
and setting Σ = {x : u(x) ≥ ρ} for a.e. ρ ∈ [0, 1].

Proof. See Appendix I.
From Theorem 2.2, we see that the term Per(Σ) of (2.1) is replaced by a convex

integral term
∫

Ω
|∇u|. In other words, the boundary information of Γ in (1.1) can
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be extracted from the TV-term
∫

Ω
|∇u|. This motivates us to use

∫

Ω
|∇g| to extract

the boundary information Length(Γ) in (1.1). Evidently, this approximation is also
related to the fuzzy membership approach [6, 12, 28] to handle the Chan-Vese model.
In the following, we therefore use

∫

Ω |∇g| to approximate the boundary term (the last
term) in the Mumford-Shah energy (1.1).

Next we consider simplifying the middle term in model (1.1). In (1.1), the solution
is restricted to be a smooth function in Ω\Σ and in Σ\Γ. However, from the example
given in Figure 1, we see that these smooth parts can be recovered quite well from a
smooth function g in Ω by a proper thresholding. Therefore in the following, we look
for solution g ∈ W 1,2(Ω). Then we have:

Lemma 2.3. If g ∈ W 1,2(Ω) and Γ is a closed curve with m(Γ) = 0, where m(·)
is the Lebesgue measure, then

∫

Γ |∇g|2dx = 0.
Proof. Since g ∈ W 1,2(Ω), we have ∇g ∈ L2(Ω). Because of m(Γ) = 0, we get

∫

Γ
|∇g|2dx = 0 immediately.

Thus the middle term of model (1.1) becomes:

∫

Ω\Γ

|∇g|2dx =

∫

Ω

|∇g|2dx−

∫

Γ

|∇g|2dx =

∫

Ω

|∇g|2dx, ∀g ∈ W 1,2(Ω). (2.5)

In view of Theorem 2.2 and (2.5), we propose our segmentation model as:

inf
g∈W 1,2(Ω)

{

λ

2

∫

Ω

(f − g)2dx+
µ

2

∫

Ω

|∇g|2dx+

∫

Ω

|∇g|dx

}

,

where λ and µ are positive parameters. Since sometimes the given image is degraded
by noise and/or blur, we extend this model to general cases by introducing a problem-
related operator A in its fidelity term. Then finally our segmentation model is:

inf
g∈W 1,2(Ω)

E(g) := inf
g∈W 1,2(Ω)

{

λ

2

∫

Ω

(f −Ag)2dx+
µ

2

∫

Ω

|∇g|2dx+

∫

Ω

|∇g|dx

}

,

(2.6)
where A may stand for the identity operator or a blurring operator. Obviously, if
µ 6= 0 in (2.6), g will be smooth. The following theorem shows the existence and
uniqueness of g.

Theorem 2.4. Let Ω be a bounded connected open subset of R2 with a Lipschitz
boundary. Let f ∈ L2(Ω) and Ker(A)

⋂

Ker(∇) = {0}1, where A is a bounded linear
operator from L2(Ω) to itself and Ker(A) is the kernel of A. Then (2.6) has a unique
minimizer g ∈ W 1,2(Ω).

Proof. See Appendix II.
Lastly, we emphasize that model (2.6) can be minimized quickly by using cur-

rently available efficient algorithms such as the split-Bregman algorithm [23] or the
Chambolle-Pock method [11, 35]. We leave the implementation to Section 3.

2.2. Relationship with image restoration. It is interesting to note that our
model (2.6) itself can be regarded as an image restoration model to capture the cartoon
part in the image and is closely related to the classical ROF image restoration model:

inf
g

∫

Ω

(

λ

2
(f −Ag)2dx+ |∇g|

)

, (2.7)

1This condition actually restricts A1 6= 0. It means that Af 6= 0 if f is a nonzero constant image.
It is true for all blurring operators as they are convolution operators with positive kernels.
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see [37]. The only difference is that we have an extra term
∫

Ω
|∇g|2. One of the impor-

tant properties of the ROF model is that it can preserve important edge information
but the staircase effect may be introduced. In order to avoid this, many works have
been proposed, see [13, 31, 41, 5] for examples. In [13], Chan, Marquina and Mulet
proposed to solve the following minimization problem:

inf
g

∫

Ω

(

λ

2
(f − g)2 + |∇g|ǫ1 + µ

(∆g)2

|∇g|3ǫ2

)

, (2.8)

where |∇g|ǫi =
√

|∇g|2 + ǫi, i = 1, 2 with ǫi being small positive parameters. The
additional higher-order derivative term can remove the staircase effect. In [31, 41],
the authors used second-order derivatives to replace the TV regularization term of
model (2.7). Recently a novel regularization model, the total generalized variation,
was proposed in [5] which also involves higher-order derivatives. Obviously, the cost
and difficulty of solving the given models grow as the functionals became more and
more complex.

In contrast, in our model (2.6), the staircase effect is reduced because of the middle
term which contains the square of the first-order derivative and no other higher-order
derivatives. Once the smooth solution g is found, a suitable thresholding then gives
the image segmentation result. From the analysis of Section 2.1 and the numerical
results in the coming Section 4, we see that the smoothness in g actually does not
affect the segmentation significantly.

3. Numerical aspects. In this section, we first introduce the split-Bregman
algorithm for solving our model (2.6). After that we give a strategy based on the
K-means method to determine the thresholds automatically.

3.1. Solution of our segmentation model. The discrete setting of our model
(2.6) is:

min
g

{λ

2
‖f −Ag‖22 +

µ

2
‖∇g‖22 + ‖∇g‖1

}

, (3.1)

where ‖∇g‖1 :=
∑

i∈Ω

√

(∇xg)2i + (∇yg)2i is the classical discrete TV semi-norm.
Here we adopt the backward difference with periodic boundary condition to approxi-
mate the discrete gradient operator ∇, i.e. for the first row of g, we define:

(∇xg)i =

{

g(1, 1)− g(1, n), i = 1,

g(1, i)− g(1, i− 1), i = 2, · · · , n,

where n is the number of pixels of the first row of g and g(1, i) represents the ith
pixel of the first row of g . Similarly, we can define ∇y. As (3.1) is convex, it can
be solved by many methods such as the alternating direction method of multipliers
which is convergent and is well-suited to distributed convex optimization, see [4, 20]
and references therein. Specifically, its variant, the split-Bregman algorithm [23], is
used widely to solve a very broad class of L1 regularization problems. We can also
use the Chambolle-Pock method [11, 35, 26] which provides convergence rate. In
the following, we derive the split-Bregman algorithm of solving (3.1). Clearly the
algorithm converges, since our model (3.1) is a kind of convex regularization problem,
see [4, 20, 23] for more details of the convergence analysis.

Set dx = ∇xg and dy = ∇yg in (3.1), and this yields the constrained problem:

min
g

{λ

2
‖f −Ag‖22 +

µ

2
‖∇g‖22 + ‖(dx, dy)‖1

}

, s.t. dx = ∇xg and dy = ∇yg.
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Using 2-norm to weakly enforce the above constraints, it becomes:

min
g,dx,dy

{λ

2
‖f −Ag‖22 +

µ

2
‖∇g‖22 + ‖(dx, dy)‖1 +

σ

2
‖dx −∇xg‖

2
2 +

σ

2
‖dy −∇yg‖

2
2

}

.

Applying the split-Bregman iteration to strictly enforce the constraints, we have at
step (k + 1),

(gk+1, dk+1
x , dk+1

y ) = arg min
g,dx,dy

{λ

2
‖f −Ag‖22 +

µ

2
‖∇g‖22 + ‖(dx, dy)‖1

+
σ

2
‖dx −∇xg − bkx‖

2
2 +

σ

2
‖dy −∇yg − bky‖

2
2

}

,

(3.2)

bk+1
x = bkx + (∇xg

k+1 − dk+1
x ), bk+1

y = bky + (∇yg
k+1 − dk+1

y ). (3.3)

The minimization (3.2) can be solved effectively by minimizing with respect to g

and (dx, dy) alternatively. Hence we need to solve the following two minimization
subproblems:

gk+1 = argmin
g

{λ

2
‖f −Ag‖22 +

µ

2
‖∇g‖22 +

σ

2
‖dkx −∇xg − bkx‖

2
2

+
σ

2
‖dky −∇yg − bky‖

2
2

}

, (3.4)

(dk+1
x , dk+1

y ) = arg min
dx,dy

{

‖(dx, dy)‖1 +
σ

2
‖dx −∇xg

k+1 − bkx‖
2
2

+
σ

2
‖dy −∇yg

k+1 − bky‖
2
2

}

. (3.5)

Since the right hand side of (3.4) is differentiable, gk+1 satisfies the following
optimality condition:

(λA∗A− (µ+ σ)∆)g = λA∗f + σ∇T
x (d

k
x − bkx) + σ∇T

y (d
k
y − bky), (3.6)

where A∗ is the conjugate transpose of A and ∆ = −(∇T
x∇x + ∇T

y ∇y). Since
Ker(A)

⋂

Ker(∆) = {0}, the matrix [λA∗A− (µ+ σ)∆] is positive definite and hence
is invertible. Using the Gauss-Seidel method in [23] or the Fast Fourier Transforms
to diagonalize the circulant matrices A and ∆ (see [15]), equation (3.6) can be solved
efficiently. For problem (3.5), it can be solved explicitly using a generalized shrinkage
formula [23] as follows:

dk+1
x = max

(

sk −
1

σ
, 0

)

skx
sk

, dk+1
y = max

(

sk −
1

σ
, 0

)

sky

sk
, (3.7)

where skx = ∇xg
k+1 + bkx, s

k
y = ∇yg

k+1 + bky and sk =
√

(skx)
2 + (sky)

2. The following

algorithm summarizes the procedure of solving our minimization problem (3.1).

Algorithm 1: Solving (3.1) by the split-Bregman algorithm

1. Initialize: g0 = f, d0x = d0y = b0x = b0y = 0.

2. Do k = 0, 1, . . . , until ‖gk−gk+1‖F

‖gk+1‖F
< ǫ

(a) Compute gk+1 by solving (3.6).
(b) Compute dk+1

x and dk+1
y by the shrinkage formula (3.7).

(c) Update bk+1
x and bk+1

y by the formula (3.3).
3. Output: g.
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3.2. Determining the thresholds. As mentioned before, our segmentation
result is obtained by thresholding the solution g of (3.1) with proper threshold(s) ρ.
For example, for two-phase segmentation, one may choose ρ to be the mean value of
g, and then use this ρ to threshold g into two phases. Or the user can try different
values of ρ’s to get the best result. Note that there is no need to recompute the image
g when we change ρ. We just threshold the image g with the new ρ to get a new
binary image and obtain the corresponding boundary using for example the contour
command in Matlab.

In case one wants to choose the thresholds automatically, here we discuss how to
choose them using the K-means method [25, 27, 32]. To standardize the discussions,
we begin by normalizing the pixel values of g to [0,1]. We do this by using the
linear-stretch formula:

ḡ =
g − gmin

gmax − gmin
, (3.8)

where gmax and gmin represent maximum and minimum of g respectively.
The K-means method is a very efficient method to classify a given set into K

clusters, with K specified in advance. Suppose we want to segment ḡ intoK segments,
K ≥ 2. We use the K-means method to classify the set of pixels values of ḡ into K

clusters. Let the mean value of each cluster be ρ̂1, ρ̂2, · · · , ρ̂K , and without loss of
generality, let ρ̂1 ≤ ρ̂2 ≤ · · · ≤ ρ̂K . Then we define the (K − 1) thresholds as:

ρi =
ρ̂i + ρ̂i+1

2
, i = 1, 2, . . . ,K − 1. (3.9)

The ith phase of ḡ, 1 ≤ i ≤ K, is then given by {x ∈ Ω : ρi−1 < ḡ(x) ≤ ρi}. To
obtain the boundary of the ith phase, we set pixels in the ith phase to 1 and all the
other pixels to zero; then we invoke the command contour in Matlab. Again we
emphasize that if we change the thresholds, there is no need to recompute g or ḡ.

4. Experimental results. In this section, we compare our segmentation model
(3.1) with the two-phase segmentation methods in [14, 17, 43] and the multiphase
segmentation methods in [28, 38, 44]. Methods [14] and [17] use TV and framelets
regularization terms respectively; therefore, we can compare the performance of these
two different regularization approaches with ours. Methods [28, 38, 43, 44] are effective
segmentation methods proposed recently. The codes we used are provided by the
authors. Apart from some default settings, like the maximum number of iterations,
the parameters in the codes are chosen by trial and error to give the best results of
the respective methods.

For two-phase segmentation, we use ρM , ρ1 and ρU to denote the thresholds we
used in the test. They represent respectively the mean of the normalized image ḡ given
in (3.8), the threshold obtained by K-means given in (3.9), and a threshold chosen
by us. For multiphase segmentation, we use the thresholds ρi’s defined in (3.9). The
tolerance ǫ and the step size σ used in the split-Bregman algorithm in (3.2) were
fixed to be 10−4 and 2 respectively. The parameters λ, µ are chosen empirically. All
the results were tested on a MacBook with 2.4 GHz processor and 4GB RAM. The
boundaries of all the results are shown with color and superimposed on the given
images.

4.1. Two-phase segmentation. Example 1: Anti-mass image. Figure 4.1(a) is
the given image. Figures 4.1(b)–(d) are the results of methods [14, 17, 43] respectively.
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Figure 4.1(e) is our smooth solution g from Algorithm 1 using parameters λ = 3 and
µ = 1, see (3.1). Figures 4.1(f)–(i) are the segmentation results on the normalized ḡ

(see (3.8)) with thresholds ρM = 0.1898, ρ1 = 0.2669 and ρU = 0.1, 0.2 respectively.
Note that ρM and ρ1 are computed automatically. From the results, we see that our
method can reveal different meaningful features in the image by choosing different ρ’s;
and this can be done without recomputing g. In contrast, for the methods [14, 17, 43],
one will need to solve the minimization models again if one wants to adjust the
parameters to obtain different features in the image.

(a) given image (b) Chan-Vese [14] (c) Dong et al. [17]

(d) Yuan et al. [43] (e) our solution g (f) ρM = 0.1898

(g) ρ1 = 0.2669 (h) ρU = 0.1 (i) ρU = 0.2

Fig. 4.1. Anti-mass image segmentation. (a): given 384 × 480 image; (b)–(d): results of
methods [14], [17] and [43] respectively; (e): our smooth solution g; (f)–(i): our segmentation
results using thresholds ρM = 0.1898, ρ1 = 0.2669, ρU = 0.1 and 0.2 respectively.

Example 2: Tubular image. Figure 4.2(a) is a given Magnetic Resonance Angiog-
raphy kidney image [21]. The boundaries of the vessels are blurry and vague so that
they are hard to be detected. Figure 4.2(e) is the solution g from Algorithm 1 using
λ = 20 and µ = 1. Figures 4.2(f)–(h) are our segmentation results with thresholds
ρM = 0.1760, ρ1 = 0.4019 and ρU = 0.2 respectively. By comparing our results with
the results from methods [14, 17, 43] in Figures 4.2(b)–(d), we see that our method
can better detect and connect the blood vessels. Recently, we proposed a tight-frame
method specifically for segmenting vessels [8]. Here we give the result of this method
in Figure 4.2(i). We see that it is comparable to our method.

Example 3: Image with high noise. In Figures 4.3(a) and (b), we give the clean
and the noisy images respectively. The noise we added is high: Gaussian noise with
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(a) given image (b) Chan-Vese [14] (c) Dong et al. [17]

(d) Yuan et al. [43] (e) our solution g (f) ρM = 0.1760

(g) ρ1 = 0.4019 (h) ρU = 0.2 (i) Cai et al. [8]

Fig. 4.2. Kidney vascular system segmentation. (a): given 256 × 256 image; (b)–(d): results
of methods [14], [17] and [43] respectively; (e): our solution g; (f)–(h): our segmentation of results
using thresholds ρM = 0.1760, ρ1 = 0.4019 and ρU = 0.2 respectively; (i) result of method [8].

mean 0.6 and variance 0.25. Figures 4.3(c)–(e) give the results of methods [14, 17,
43] on the noisy image respectively. We see that method [17], which uses tight-
frame regularization, recovers these objects better than method [14], which uses TV
regularization; and that method [43] fails completely. Figure 4.3(f) is our solution g

when λ = 4 and µ = 1. Figures 4.3(g)–(i) are the segmentation results with thresholds
ρM = 0.8308, ρ1 = 0.6371 and ρU = 0.7 respectively. Clearly, our results are all good
and comparable to Figure 4.3(d). However, our method is much faster (see Table 4.1
below). Notice that the differences between our results (g)–(i) are small, indicating
that our method is robust with respect to the threshold.

Example 4: Blurry and noisy image. To illustrate the robustness of our method
with respect to the threshold, we tested our method on two blurry images: Figure
4.4 with motion blur and Figure 4.5 with Gaussian blur respectively. For the motion
blur, the motion is vertical and the filter size is 15. For the Gaussian blur, the filter
used is of size [15, 15] with standard deviation 15. For both images, we added a
Gaussian noise with mean 10−3 and variance 2× 10−3. Figures 4.4 (f) and 4.5 (f) are
our solutions g obtained by using λ = 100 and µ = 1. From Figures 4.4(c)–(e) and
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(a) clean image (b) given noisy image (c) Chan-Vese [14]

(d) Dong et al. [17] (e) Yuan et al. [43] (f) our solution g

(g) ρM = 0.8308 (h) ρ1 = 0.6371 (i) ρU = 0.7

Fig. 4.3. Noisy image segmentation. (a): clean 128× 128 image; (b): given noisy image; (c)–
(e): results of methods [14], [17] and [43] respectively; (f): our solution g; (g)–(i): our segmentation
results using thresholds ρM = 0.8308, ρ1 = 0.6371 and ρU = 0.7 respectively.

4.5(c)–(e), which are the results of methods [14, 17, 43], we see that all of them are
not good. More precisely, methods [14, 17] give incorrect boundaries (linking the ring
and the horseshoe objects together) while method [43] misses a large portion of the
objects. In contrast, our boundary recovers the shapes of the objects very well, see
Figures 4.4(g)–(i) and 4.5(g)–(i).

Table 4.1 gives the CPU time comparison of the methods. We see that our
method is second only to the two-phase continuous max-flow method in [43]. But
from Examples 1–4, we see that our method gives much better segmentation results
than the method in [43]. We remark that for the examples we tested, the framelet
method in [17] did not converge within the maximum number of iterations (300) using
the given tolerance 10−3 specified in the code.

4.2. Multiphase segmentation. Example 5: Three-phase image. Figure 4.6(a)
is the given image and Figures 4.6(b)–(d) are the three-phase segmentation results
by methods [28, 38, 44]. Figure 4.6(e) is our solution g obtained with λ = 30 and
µ = 0.1. Figures 4.6(g)–(i) are the boundaries of the three phases obtained from ḡ
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(a) clean image (b) given blurred image (c) Chan-Vese [14]

(d) Dong et al. [17] (e) Yuan et al. [43] (f) our solution g

(g) ρM = 0.7661 (h) ρ1 = 0.5048 (i) ρU = 0.6

Fig. 4.4. Segmentation of motion blurred image. (a): clean 128×128 image; (b): given blurred
and noisy image; (c)–(e): results of methods [14], [17] and [43] respectively; (f): our solution g;
(g)–(i): our results using thresholds ρM = 0.7661, ρ1 = 0.5048 and ρU = 0.6 respectively.

Table 4.1

Iteration numbers and CPU time in second for two-phase segmentation.

Chan-Vese [14] Dong [17] Yuan [43] Our method
Example iter. time iter. time iter. time iter. time
Figure 4.1 1000 263.73 300 83.82 64 6.01 172 18.38
Figure 4.2 1000 76.62 300 32.17 18 0.37 115 3.03
Figure 4.3 1000 23.42 300 10.18 108 0.42 63 0.49
Figure 4.4 1300 28.19 300 10.18 20 0.09 52 1.13
Figure 4.5 1500 31.78 300 10.18 24 0.10 65 1.21

(defined in (3.8)) using thresholds ρ1 = 0.1929 and ρ2 = 0.6009 which are computed
automatically by the K-means method (3.9). Figure 4.6(f) is a trinary representation
of the three phases by using the mean value of each phase to represent that phase. We
see that all results are good except the result by method [44] (Figure 4.6(d)) which
separates the cloud in the lower right corner into two parts. We emphasize that for
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(a) clean image (b) given blurred image (c) Chan-Vese [14]

(d) Dong et al. [17] (e) Yuan et al. [43] (f) our solution g

(g) ρM = 0.7324 (h) ρ1 = 0.5033 (i) ρU = 0.6

Fig. 4.5. Segmentation of Gaussian blurred image. (a): clean 128 × 128 image; (b): given
blurred and noisy image; (c)–(e): results of methods [14], [17] and [43] respectively; (f): our solution
g; (g)–(i): our results using thresholds ρM = 0.7324, ρ1 = 0.5033 and ρU = 0.6 respectively.

our method, we do not need to determine the number of phases K at the beginning.
We can modify K after obtaining g, and compute the thresholds {ρi}

K−1
i=1 by using

(3.9) to segment g into K segments. This is not the case for methods [28, 44] where
one has to specify K before minimizing their problems. Moreover, we found in our
tests that method [28] is sensitive to initialization where different initializations may
give quite different results.

Example 6: Four-phase noisy image. Figures 4.7(a) and (b) give the clean and
the noisy images (Gaussian noise with zero mean and variance 0.03). Figure 4.7(f)
is our solution g obtained by using λ = 4 and µ = 0.1. The thresholds computed
automatically by (3.9) are ρ1 = 0.1652, ρ2 = 0.4978, ρ3 = 0.8319. The corresponding
four phases segmentation is given in Figure 4.7(f). Figure 4.7(g) shows the four phases
of g by using the mean values of each phase to represent the phase, and Figures 4.7(h)–
(k) give the boundaries of the phases. We see that the four phases are almost recovered
exactly by our method, see Figure 4.7(g). In contrast, method [28] (Figure 4.7(c))
segments one phase incorrectly; method [38] (Figure 4.7(d)) fails; and method [44]
(Figure 4.7(e)) gives oscillation boundaries.
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(a) given image (b) Li et al. [28] (c) Sandberg et al. [38]

(d) Yuan et al. [44] (e) our solution g (f) 3 phases from g

(g) first phase (h) second phase (i) third phase

Fig. 4.6. Three-phase segmentation. (a): given 125 × 150 image; (b)–(d): results of
methods [28], [38] and [44] respectively; (e): our solution g; (f): three phases using thresholds
ρ1 = 0.1929, ρ2 = 0.6009; (g)–(i): boundary of each phase of g.

Example 7: Four-phase blurry and noisy image. The blurry and noisy image used
is given in Figure 4.7(b). The blur is motion blur where the motion is vertical and the
filter size is 15. The noise is Gaussian noise with mean 10−3 and variance 2 × 10−3.
Figure 4.8(f) is our solution g obtained by using λ = 40 and µ = 1. The thresholds
from the K-means method (3.9) are ρ1 = 0.1704, ρ2 = 0.4971, ρ3 = 0.8248. Figure
4.8(g) gives the corresponding four phases, and Figures 4.8(h)–(k) give the boundaries
of the phases. We see that the four phases of the image are almost recovered exactly
by our method, see Figure 4.8(g). But from Figures 4.8(c)–(e), we see that the results
of all the other multiphase methods [28, 38, 44] are not good.

Table 4.2 gives the CPU time comparison of the methods. We see that our method
is the fastest. Note that method [44] is comparable to ours in time, but from Examples
5–7, we see that our method gives better segmentation. In fact, our model is based
on the Mumford-Shah model (1.1) which admits more high order information. But
methods [43, 44] are basically using constants to approximate regions. This may
explain why they fail in Figures 4.3 (e) and 4.6 (d), and give poor results in others
examples.
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(a) clean image (b) given noisy image

(c) Li et al. [28] (d) Sandberg et al. [38] (e) Yuan et al. [44]

1

1

1

1

(f) our solution g (g) four phases of g (h) first phase

2

2

2

3
3

3 3

4

(i) second phase (j) third phase (k) fourth phase

Fig. 4.7. Four-phase segmentation for noisy image. (a): clean 256 × 256 image; (b): given
noisy image; (c)–(e): results of methods [28], [38] and [44] respectively; (f): our solution g; (g):
four phases using thresholds ρ1 = 0.1652, ρ2 = 0.4978, ρ3 = 0.8319; (h)–(k) boundary of each phase
of g.

5. Conclusions. In this paper, we have proposed a convex segmentation model
based on the Mumford-Shah model. Our method first finds the unique smooth mini-
mizer by the split-Bregman algorithm [23], then uses thresholding strategy to segment
the image. Since our model (3.1) can be regarded as an image restoration model, our
method unifies the image processing works of image segmentation and image restora-
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(a) clean image (b) given blur and noisy image

(c) Li et al. [28] (d) Sandberg et al. [38] (e) Yuan et al. [44]

1

1

1

1

(f) our solution g (g) four phases of g (h) first phase

2

2

2

3
3

3 3

4

(i) second phase (j) third phase (k) fourth phase

Fig. 4.8. Four-phase segmentation for noisy and blurry image. (a): clean 256 × 256 image;
(b): given blurred and noisy image; (c)–(e): results of methods [28], [38] and [44] respectively; (f):
our solution g; (g): four phases using thresholds ρ1 = 0.1704, ρ2 = 0.4971, ρ3 = 0.8248; (h)–(k)
boundary of each phase of g.

tion. Furthermore, our method combines the two-phase and multiphase segmentation
into one single algorithm. In fact, one does not have to specify the phases before
finding the solution to the model. One can segment the solution into different phases
by choosing proper thresholds after the solution is obtained. We have introduced an
effective way based on the K-means method to choose the thresholds automatically.
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Table 4.2

Iteration numbers and CPU time in second for multiphase segmentation.

Li [28] Sandberg [38] Yuan [44] Our method
Example iter. time iter. time iter. time iter. time
Figure 4.6 100 1.56 2 3.15 32 0.58 62 0.57
Figure 4.7 100 7.64 12 90.59 134 14.51 112 3.04
Figure 4.8 100 7.26 13 93.79 57 5.82 78 2.90

The experimental results show that our method is very effective and robust for many
kinds of images, such as anti-mass, tubular, noisy, or blurry images.

Appendix I: Proof of Theorem 2.2. This proof basically follows the proof of
Theorem 2 in [12]. Using the co-area formula and noting that 0 ≤ u ≤ 1, we have
∫

Ω
|∇u| =

∫ 1

0
Per({x : u(x) > ρ})dρ. For the second term in (2.4), we proceed as

follows:
∫

Ω

{

λ(f − g1)
2 + µ|∇g1|

2 − λ(f − g2)
2 − µ|∇g2|

2
}

u(x)

=

∫

Ω

{

λ(f − g1)
2 + µ|∇g1|

2 − λ(f − g2)
2 − µ|∇g2|

2
}

∫ 1

0

1[0,u(x)](ρ)dρdx

=

∫ 1

0

∫

Ω

{

λ(f − g1)
2 + µ|∇g1|

2 − λ(f − g2)
2 − µ|∇g2|

2
}

1[0,u(x)](ρ)dxdρ

=

∫ 1

0

∫

Ω∩{x:u(x)>ρ}

{

λ(f − g1)
2 + µ|∇g1|

2 − λ(f − g2)
2 − µ|∇g2|

2
}

dxdρ

=

∫ 1

0

∫

Ω∩{x:u(x)>ρ}

{

λ(f − g1)
2 + µ|∇g1|

2
}

dxdρ− C

+

∫ 1

0

∫

Ω∩{x:u(x)>ρ}c

{

λ(f − g2)
2 + µ|∇g2|

2
}

dxdρ,

where C =
∫

Ω

{

λ(f−g2)
2+µ|∇g2|

2
}

dx is independent of u. Set Σ(ρ) = {x : u(x) > ρ}
and Γ(ρ) = ∂Σ(ρ), we have

∫

Ω

|∇u|+
1

2

∫

Ω

{

λ(f − g1)
2 + µ|∇g1|

2 − λ(f − g2)
2 − µ|∇g2|

2
}

u(x) (5.1)

=

∫ 1

0

Per(Σ(ρ))dρ +
1

2

∫ 1

0

∫

Σ(ρ)\Γ(ρ)

{

λ(f − g1)
2 + µ|∇g1|

2
}

dxdρ

+
1

2

∫ 1

0

∫

Ω\Σ(ρ)

{

λ(f − g2)
2 + µ|∇g2|

2
}

dxdρ−
C

2

=

∫ 1

0

E∗
MS(Σ(ρ), g1, g2)dρ−

C

2
,

where E∗
MS(Σ(ρ), g1, g2) is given in (2.1). Hence, if u(x) is a minimizer of the convex

problem in (5.1), then the set Σ(ρ) has to be the minimizer of the energy E∗
MS(·, g1, g2)

for a.e. ρ ∈ [0, 1].

Appendix II: Proof of Theorem 2.4. Recall that E(g) is defined in (2.6).
First we prove that 0 ≤ infg E(g) < ∞. Indeed, the left side is obvious. Moreover, if
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we choose g0 = 0, we get:

inf
g
E(g) ≤ E(g0) =

λ

2

∫

Ω

f2dx < ∞.

Thus the minimal value of E(g) must exist.
I) Existence: Note that W 1,2(Ω) is a reflective Banach space, and E(g) is convex

and lower semi-continuous. Using Proposition 1.2 in [18], we just need to prove
that E(g) is coercive over W 1,2(Ω). For any g ∈ W 1,2(Ω), obviously ‖∇g‖L2(Ω) =

(
∫

Ω |∇g|2dx)
1
2 is bounded by

√

2
µ
E(g). In order to prove that E(g) is coercive over

W 1,2(Ω), we just have to prove that ‖g‖L2(Ω) can also be bounded by
√

E(g). Using
the Poincaré inequality on W 1,2(Ω), see [19], we have:

‖g − gΩ‖L2(Ω) ≤ CΩ‖∇g‖L2(Ω) ≤ CΩ

√

2

µ
E(g), (5.2)

where CΩ is a positive constant and gΩ = 1
|Ω|

∫

Ω g(x)dx. Moreover,

gΩ · ‖A1‖L2(Ω) ≤ ‖f −Ag‖L2(Ω) + ‖f −A(g − gΩ)‖L2(Ω)

≤

√

2

λ
E(g) + ‖f‖L2(Ω) + ‖A‖ · ‖g − gΩ‖L2(Ω)

≤ ‖f‖L2(Ω) +

(

√

2

λ
+ CΩ‖A‖

√

2

µ

)

√

E(g). (5.3)

By the assumption Ker(A)
⋂

Ker(∇) = {0}, we know that ‖A1‖L2(Ω) is nonzero.

Thus gΩ is bounded by a constant plus
√

E(g) times a constant. Since

‖g‖L2(Ω) ≤ ‖gΩ‖2 + ‖g − gΩ‖2,

using (5.2) and (5.3), ‖g‖L2(Ω) can also be bounded by a constant plus
√

E(g) times

a constant. Hence ‖g‖W 1,2(Ω) is bounded by a constant plus
√

E(g) times a constant.
This means that E(g) is coercive.

II) Uniqueness: We borrow the idea in [45]. Suppose g∗1 and g∗2 are both mini-
mizers of E(g). Since E(g) is convex, for any θ ∈ (0, 1) we have:

θE∗(g∗1) + (1− θ)E(g∗2) = E(θg∗1 + (1− θ)g∗2). (5.4)

Note that each term of E(g) in (2.6) is convex; especially, the first two terms of E(g)
are strictly convex with respect to Ag and ∇g respectively. Therefore (5.4) implies
that the following two equalities hold:

θλ

2

∫

Ω

(f −Ag∗1)
2dx+

(1− θ)λ

2

∫

Ω

(f −Ag∗2)
2dx =

λ

2

∫

Ω

(

f −A(θg∗1 + (1− θ)g∗2)
)2
dx,

θµ

2

∫

Ω

|∇g∗1 |
2dx+

(1 − θ)µ

2

∫

Ω

|∇g∗2 |
2dx =

µ

2

∫

Ω

|∇(θg∗1 + (1− θ)g∗2)|
2dx.

We thus have Ag∗1 = Ag∗2 and ∇g∗1 = ∇g∗2 . By the assumption Ker(A)
⋂

Ker(∇) =
{0}, we conclude that g∗1 − g∗2 = 0.

18



REFERENCES

[1] L. Ambrosio and V. Tortorelli, Approximation of functionals depending on jumps by elliptic
functionals via Γ-convergence, Comm. Pure Appl. Math., 43 (1990), pp. 999–1036.

[2] E. Bae, J. Yuan, and X. Tai, Simultaneous convex optimization of regions and region param-
eters in image segmentation models, UCLA CAM Report 11–83, 2011.

[3] L. Bar, T. Chan, G. Chung, M. Jung, N. Kiryati, R. Mohieddine, N. Sochen, and L.A.

Vese, Mumford and Shah model and its applications to image segmentation and image
restoration, Handbook of Mathematical Imaging, Springer, 2011, pp. 1095–1157.

[4] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and
statistical learning via the alternating direction method of multipliers, Found. and Trends
Mach. Learning, 3(2010), pp. 1–122.

[5] K. Bredies, K. Kunisch, and T. Pock, Total generalized variation, SIAM J. Imaging Sciences,
3(2010), pp. 492–526 .

[6] X. Bresson, S. Esedoglu, P. Vandergheynst, J. Thiran, and S. Osher, Fast global mini-
mization of the active contour/snake model, J. Math. Imaging Vision, 28(2007), pp. 151–
167.

[7] E. Brown, T. Chan, and X. Bresson, A convex relaxation method for a class of vector-
valued minimization problems with applications to Mumford-Shah segmentation, UCLA
CAM Report 10–43, 2010.

[8] X. Cai, R. Chan, S. Morigi, and F. Sgallari, Framelet-based algorithm for segmentation of
tubular structures, SSVM(2011), LNCS, 6667(2012), pp. 411–422.

[9] A. Chambolle, Image segmentation by variational methods: Mumford and Shah functional
and the discrete approximations, SIAM J. Appl. Math., 55(1995), pp. 827–863.

[10] A. Chambolle, Finite differences discretization of the Mumford-Shah functional, Math. Mod-
elling and Numerical Analysis, 33(1999), pp. 261–288.

[11] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with
applications to imaging, CMAP, Ecole Polytechnique, Tech. Rep. R.I. 685, 2010.

[12] T. Chan, S. Esedoglu, and M. Nikolova, Algorithms for finding global minimizers of image
segmentation and denoising models, SIAM J. Appl. Math, 66(2006), pp. 1632–1648.

[13] T. Chan, A. Marquina, and P. Mulet, High-order total variation-based image restoration,
SIAM Journal on Scientific Computing, 22(2000), pp. 503–516.

[14] T. Chan and L.A. Vese, Active contours without edges, IEEE Trans. Image Process., 10(2001),
pp. 266–277.

[15] R. Chan and M. Ng, Conjugate gradient method for Toeplitz systems, SIAM Review, 38(1996),
pp. 427–482.

[16] G. David, Singular sets of minimizers for the Mumford-Shah functional (progress in mathe-
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