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Abstract. In this paper, a new variational model for restoring blurred images with multiplica-
tive noise is proposed. Based on the statistical property of the noise, a quadratic penalty function
technique is utilized in order to obtain a strictly convex model under a mild condition, which guaran-
tees the uniqueness of the solution and the stabilization of the algorithm. For solving the new convex
variational model, a primal-dual method is proposed and its convergence is studied. The paper ends
with a report on numerical tests for the simultaneous deblurring and denoising of images subject to
multiplicative noise. A comparison with other methods is provided as well.
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1. Introduction. In real applications, degradation effects are unavoidable dur-
ing image acquisition and transmission. For instance, the photos produced by astro-
nomical telescopes are often blurred by atmospheric turbulence. In order to benefit
further image processing tasks, image deblurring and denoising continue to attract
the attentions in the applied mathematics community. Based on the imaging sys-
tems, various kinds of noise were considered, such as additive Gaussian noise, impulse
noise, and Poisson noise, etc. We refer the reader to [14,17,28,33,37,38] and references
therein for an overview of those noise models and the restoration methods. However,
multiplicative noise is a different noise model, and it commonly appears in synthetic
aperture radar (SAR), ultrasound imaging, laser images, and so on [5, 6, 32, 36]. For
a mathematical description of such degradations, suppose that an image û is a real
function defined on Ω, a connected bounded open subset of R2 with compact Lipschitz
boundary, i.e., û : Ω → R. The degraded image f is given by:

f = (Aû)η, (1.1)

where A ∈ L(L2(Ω)) is a known linear and continuous blurring operator, and η repre-
sents multiplicative noise with mean 1. Here, f is blurred by the blurring operator A,
and then is corrupted by the multiplicative noise η. Usually we assume that f > 0. In
this paper, we concentrate on the assumption that η follows a Gamma distribution,
which commonly occurs in SAR. The deblurring process under noise is well-known to
be an ill-posed problem in the sense of Hadamard [25]. Since the degraded image only
provides partial restrictions on the original data, there exist various solutions which
can match the observed degraded image under the given blurring operator. Hence,
in order to utilize variational method, the main challenge in image restoration is to
design a reasonable and easily solved optimization problem based on the degradation
model and the prior information on the original image.

Until the past decade, a few variational methods have been proposed to handle
the restoration problem with the multiplicative noise. Given the statistical properties
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of the multiplicative noise η, in [32] the recovery of the image û was based on solving
the following constrained optimization problem:

inf
u∈S(Ω)

∫
Ω
|Du|

subject to:
∫
Ω

f
Au dx = 1∫

Ω
( f
Au − 1)2 dx = θ2,

(1.2)

where θ2 denotes the variance of η, S(Ω) = {v ∈ BV (Ω) : v > 0}, BV (Ω) is the space
of functions of bounded variation (see [4] or below), and the total variation (TV) of u
is utilized as the objective function in order to preserve significant edges in images. In
(1.2), only basic statistical properties, the mean and the variance, of the noise η are
considered, which somehow limits the restored results. For this reason, based on the
Bayes rule and Gamma distribution with mean 1, by using a maximum a posteriori
(MAP) estimator Aubert and Aujol [3] introduced a variational model as follows:

inf
u∈S(Ω)

∫
Ω

(
log(Au) +

f

Au

)
dx+ λ

∫
Ω

|Du|, (1.3)

where the TV of u is utilized as the regularization term, and λ > 0 is the regularization
parameter which controls the trade-off between a good fit of f and a smoothness
requirement due to the TV regularization. Since both (1.2) and (1.3) are non-convex,
the gradient projection algorithms proposed in [32] and [3] may stick at some local
minimizers, and the restoration results strongly rely on the initialization and the
numerical schemes.

To overcome this problem and provide a convex model, in [26] Huang et al. in-
troduced an auxiliary variable z = log u in (1.3), and in [34] Shi et al. modified (1.3)
by adding a quadratic term. With convex models, these two methods both provide
better restored results than the method proposed in [3], and they are independent
of the initial estimation. In addition, Steidl et al. combined the I-divergence as the
data fidelity term with the TV regularization or the nonlocal means to remove the
multiplicative Gamma noise [35]. In [18], the denoising problem was handled by us-
ing L1 fidelity term on frame coefficients. In [29], the approach with spatially varying
regularization parameters in the AA model was considered in order to restore more
texture details of the denoised image. However, all of the above methods only work
on the multiplicative noise removal issue, and it is still an open question to extend
them to the deblurring case.

In this paper, we focus on the restoration of images that are simultaneously
blurred and also corrupted by multiplicative noise. Since the non-convexity of the
model (1.3) proposed in [3] causes uniqueness problem and the issue of convergence
of the numerical algorithm, we introduce a new convex model by adding a quadratic
penalty term based on the statistical properties of the multiplicative Gamma noise.
Furthermore, we study the existence and uniqueness of a solution to the new model
on the continuous, i.e. functional space, level. Here, we still use the TV regularization
in order to preserving edges during the reconstruction. Evidently, it can be readily
extended to some other modern regularization terms such as non-local TV [21] or
framelet approach [9]. The minimization problem in our method is solved by the
primal-dual algorithm proposed in [12, 19] instead of the gradient projection method
in [3,32]. The numerical results in this paper show that our method has the potential
to outperform the other approaches in multiplicative noise removal with deblurring
simultaneously.

2



The rest of the paper is organized as follows. In Section 2, we briefly review the
total variation regularization and provides its main properties. In Section 3, based on
the statistical properties of the multiplicative Gamma noise we propose a new convex
model for denoising, and study its existence and uniqueness of a solution with several
other properties. Then in Section 4 we extend the model and those properties to
the case of denoising and deblurring simultaneously. Section 5 gives the primal-dual
algorithm for solving our restoration model based on the work proposed in [12]. The
numerical results shown in Section 6 demonstrate the affectivity of the new method.
Finally, conclusions are drawn in Section 7.

2. Review of Total Variation Regularization. In order to preserve signifi-
cant edges in images, in their seminal work [33] Rudin et al. introduced total varia-
tion regularization into image restoration. In this approach, they recover the image
in BV (Ω), which denotes the space of functions of bounded variation, i.e. u ∈ BV (Ω)
iff u ∈ L1(Ω) and the BV-seminorm:

∫
Ω

|Du| := sup

{∫
Ω

u · div(ξ(x))dx
∣∣ξ ∈ C∞

0 (Ω,R2), ∥ξ∥L∞(Ω,R2) ≤ 1

}
, (2.1)

is finite. The space BV (Ω) endowed with the norm ∥u∥BV = ∥u∥L1 +
∫
Ω
|Du| is a

Banach space. If u ∈ BV (Ω), the distributional derivative Du is a bounded Radon
measure and the above quantity defined in (2.1) corresponds to the total variation
(TV). Based on the compactness of BV (Ω), in two-dimensional case we have the
embedding BV (Ω) ↪→ Lp(Ω) for 1 ≤ p ≤ 2 which are compact for p < 2. See [1,4,13]
for more details.

3. A Convex Multiplicative Denoising Model. To propose a convex mul-
tiplicative denoising model, we start from the multiplicative Gamma noise. Suppose
that the random variable η follows Gamma distribution, i.e., its probability density
function is:

pη(x; θ,K) =
1

θKΓ(K)
xK−1e−

x
θ for x ≥ 0, (3.1)

where Γ is the usual Gamma-function, θ and K denote the scale and shape parameters
in the Gamma distribution, respectively. Furthermore, the mean of η is Kθ, and the
variance of η is Kθ2, see [24]. As multiplicative noise, in general we assume that the
mean of η equals 1, then we have that Kθ = 1 and its variance is 1

K . Now, set a
random variable Y = 1√

η . Inspired by the central limit theorem [30], it is interesting

to approximate Y by the Gaussian distribution, and we have the following results.

Proposition 3.1. Suppose that the random variable η is of Gamma distribution
with mean 1. Set Y = 1√

η . Then the means of Y and Y 2 are:

E(Y ) =

√
KΓ(K − 1/2)

Γ(K)
and E(Y 2) =

K

K − 1
,

respectively.
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Proof. Based on the probability density function of η shown in (3.1) and Kθ = 1,
we obtain:

E(Y ) =

∫ +∞

0

1√
x

1

θKΓ(K)
xK−1e−

x
θ dx

=
Γ(K − 1/2)√

θΓ(K)

∫ +∞

0

1

θK−1/2Γ(K − 1/2)
xK−3/2e−

x
θ dx

=
Γ(K − 1/2)√

θΓ(K)

∫ +∞

0

pη(x; θ,K − 1/2) dx

=

√
KΓ(K − 1/2)

Γ(K)
.

Similarly, we have:

E(Y 2) =

∫ +∞

0

1

x

1

θKΓ(K)
xK−1e−

x
θ dx

=
Γ(K − 1)

θΓ(K)

∫ +∞

0

1

θK−1Γ(K − 1)
xK−2e−

x
θ dx

=
K

K − 1
.

According to the properties of Gamma function [2] and Proposition 3.1, if K is

large, the mean of Y , E(Y ), approximates to
√

K
K− 1

2

, and is close to 1. Since generally

the value of K is unknown, we use 1 as the approximation of E(Y ). In our numerical
practice this setting turns out to yield reliable results. Furthermore, considering the
denoising case, that is, A is the identity operator, from the degradation model (1.1),

we obtain that Y = 1√
η =

√
u
f , which follows the Gaussian distribution approximately.

In order to reduce the influence on the restored results from noise, we propose the
following multiplicative denoising model:

inf
u∈S̄(Ω)

E(u) :=

∫
Ω

(
log u+

f

u

)
dx+ α

∫
Ω

(√
u

f
− 1

)2

dx+ λ

∫
Ω

|Du|, (3.2)

where the second term is associated with the variance of
√

u
f , and its parameter α > 0.

In addition, we set:

S̄(Ω) := {v ∈ BV (Ω) : v ≥ 0},

which is closed and convex, and we define log 0 = −∞ and 1
0 = +∞. Note that as

f > 0, we need not define 0
0 .

3.1. Existence and uniqueness of a solution. For the existence and unique-
ness of a solution to (3.2), we start by discussing the convexity of the model. Since
the quadratic penalty term provides extra convexity, we can prove that E(u) in (3.2)
is convex, if the parameter α satisfies certain condition.

Proposition 3.2. If α ≥ 2
√
6

9 , then the model (3.2) is strictly convex.
Proof. With t ∈ R+ and a fixed α, we define a function g as:

g(t) := log t+
1

t
+ α(

√
t− 1)2.
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Easily, we have that the second order derivative of g satisfies:

g′′(t) = −t−2 + 2t−3 +
α

2
t−

3
2 .

A direct computation shows that the function g′′ reaches to its unique minimum,
3
√
6α−4
63 , at t = 6. Hence, if α ≥ 2

√
6

9 , we have g′′(t) ≥ 0, i.e., g is convex. Furthermore,

since the function g has only one minimizer, g is strictly convex when α ≥ 2
√
6

9 .

Setting t = u(x)
f(x) for each x ∈ Ω, we obtain the strict convexity of the first two

terms in (3.2). Based on the convexity of the TV regularization, we deduce that E(u)

in (3.2) is strictly convex, if α ≥ 2
√
6

9 . Since the feasible set S̄(Ω) is convex, the
assertion is an immediate consequence.

Based on Proposition 3.2, we see that with a suitable α, (3.2) is a convex ap-
proximation of the non-convex model (1.3) with A as the identity operator. Now, we
argue the existence and uniqueness of a solution to (3.2) and the maximum principle.

Theorem 3.3. Let f be in L∞(Ω) with infΩ f > 0, then the model (3.2) has a
solution u∗ in BV (Ω) satisfying:

0 < inf
Ω

f ≤ u∗ ≤ sup
Ω

f.

Moreover, if α ≥ 2
√
6

9 , the solution of (3.2) is unique.
Proof. Set c1 := infΩ f , c2 := supΩ f , and let:

E0(u) :=

∫
Ω

(
log u+

f

u

)
dx+ α

∫
Ω

(√
u

f
− 1

)2

dx.

Noting that E(u) in (3.2) is bounded from below, we can choose a minimizing sequence
{un : n = 1, 2, · · · } ∈ S̄(Ω).

Since for each fixed x ∈ Ω, the real function on R+:

g(t) := log t+
f(x)

t
+ α

(√
t

f(x)
− 1

)2

,

is decreasing if t ∈ (0, f(x)) and increasing if t ∈ (f(x),+∞), one always has
g(min(t,M)) ≤ g(t) with M ≥ f(x). Hence, we obtain that:

E0(inf(u, c2)) ≤ E0(u).

Combining with
∫
Ω
|D inf(u, c2)| ≤

∫
Ω
|Du|, see Lemma 1 in section 4.3 of [27], we

have E(inf(u, c2)) ≤ E(u). In the same way we are able to get E(sup(u, c1)) ≤ E(u).
Hence, we can assume that 0 < c1 ≤ un ≤ c2, which implies that un is bounded in
L1(Ω).

As {un} is a minimizing sequence, we know that E(un) is bounded. Furthermore,∫
Ω
|Dun| is bounded, and {un} is bounded in BV (Ω). Therefore, there exists a sub-

sequence {unk
} which converges strongly in L1(Ω) to some u∗ ∈ BV (Ω), and {Dunk

}
converges weakly as a measure to Du∗ [4]. Since S̄(Ω) is closed and convex, by the
lower semi-continuity of the total variation and Fatou’s lemma, we get that u∗ is a
solution of the model (3.2), and necessarily 0 < c1 ≤ u∗ ≤ c2.

Moreover,if α ≥ 2
√
6

9 , uniqueness follows directly from the strict convexity of the
function E.
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In [3] a comparison principle was given concerning the model (1.3). With the
α-term in (3.2), the comparison principle is satisfied with certain condition on α.

Proposition 3.4. Let f1 and f2 be in L∞(Ω) with a1 > 0 and a2 > 0, where
a1 = infΩ f1 and a2 = infΩ f2. Further, set b1 = supΩ f1 and b2 = supΩ f2. Assume
f1 < f2. Suppose u∗

1 (resp. u∗
2) is a solution of (3.2) with f = f1 (resp. f = f2).

Then when α < a1a2

b1b2−a1a2
, we have u1 ≤ u2.

Proof. Referring to [3], we define u ∧ v = inf(u, v) and u ∨ v = sup(u, v). Since
u∗
i is a minimizer of E(u) defined in (3.2) with fi with respect to i = 1, 2, we have:

E(u∗
1 ∧ u∗

2) + E(u∗
1 ∨ u∗

2) ≥ E(u∗
1) + E(u∗

2).

Based on the result
∫
Ω
|D(u∗

1∧u∗
2)|+

∫
Ω
|D(u∗

1∨u∗
2)| ≤

∫
Ω
|Du∗

1|+
∫
Ω
|Du∗

2| in [10,22],
we get:

∫
Ω

log(u∗
1 ∧ u∗

2) +
f1

u∗
1 ∧ u∗

2

+ α

(√
u∗
1 ∧ u∗

2

f1
− 1

)2
 dx

+

∫
Ω

log(u∗
1 ∨ u∗

2) +
f2

u∗
1 ∨ u∗

2

+ α

(√
u∗
1 ∨ u∗

2

f2
− 1

)2
 dx

≥
∫
Ω

log u∗
1 +

f1
u∗
1

+ α

(√
u∗
1

f1
− 1

)2
 dx

+

∫
Ω

log u∗
2 +

f2
u∗
2

+ α

(√
u∗
2

f2
− 1

)2
 dx.

Writing Ω = {u∗
1 > u∗

2} ∪ {u∗
1 ≤ u∗

2}, we easily deduce that:∫
{u∗

1>u∗
2}
(f1 − f2)(u

∗
1 − u∗

2)

[
1

u∗
1u

∗
2

+
α

f1f2
− 2α

√
f1f2(

√
f1 +

√
f2)(

√
u∗
1 +

√
u∗
2)

]
≥ 0.

Based on Theorem 3.3, we have 0 < a1 ≤ u∗
1 ≤ b1 and 0 < a2 ≤ u∗

2 ≤ b2, which imply
1

u∗
1u

∗
2
≥ 1

b1b2
and:

2
√
f1f2(

√
f1 +

√
f2)(

√
u∗
1 +

√
u∗
2)
− 1

f1f2
≤ 2

√
a1a2(

√
a1 +

√
a2)2

− 1

b1b2
≤ 1

a1a2
− 1

b1b2
.

Hence, we find that:

1

u∗
1u

∗
2

+
α

f1f2
− 2α

√
f1f2(

√
f1 +

√
f2)(

√
u∗
1 +

√
u∗
2)

> 0,

as soon as α < a1a2

b1b2−a1a2
. Taking account of f1 < f2, in this case we deduce that

{u∗
1 > u∗

2} has a zero Lebesgue measure, i.e. u∗
1 ≤ u∗

2 a.e. in Ω.

4. The Extension to Simultaneous Deblurring and Denoising. The model
(3.2) is based on the statistical properties of Gamma distribution, and is specifically
devoted to the multiplicative Gamma noise removal. In this section, we extend it to
the simultaneous deblurring and denoising case, i.e., to restore the image û in (1.1)
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with the blurring operator A. The restoration is processed by solving the optimization
problem:

inf
u∈S̄(Ω)

EA(u) :=

∫
Ω

(
logAu+

f

Au

)
dx+ α

∫
Ω

(√
Au

f
− 1

)2

dx+ λ

∫
Ω

|Du|, (4.1)

where A ∈ L(L2(Ω)). As a blurring operator, we assume that A is a nonnegative
operator, i.e., A ≥ 0 in short. Then we have Au ≥ 0 with u ∈ S̄(Ω). Similar as
Proposition 3.2, since A is linear, we can readily establish the following convexity
result.

Proposition 4.1. If α ≥ 2
√
6

9 , then the model (4.1) is convex.

4.1. Existence of a solution. Based on the properties of total variation and
the space of bounded variation functions, we prove the existence and uniqueness of a
solution to (4.1).

Theorem 4.2. Recall that Ω ⊂ R2 is a connected bounded set with compact
Lipschitz boundary. Suppose that A ∈ L(L2(Ω)) is nonnegative, and it does not
annihilate constant functions, i.e., A1 ̸= 0. Let f be in L∞(Ω) with infΩ f > 0, then

the model (4.1) admits a solution u∗. Moreover, if α ≥ 2
√
6

9 and A is injective, then
the solution is unique.

Proof. We note that EA is bounded from below, then choose a minimizing se-
quence {un} ∈ S̄(Ω) for (4.1). So {

∫
Ω
|Dun|} with n = 1, 2, · · · is bounded. Using the

Poincaré inequality (see Remark 3.50, [1]), we obtain:

∥un −mΩ(un)∥2 ≤ C

∫
Ω

|D(un −mΩ(un))| = C

∫
Ω

|Dun|, (4.2)

where mΩ(un) =
1
|Ω|
∫
Ω
un dx with |Ω| denotes the measure of Ω, and C is a constant.

Recalling that Ω is bounded, it follows that ∥un −mΩ(un)∥2 is bounded for each n.
Since A ∈ L(L2(Ω)) is continuous, {A(un−mΩ(un))} must be bounded in L2(Ω) and
in L1(Ω).

On the other hand, according to the boundedness ofEA(un), for each n
(√

Aun

f − 1
)2

is bounded in L1(Ω), which implies that
∥∥∥Aun

f

∥∥∥
1
is bounded, then we obtain that

∥Aun∥1 is bounded. Moreover, we have:

|mΩ(un)| · ∥A1∥1 = ∥A(un −mΩ(un))−Aun∥1 ≤ ∥A(un −mΩ(un))∥1 + ∥Aun∥1.

Hence, |mΩ(un)| · ∥A1∥1 is bounded. Thanks to A1 ̸= 0, we obtain that mΩ(un) is
uniformly bounded. Together with the boundedness of {un−mΩ(un)}, it leads to the
boundedness of {un} in L2(Ω) and thus in L1(Ω). Since S̄(Ω) is closed and convex,
{un} is bounded in S̄(Ω) as well.

Therefore, there exists a subsequence {unk
} which converges weakly in L2(Ω) to

some u∗ ∈ L2(Ω), and {Dunk
} converges weakly as a measure to Du∗. Due to the

continuity of the linear operator A, one must have that {Aunk
} converges weakly to

Au∗ in L2(Ω). Then based on the lower semi-continuity of the total variation and
Fatou’s lemma, we obtain that u∗ is a solution of the model (4.1).

Based on Proposition 4.1, when α ≥ 2
√
6

9 , the model (4.1) is convex. Furthermore,
if A is injective, (4.1) is strictly convex, then its minimizer has to be unique.

Remark 4.3. In the proof of Theorem 4.2, because of the α-term, we obtain that
the sequence {Aun} is bounded in L1(Ω). Thus, when α = 0, that is, in the case of the
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model (1.3), it is difficult to get the same result, and in [3] the existence of a solution
to (1.3) is still an open question.

According to the constraint in (4.1), we find that its minimizer is nonnegative.
Further, we have the following result.

Proposition 4.4. Suppose that u∗ is the solution of (4.1). For any 0 < ϵ < 1,
there exists a constant C1 such that:

|{x ∈ Ω : (Au∗)(x) ≤ ϵf(x)}| ≤ ϵ

1 + ϵ log ϵ

(
C1 +

∫
Ω

log f dx

)
.

Proof. Suppose that C1 is the minimal value of (4.1). Set w = Au∗

f , then we have:

|Ω|+
∫
Ω

log f dx ≤
∫
Ω

(
logw +

1

w

)
dx ≤ C1 +

∫
Ω

log f dx,

where we have used the fact that for each t > 0, log t+ 1
t ≥ 1. Moreover, if t ≤ ϵ < 1,

then log t+ 1
t ≥ log ϵ+ 1

ϵ , we then get that:

|{x ∈ Ω : w(x) ≤ ϵ}| ≤ ϵ

1 + ϵ log ϵ

(
C1 +

∫
Ω

log f dx

)
.

Then based on w = Au∗

f , we obtain the assertion.

As a consequence, |{x ∈ Ω : (Au∗)(x) = 0}| = 0, i.e., Au∗ is positive almost
everywhere. Especially, in the discrete situation, Au∗ is strictly positive.

4.2. Bias correction. Let us write down the classical ROF model proposed
in [33]:

inf
u∈BV (Ω)

∫
Ω

1

2
(Au− f)2 dx+ λ

∫
Ω

|Du|, (4.3)

where λ > 0 is the regularization parameter, and f is degraded image with Gaussian
noise. Readily, under mild condition, the solution of (4.3) exists. Denote u∗ as a solu-
tion of (4.3) and recall that mΩ(u) denotes the mean value of u over Ω. Through the
theoretical analysis in [11, 13], we have that the mean value of the solution preserves
automatically, i.e., mΩ(Au∗) = mΩ(f).

In [18], a bias correction step for multiplicative noise removal is proposed. Evi-
dently, for our new model (4.1) which addresses delurring with denoising simultane-
ously, we need some substantial investigation.

Proposition 4.5. Suppose that A1 = 1. Let u∗ be a solution of (4.1), then the
following properties hold true:

(i) ∫
Ω

[
f

(Au∗)2
− α

(
1

f
− 1√

f ·Au∗

)]
dx =

∫
Ω

1

Au∗ dx.

(ii) If there exists a solution in the case of α = 0, then we have,∫
Ω

1

f
dx ≥

∫
Ω

1

Au∗ dx.

Proof.
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(i) We define a function with single nonnegative variable t ∈ R:

e(t) :=

∫
Ω

(
logA(u∗ + t) +

f

A(u∗ + t)

)
dx+ α

∫
Ω

(√
A(u∗ + t)

f
− 1

)2

dx

+ λ

∫
Ω

|D(u∗ + t)|.

Concerning A1 = 1, we necessarily have:

e(t) =

∫
Ω

(
log(Au∗ + t) +

f

Au∗ + t

)
dx+α

∫
Ω

(√
Au∗ + t

f
− 1

)2

dx+λ

∫
Ω

|Du∗|.

Since t = 0 is a (local) minimizer of e(t), we have e′(0) = 0, which leads to:∫
Ω

[
1

Au∗ − f

(Au∗)2
+ α

(
1

f
− 1√

f ·Au∗

)]
dx = 0.

(ii) With α = 0 the result in (i) becomes:∫
Ω

f

(Au∗)2
dx =

∫
Ω

1

Au∗ dx.

Moreover, according to Hölder’s inequality and the nonnegativity of Au∗ and
f , we obtain: ∫

Ω

f

(Au∗)2
dx ·

∫
Ω

1

f
dx ≥

(∫
Ω

1

Au∗

)2

dx.

Combining both, we have: ∫
Ω

1

f
dx ≥

∫
Ω

1

Au∗ dx.

Proposition 4.5 indicates that in general the mean of the original image is not
automatically preserved under the model (4.1). In order to reduce the influence from
the bias and keep the restored image as the same scale as f , we can improve the model
(4.1) as:

inf
{u∈S̄(Ω):mΩ(u)=mΩ(f)}

∫
Ω

(
logAu+

f

Au

)
dx+ α

∫
Ω

(√
Au

f
− 1

)2

dx+ λ

∫
Ω

|Du|.

(4.4)
It is straightforward to show that the feasible set {u ∈ S̄(Ω) : mΩ(u) = mΩ(f)} is
closed and convex, then the existence and uniqueness of a solution to (4.4) are easily
obtained by extending Theorem 4.2.

In (4.4), we implicitly suppose that:

mΩ(u) ≈ mΩ(Au), mΩ((Au)η) ≈ mΩ(Au).

Under some independence conditions, the above assumptions are theoretically rooted
in statistics. Moreover, in the practical simulations, we find that these two assump-
tions provide rather reasonable results.
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5. Primal-Dual Algorithm. Since the model (4.4) is convex, there are many
methods that can be extended to solve the minimization problem in (4.4). For exam-
ple, the alternating direction method [8,20], which is convergent and is well-suited to
large-scale convex problems, and its variant, the split-Bregman algorithm [23], which
is widely used to solve the L1 regularization problems such as the TV regularization.
In this section, we introduce the primal-dual algorithm to solve the minimization
problem in (4.4). It extends earlier work in [12, 19,31].

We focus on the discrete version of (4.4). For the sake of simplicity, we keep
the same notations from the continuous context. Then the discrete model reads as
follows:

min
u∈X

EA(u) := ⟨logAu, 1⟩+
⟨

f

Au
, 1

⟩
+ α

∥∥∥∥∥
√

Au

f
− 1

∥∥∥∥∥
2

2

+ λ∥∇u∥1, (5.1)

where X = {v ∈ Rn : vi ≥ 0 for i = 1, · · · , n, and
∑n

i=1 vi =
∑n

i=1 fi}, n is the
number of pixels in the images, f ∈ X is obtained from a two-dimensional pixel-array
by concatenation in the usual columnwise fashion, and A ∈ Rn×n. Moreover, the
vector inner product ⟨u, v⟩ =

∑n
i=1 uivi is used, and ∥ · ∥2 denotes the l2-vector-norm.

The discrete gradient operator ∇ ∈ R2n×n is defined by:

∇v =

[
∇xv
∇yv

]
,

for v ∈ Rn with ∇x, ∇y ∈ Rn×n corresponding to the discrete derivative in the x-
direction and y-direction, respectively. In our numerics, ∇x and ∇y are obtained by
applying finite difference approximations for the derivatives with symmetric boundary
conditions in the respective coordinate directions. In addition, ∥∇v∥1 denotes the
discrete total variation of v, which is defined as:

∥∇v∥1 =
n∑

i=1

√
(∇xv)2i + (∇yv)2i .

Define the function G : X → R as:

G(u) := ⟨logAu, 1⟩+
⟨

f

Au
, 1

⟩
+ α

∥∥∥∥∥
√

Au

f
− 1

∥∥∥∥∥
2

2

.

Based on the definition of total variation in Section 2, we give the primal-dual formu-
lation of (5.1):

max
p∈Y

min
u∈X

G(u)− λ⟨u,div p⟩, (5.2)

where Y = {q ∈ R2n : ∥q∥∞ ≤ 1}, ∥q∥∞ = maxi∈{1,··· ,n}

∣∣∣√q2i + q2i+n

∣∣∣ denotes the

l∞-vector-norm, p is the dual variable, and the divergence operator div = −∇⊤.
This is a generic saddle-point problem, and we can apply the primal-dual method

proposed in [12] to solve the above optimization task. The algorithm is summarized
as follows.

Algorithm for solving the model (5.1)

10



1: Fixed σ, τ . Initialize u0 = f , ū0 = f and p0 = (0, · · · , 0)⊤ ∈ R2n.
2: Calculate pk+1 and uk+1 from:

pk+1 =argmax
p∈Y

λ⟨ūk,div p⟩ − 1

2σ
∥p− pk∥22, (5.3)

uk+1 =arg min
u∈X

G(u)− λ⟨u,div pk+1⟩+ 1

2τ
∥u− uk∥22, (5.4)

ūk+1 =2uk+1 − uk. (5.5)

3: Stop; or set k := k + 1 and go to step 2.

In order to apply the algorithm to (5.1), the main questions are how to solve the
optimization problems in (5.3) and (5.4). For (5.3), the solution can be easily given
by:

pk+1
i = π1

(
λσ(∇ūk)i + pki

)
, for i = 1, · · · , 2n, (5.6)

where π1 is the projector onto the l2-normed unit ball, i.e.,

π1(qi) =
qi

max(1, |qi|)
and π1(qn+i) =

qn+i

max(1, |qi|)
, for i = 1, · · · , n,

with |qi| =
√
q2i + q2i+n.

In addition, since the minimization problem in (5.4) is strictly convex, it can be
solved efficiently by the Newton method following with one projection step,

uk
i :=

∑n
j=1 fj∑n

j=1 max(uk
j , 0)

max(uk
i , 0), for i = 1, · · · , n, (5.7)

to ensure that uk is nonnegative and preserves the mean of f . This projection is
inspired by Prop. 2.1 of [15] or Prop. 12 of [16].

Based on Theorem 1 in [12], we end this section by the convergence properties of
our algorithm. The proof refers to [12].

Proposition 5.1. The iterates (uk, pk) of our algorithm converge to a saddle
point of (5.2) provided that στλ2∥∇∥2 < 1.

According to the result ∥∇∥2 ≤ 8 with the unit spacing size between pixels in [10],
we only need στλ2 < 1

8 in order to keep the convergent condition. In our numerical
practice, we simply set σ = 3 and τ = 3, which in most cases ensures the convergence
of the algorithm.

6. Numerical Results. In this section we provide numerical results to study
the behavior of our method with respect to its image restoration capabilities and CPU-
time consumption. Here, we compare our method with the one proposed in [3] (AA
method) by solving (1.3) and the one in [32] (RLO method) by solving (1.2), and both
of them are able to remove the multiplicative noise and deblurring simultaneously.
Since in the AA method and the RLO method the mean of the original image is
not preserved, in order to compare fairly, we add the same projection step as in (5.7)
before outputting the results. For illustrations, the results for the 256-by-256 gray level
images “Phantom”, “Cameraman” and “Parrot”, are presented, see the original test
images in Figure 6.1. The quality of the restoration results is compared quantitatively
by means of the peak signal-to-noise ration (PSNR) [7], which is a widely used image
quality assessment measure. In addition, all simulations listed here are run in Matlab
7.12 (R2011a) on a PC equipped with 2.40GHz CPU and 4G RAM memory.
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(a) (b) (c)

Fig. 6.1. Original images. (a) “Phantom”, (b) “Cameraman”, (c) “Parrot”.

K = 10 K = 6
Images Methods PSNR(dB) ♯Iter Time(s) PSNR(dB) ♯Iter Time(s)

AA 29.44 3000 30.39 27.20 3000 30.73
Phantom RLO 29.37 3000 36.92 27.08 3000 37.77

Ours 30.44 132 6.09 28.05 174 8.24
AA 24.38 3000 31.09 23.20 3000 33.64

Cameraman RLO 24.31 3000 37.99 23.11 3000 37.88
Ours 25.01 162 8.50 23.85 168 11.82
AA 24.53 3000 27.86 23.23 3000 29.14

Parrot RLO 24.28 3000 36.60 22.96 3000 39.61
Ours 25.47 179 9.19 24.21 219 11.70

Table 6.1
The comparisons of PSNR values, the number of iterations and CPU-time in seconds by

different methods for denoising case.

6.1. Image denoising. Although our method is proposed as a method for the
simultaneous deblurring and denoising of images subject to multiplicative noise, here
we show that it also provides very good results for noise removal only. In this example,
the test images are corrupted by multiplicative noise with K = 10 and K = 6,
respectively. The results are shown in Figure 6.2-6.4. For the AA method and the
RLO method, we use the time-marching algorithm to solve the minimization models
as proposed in [3,32]. We set the step size as 0.1 in order to obtain a stable iterative
procedure. The algorithms are stopped when the maximum number of iterations is
reached. In addition, after many experiments with different λ-values in the model
(1.3) and (1.2), the one with the best PSNR are presented here. In our method, we
stop the iterative procedure as soon as the value of the objective function has no big
relative decrease, i.e.,

E(uk)− E(uk+1)

E(uk)
< ε.

In denoising case, we set ε = 5× 10−4.
From Figure 6.2 and 6.3, we can see that all three methods are monotonic de-

creasing, and our method performs best visually with the least iterations. Note that
in the restored results by the AA method and the RLO method, much more noise re-
mains comparing with the ones by our method; see, e.g., white boundary of phantom

12
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Fig. 6.2. Results of different methods when removing the multiplicative noise with K = 10. Row
1 and 3: restored images with different methods. Row 2 and 4: the plots of the objective function
values versus iterations. (a) Noisy images, (b) AA method (row 1: λ = 0.1; row 3: λ = 0.14), (c)
RLO method (row 1: λ = 0.12; row 3: λ = 0.14), (d) our method (row 1: λ = 0.11 and α = 8; row
3: λ = 0.12 and α = 16).

and the background in “Cameraman”. Moreover, the contrasts of the details by the
AA method and the RLO method are noticeably reduced because of oversmoothing
during noise removal, however, our method preserves more details. In this respect
observe the tripod and the trousers in “Cameraman”, especially when recovering the
images corrupted by high-level noise. In order to compare the capability of recovering
details, in Figure 6.4 we show the results for denoising the image “Parrot” which in-
cludes more details. Comparing the textures surrounding the eye and the background
of the parrot, we can clearly see that our method suppress noise successfully while
preserving significantly more details.

For the comparison of the performance quantitatively and the computational
efficiency, in Table 6.1 we list the PSNR values of the restored results, the number
of the iterations and the CPU-times. We observe that the PSNR values from our
method are more than 0.65 dB higher than others. Due to a large step size, with
much less iterations our method reaches to the stopping rule and also spends much
less CPU-times. However, in order to obtain a stable iterative procedure, the AA
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Fig. 6.3. Results of different methods when removing the multiplicative noise with K = 6. Row
1 and 3: restored images with different methods. Row 2 and 4: the plots of the objective function
values versus iterations. (a) Noisy images, (b) AA method (row 1: λ = 0.13; row 3: λ = 0.2), (c)
RLO method (row 1: λ = 0.13; row 3: λ = 0.2), (d) our method (row 1: λ = 0.11 and α = 4; row
3: λ = 0.16 and α = 16).

method and the RLO method have to use a small step size, and then need more than
10 times more iterations to provide the results with the best PSNR.

6.2. Image deblurring and denoising. In this section, we consider to restore
the noisy blurred images. In our experiments, we test two blurring operators, which
are motion blur with length 5 and angle 30, and Gaussian blur with a window size 7×7
and a standard deviation of 2. Further, after blurred, the test images are corrupted
by multiplicative noise with K = 10.

In Figure 6.5-6.7, we show the degraded images and the restored results by all
three methods, and Table 6.2 lists the PSNR values, the number of iterations, and
the CPU-times. In contrast to the results by the AA method and the RLO method,
our method also performs best both visually and quantitatively, and it preserves
more details; see, e.g., the tripod in “Cameraman” and the texture near the eye in
“Parrot”. Due to the blurring, more iterations are needed in all three methods, but
our method still provides the best results in much less iterations with the least CPU-
times. In a conclusion, our method turns out to be more efficient and outperforms
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(a) (b) (c) (d)

Fig. 6.4. Restored images by different methods for restoring the image “Parrot” with different
noise level (row 1: with K = 10; row 2: with K = 6). (a) Noisy images, (b) AA method (row 1:
λ = 0.14; row 2: λ = 0.18), (c) RLO method (row 1: λ = 0.14; row 2: λ = 0.18), (d) our method
(row 1: λ = 0.11 and α = 16; row 2: λ = 0.12 and α = 8).

Motion Blur Gaussian Blur

Images Methods PSNR(dB) ♯Iter Time(s) PSNR(dB) ♯Iter Time(s)

AA 22.58 8000 223.36 21.12 104 289.23
Phantom RLO 22.28 7000 216.14 20.81 104 311.00

Ours 24.68 182 84.78 22.59 331 152.85
AA 22.36 8000 224.71 21.36 104 298.34

Cameraman RLO 22.28 8000 248.93 21.31 104 313.67
Ours 22.99 200 91.93 21.85 293 119.09
AA 22.35 9000 263.82 21.35 104 296.58

Parrot RLO 22.15 9000 285.12 21.23 104 317.76
Ours 23.18 216 100.86 22.08 223 103.92

Table 6.2
The comparisons of PSNR values, the number of iterations and CPU-time in seconds by

different methods for deblurring with denoising.

the other methods which are able to deblurring while removing multiplicative noise
simultaneously.

7. Conclusion. In this paper, we focus on variational method to restore the
blurred images corrupted by multiplicative Gamma noise. The classical model for this
task is non-convex and thus revokes numerical difficulty. In order to overcome this
difficulty, based on the analysis of the statistical properties of multiplicative Gamma
noise, we propose a new variational model by adding an extra quadratic term. The
new model is proved that under certain condition it is strictly convex, even for the
deblurring case. Some important properties of the new model, such as the maximal
principle and bias correction, are studied in the paper. Further, a primal-dual method
is extended to solve our convex model, and the convergent condition is given. The
numerical results show that the new method outperforms several recently proposed
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Fig. 6.5. Results of different methods when restoring the degraded images corrupted by motion
blur and then multiplicative noise with K = 10. Row 1 and 3: degraded and restored images with
different methods. Row 2 and 4: the plots of the objective function values versus iterations. (a)
Degraded images, (b) AA method (row 1: λ = 0.05; row 3: λ = 0.06), (c) RLO method (row 1:
λ = 0.05; row 3: λ = 0.06), (d) our method (row 1: λ = 0.09 and α = 16; row 3: λ = 0.09 and
α = 16).

methods with respect to image restoration capabilities and CPU-time consumption.
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Fig. 6.6. Results of different methods when restoring the degraded images corrupted by Gaussian
blur and then multiplicative noise with K = 10. Row 1 and 3: degraded and restored images with
different methods. Row 2 and 4: the plots of the objective function values versus iterations. (a)
Degraded images, (b) AA method (row 1: λ = 0.03; row 3: λ = 0.05), (c) RLO method (row 1:
λ = 0.03; row 3: λ = 0.05), (d) our method (row 1: λ = 0.07 and α = 16; row 3: λ = 0.07 and
α = 16).
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