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Abstract. In this paper we present a general framework for solving partial differential equations
on manifolds represented by meshless points, i.e., point clouds, without parametrization or connection
information. Our method is based on a local approximation of the manifold, such as using least
squares, in a local intrinsic coordinate system constructed by local principal component analysis
(PCA) using K-nearest neighbors (KNN). Once the local reconstruction is available, differential
operators on the manifold can be approximated discretely. The framework extends to manifolds
of any dimension. The complexity of our method scales well with the total number of points and
the true dimension of the manifold (not the embedded dimension). The numerical algorithms, error
analysis, and test examples are presented.
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1. Introduction. Point cloud data is defined simply as a set of points with no
specific ordering and connection. In 2D or 3D, points are defined by their X, Y and
X, Y, Z coordinates respectively. Point cloud is the most basic and intrinsic way for
sampling and representation of geometric objects or information in high dimensions.
For examples, 3D point cloud can be easily obtained through scanner for shape model-
ing, images can be thought as points in high dimensions, etc. In this work we present
a general framework for solving partial differential equations (PDE) on manifolds
represented by point clouds. The motivation comes from many problems in science
and engineering such as surfactant distribution along a moving interface in fluids [1],
surface diffusion in sintering [2], in biology [3, 4], in image processing [5, 6, 7, 8] and
etc. Another important application is in data science, where the task of visualizing,
extracting information, analyzing and inferring underlying structure from data sam-
ples is ubiquitous. In many cases, point cloud data resides or is believed to reside
on or near a low-dimensional manifold in a much higher dimensional ambient space.
Although there are useful tools, such as the principal component analysis (PCA), to
provide local dimension and linear structure approximation, it is very challenging to
extract global information and structure in general. Mathematically and computa-
tionally one can obtain a lot of intrinsic information, such as manifold learning, by
studying the behavior of differential equations, such as heat equation, or eigenvalue
problem for differential operators, such as Laplace-Beltrami operator, on manifolds
[9, 10, 11, 12, 13, 14, 15, 16, 17].

There are different approaches to solve PDEs on manifold depending on how the
manifold is represented. For a nicely parametrized manifold the natural way is to
express differential operators in the parameter space and then discretize the result-
ing equations. [18] gives a decent tutorial and survey of methods for parameterizing
surfaces. However, it can be very difficult to construct a global parameterization for
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complicated surfaces and especially for high dimensional manifolds. For a nicely tri-
angulated manifold, one can discretize a PDE directly on the tirangulation, which can
be effective for certain classes of equations, such as for elliptic equations using stan-
dard finite element method. However, this approach could also have a few difficulties.
First, to get a nice triangulation can be difficult if not impossible when the dimension
of the manifold is three or higher. Second, it is difficult to define high order geometric
quantities, such as normal and curvature, accurately based on piecewise linear approx-
imation. These are discussed in [19, 20]. To avoid the difficulty of parametrization
or triangulation, an alternative is to use implicit representation, e.g., using level set
representation, which embeds the manifold as well as the differential equation defined
on the manifold into the ambient space. Then discretize the extended differential
equation in the ambient space using a Cartesian grid [20, 21, 22]. Similar in nature,
Ruuth et al. [23] proposed closest point method to solve PDEs on surfaces, which
uses a closest point representation of the underlying surface and embeds the surface
differential equations to the ambient space and then solve it using finite difference
method on a uniform Cartesian grid in a narrow tube around the manifold in the
ambient space. First, laying down a grid in a high dimensional ambient space and
performing computation on it can be very expensive, even though the true dimension
of the manifold may be low, e.g. manifold with high co-dimension. Also it is difficult
to incorporate adaptivity using Cartesian grid in general.

Since point cloud is the simplest and intrinsic way for sampling and representation
of manifold in practice, we propose a framework of solving PDEs directly on point
clouds without using parametrization, triangulation or grid, which can be difficult to
construct and may introduce artifacts. The key idea is that one can define differential
operators on manifold by local construction of the manifold, which is first proposed in
[24]. In another word, once we can construct a function as well as the manifold locally
in a common reference coordinate, we can differentiate the function with respect to
the metric of the underlying manifold simply using chain rule. So in our method,
we only need to use the K-nearest neighbor (KNN) points to define a local intrinsic
coordinate system using PCA and to construct the manifold and function locally using
least squares. Our method can handle manifold of any dimensions or co-dimensions in
the same way and the complexity scales well with the total number of sample points
and the real dimension of the manifold.

The paper is organized as follows. Section 2 gives some brief mathematical formu-
lations about differentiation on manifolds and moving least squares (MLS) method,
which will be used throughout the paper. In Section 3, we describe our approach to
approximate differential operators. Briefly, our approach consists of three main parts,
construction of local coordinate system, local approximation of surface and local ap-
proximation of function. In Section 4, we use our approximated differential operators
to solve PDEs directly on point clouds. How to handle boundary conditions for open
surfaces is also discussed. Numerical experiments in 3D and higher dimension spaces
are presented in Section 5. In Section 6, we give a brief summary. Finally, Appendix
A gives error estimates for MLS and Appendix B gives the connection between MLS
and a constrained quadratic optimization problem.

2. Mathematical formulations. Before explaining our idea of solving PDEs on
point clouds based on local approximation, we first briefly introduce some mathemat-
ical background and notation of differential geometry about derivatives on manifolds
and the MLS problem. They will be used throughout the rest of the paper.
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2.1. Derivatives on manifolds. For simplicity, we only consider two-dimensional
manifold in R3 and only briefly introduce definition of gradient and Laplace-Beltrami
(surface Laplacian). We refer [25] to readers for more details and definitions of the
derivatives for other dimensional manifolds.

Let M ⊂ R3 be a two-dimensional manifold and suppose it is parameterized by
(x1, x2). We can write the manifold as Γ(x1, x2)

.
= (X(x1, x2), Y (x1, x2), Z(x1, x2)),

the metric tensor G = [gij ] is given by gij = 〈Γxi
,Γxj

〉, where Γx1
= (Xx1

, Yx1
, Zx1

),
and Γx2

= (Xx2
, Yx2

, Zx2
). The tangent space TxM at x ∈ M is spanned by Γx1

(x)
and Γx2(x).

Let f ∈ C2(M). Under this parameterization, one has the gradient operator,
given by (see [25] page 102)

∇Mf = [Γx1 ,Γx2 ]G−1∇f =

(
g11 ∂f

∂x1
+ g12 ∂f

∂x2

)
Γx1 +

(
g21 ∂f

∂x1
+ g22 ∂f

∂x2

)
Γx2

(2.1)
where gij are the components of G−1, the inverse of the metric tensor G. And the
gradient ∇Mf(x) is a vector in the tangent space TxM.

The Laplace-Beltrami operator (surface Laplace) can be written as

∆Mf =

2∑
i,j=1

1
√
g

∂

∂xi

(
√
ggij

∂f

∂xj

)
(2.2)

where g = det(G).
Both the gradient ∇Mf and Laplace-Beltrami operator ∆Mf are geometric in-

trinsic, though the expression (2.1) and (2.2) depend on a local surface parameter-
ization. Keep this in mind, we will use this important property to introduce local
parameterization while the computation based on local parameterization is still geo-
metric intrinsic.

2.2. Moving least squares. Moving least squares (MLS) is a method of ap-
proximating functions by linear combination of certain basis functions, such as poly-
nomials, from a set of point samples using (weighted) least square formulation with
the origin positioned at a location depending on the point samples (moving). MLS
is a powerful tool for function approximation from scattered points. Compared to
standard interpolation, which can be viewed as a special case of least square approx-
imation where the degree of freedom matches the number of constraint from data,
although using more data points, the key advantages of MLS is its robustness with
respect to perturbations and extra degree of freedom that may be utilized to incor-
porate other desired structures. We briefly introduce MLS problem and its solution
here. A short introduction to MLS method can be found in [26]. We point out the
error estimates for MLS at the end of this sub-section. We refer the readers to [27]
and [28] for the approximation power of MLS. Error analysis is provided in Appendix
A. Also we recast the MLS problem as a constrained quadratic optimization problem
in Appendix B, from which we can add additional constraint to incorporate desired
properties of the continuous operator during discretization, such as requiring diag-
onal dominant which corresponds to maximal principle, in the resulting discretized
Laplace-Beltrami operator matrix.

We use polynomials for our MLS, like explained in [26]. Given K points located
at positions xk around point x in Rd where k ∈ [1, · · · ,K]. We wish to obtain a local
d-dimensional degree m polynomial fx(x) that approximates the given scaler values
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fk at points xk. We can compute such fx(x) by minimizing the following weighted
sum:

min
fx∈Πd

m

K∑
k=1

w(‖xk − x‖)‖fx(xk)− fk‖2 (2.3)

where Πd
m is the space of polynomials of total degree m in d-dimensions and w(·)

is some positive weight function. The above sum is weighted by w(dk) where dk =
‖xk − x‖ are the Euclidian distances between x and the position of data point xk.

Since Πd
m is shift invariant, we suggest taking the basis functions to be the mono-

mials shifted to x, which makes computations easy and clear. fx can then be written
as

fx(x) = b(x)T c(x) = b(x) · c(x) (2.4)

where b(x) is the polynomial basis vector, and c(x) = [c1, c2, · · · , cI ]T is the coef-

ficient vector to be determined by (2.3), I = (d+m)!
d!m! is the number of basis in Πd

m.

For example, b(x) =
[
1, x1 − x1, x2 − x2, (x1 − x1)2, (x1 − x1)(x2 − x2), (x2 − x2)2

]T
for Π2

2, bivariate (d = 2) degree 2 polynomial space. By taking partial derivatives
with respect to the unknown coefficients c1, c2, · · · , cI , we obtain a linear system of
equations and we can compute c(x) as

c(x) =

[
K∑
k=1

wkb(xk)b(xk)T

]−1 K∑
k=1

wkb(xk)fk (2.5)

where wk = w(‖xk − x‖) (details can be found in [26]). Suppose bi = (x − x)αi

with multi-index αi = (a1, a2, · · · , ad), that is bi = (x1 − x1)a1 · · · (xd − xd)ad , then
we can use αi!ci to approximate Dαif(x). A key point is that all the ci and hence
the approximation of Dαif(x) is a linear operation on fk if the neighboring points
xk are given. The local approximation error is of order O(hm+1−|αi|), where h =
maxk ‖xk−x‖. Actually one order higher super-convergence can be observed often in
practice due to error cancellation when points distribution has some symmetry. Both
error estimates and super-convergence are presented Appendix A.

3. Approximation of differential operators on point clouds. We explain
our approach of using local construction to approximate differential operators on
manifold, such as gradient ∇Mf and Laplace-Beltrami operator ∆Mf , numerically
for point clouds in this section. The main issue is how to compute derivatives with
respect to local metric. The key idea is simply based on chain rule, i.e., computing
the metric of the manifold and the derivatives of a function with respect to a reference
coordinates locally. Our method consists of three main parts. First we use PCA on
KNN to estimate local dimensions and construct a local coordinate system for both
tangent and normal spaces. In this coordinate system, the manifold can be param-
eterized in terms of the tangent space. We use MLS to construct the manifold and
compute the metric tensor gij = 〈Γxi ,Γxj 〉 in this coordinate system. Finally, we can
approximate differential operators on the manifold by using MLS approximation of a
function and its derivatives in the same coordinate system and then using formulas
like (2.1), (2.2). Again the key point is that the operation is linear in terms of the
values of the function at the neighboring points. Hence we construct a finite difference
scheme directly on point clouds. Actually we use the example of Laplace-Beltrami
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operator to show that we can design the finite difference scheme either based on MLS
or using a constrained quadratic optimization approach which guarantees both the
accuracy and that the resulting discretized Laplace-Beltrami operator satisfies the dis-
crete maximal principle. Also we will discuss how to incorporate boundary conditions
(both Dirichlet and Neumann) for open manifolds in Section 4. For simplicity, we
use two-dimensional manifold in R3 to illustrate our approach, it is straightforward
to generalize the approach to higher dimensions.

3.1. Local coordinate system. First we use local PCA to construct a local
coordinate system which is a direct sum of tangent space and normal space at each
point [29, 30]. Then we parametrize the manifold locally on the tangent space and then
use equations such as (2.1) and (2.2) to compute differential operators on manifold.
For example for a point cloud P = {pi|i = 1, 2, · · · , N} sampled from a smooth
two-dimensional manifoldM in R3, denote the indices set of the K-nearest-neighbors
(KNN) of each point pi ∈ P by N(i). Using the covariance matrix Pi of N(i), defined
by:

Pi =
∑

k∈N(i)

(pk − ci)
T (pk − ci) (3.1)

we can estimate some local geometric information near pi. Here, ci is the local
barycenter ci = 1

K

∑
k∈N(i) pk. The eigenvectors (ei1, e

i
2, e

i
3) of Pi form an orthogonal

frame associated with eigenvalues (λi1, λ
i
2, λ

i
3) with λi1 ≥ λi2 ≥ λi3 ≥ 0. The relative

size of the eigenvalues can reveal the true dimension of the manifold locally. The
eigenvectors corresponding to the small eigenvalues form the basis of the normal space.
In our example, for point cloud sampled from a smooth two-dimensional manifoldM
in R3 and if the sampling rate is fine enough to resolve the local features, we have
λi1 ≥ λi2 � λi3 ≥ 0. Hence (ei1, e

i
2) form the basis of the local tangent plane. In

another word, the plane that goes through ci and orthogonal to ei3 fits the KNN best
in terms of least squares. In our computation, pi is always taken as the origin of
the local coordinate system. In this way, we have defined a local coordinate system
〈pi; ei1, ei2, ei3〉 at each point in P . KNN of pi have local coordinates (xik, y

i
k, z

i
k), which

will be used for surface and function approximations.

3.2. Local approximation of manifold and the metric tensor. To compute
the differentiation on manifold one needs the metric tensor. Here we use the MLS
method (Section 2.2) to approximate the manifold in the local coordinate system
constructed above and then compute the local metric tensor at each point. Other
approximation methods can also be used in our approach.

In principle, one can use MLS to construct polynomials of any degree as long as
enough KNN are used. To compute the Laplace-Beltrami operator, which is a second
order differential operator, it suffices to construct quadratic polynomial through the
KNN at each point. Again, assuming the surface is dimension two, once a local
coordinate system for a point pi is constructed, a local degree two bivariate polynomial
zi(x, y) is approximated by minimizing the following weighted sum:∑

k∈N(i)

w(‖pk − pi‖)
(
zi(x

i
k, y

i
k)− zik

)2
(3.2)

where (xik, y
i
k, z

i
k) are local coordinates of point pk in the KNN of pi and w(·) is some

positive weight function. Γi = (x, y, zi(x, y)) is thus a smooth representation of the
surface near the point pi under local coordinate system 〈pi; ei1, ei2, ei3〉.
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Assume zi(x, y) = a1 + a2x+ a3y + a4x
2 + a5xy + a6y

2. The two tangent vector
basis are given by Γx(pi) = (1, 0, ∂zi∂x (0, 0)) = (1, 0, a2) and Γy(pi) = (0, 1, ∂zi∂y (0, 0)) =

(0, 1, a3), notice that we take pi as origin of the local coordinate system. Under such
parameterization, the metric tensor G(x) is some function of coefficients of zi, so is

its inverse G−1(x). For instance, g11(x) = 1+a2

1+a2+b2 , where a = a2 + 2a4x + a5y,

b = a3 + a5x+ 2a6y and (x, y, z) are local coordinates of x and g11(pi) =
1+a23

1+a22+a23
.

The gradient in local coordinate system is

∇Mus(pi) = (g11 ∂us
∂x

(pi) + g12 ∂us
∂y

(pi))Γx(pi) + (g21 ∂us
∂x

(pi) + g22 ∂us
∂y

(pi))Γy(pi).

(3.3)
To simplify notation, we use gij instead of gij(pi). For Laplace-Beltrami operator,
we can write ∆Mus(pi) as

∆Mus(pi) = A1
∂us
∂x

(pi) +A2
∂us
∂y

(pi) +A3
∂2us
∂x2

(pi) +A4
∂2us
∂x∂y

(pi) +A5
∂2us
∂y2

(pi)

(3.4)
where Aj ’s are obtained by expanding and simplifying equation (2.2) and they only
depend on coefficients of local surface approximation a2, a3, · · · , a6, which only depend
on relative locations of the KNN. Notice that terms in (3.3) gij , Γx and Γy and terms
in (3.4) Aj ’s are computed based on local approximation of the surface/manifold and
they all are independent of the involved function us.

3.3. Local approximation of function and its derivatives on manifold.
Now that the manifold is locally approximated, which can be viewed as a local
parametrization in tangent space, one can use MLS to locally approximate a function
us, which is defined on the manifold, and its derivatives in the local coordinate system.
Again we locally approximate us in the local coordinate system 〈pi; ei1, ei2, ei3〉 using
a degree two bivariate polynomial ui(x, y) near point pi by minimizing the following
weighted least squares sum:∑

k∈N(i)

w(‖pk − pi‖)
(
ui(x

i
k, y

i
k)− us(pk)

)2
(3.5)

Assume ui(x, y) = b1 + b2x + b3y + b4x
2 + b5xy + b6y

2, the surface gradient in
local coordinate system (3.3) becomes

∇Mus(pi) = (g11b2 + g12b3)Γx(pi) + (g21b2 + g22b3)Γy(pi) (3.6)

which is equivalent to

∇Mus(pi) = (g11b2 + g12b3)(ei1 + a2e
i
3) + (g21b2 + g22b3)(ei2 + a3e

i
3) (3.7)

Similarly for Laplace-Beltrami operator, we can write (3.4) as

∆Mus(pi) = A1b2 +A2b3 +A3(2b4) +A4b5 +A5(2b6) (3.8)

where Ai’s are obtained by expanding and simplifying equation (2.2) and they only
depend on coefficients of local surface approximate a2, a3, · · · , a6. Using Lemma A.2
in Appendix A, one can easily see the following Lemma.

Lemma 3.1. Let h denote the smallest radius such that the K-nearest neighbors
lie in a ball of such radius and centered at x, i.e., h = maxk ‖xk − x‖ then the ap-
proximation (3.7) and (3.8), which are based on MLS using polynomials of degree m,
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are of order O(hm) and O(hm−1) respectively.

We point out that super-convergence can be achieved by MLS in certain situa-
tions. More details can be found in Section 5 and Appendix A.

In general, given a point cloud P = {pi|i = 1, 2, · · · , N} with N points sampled
from a two-dimensional manifold in R3. We can represent a function us defined on
the manifold as a N -dimensional vector U = [u1, u2, · · · , uN ]

T
with ui = us(pi). All

the gij , eij and Aj are computed from local manifold approximation Γi. For bj , when
using (2.5) to solve (3.5), we can write bj computed from (3.5) as a linear function of
U as shown in (2.5), i.e., bj = BjU where Bj is some N -dimensional row vector, and
only points in the KNN of pi have nonzero coefficients. After all, we can discretize
surface gradient and Laplace-Beltrami operator as

∇Mus = [V1 V2 V3]U (3.9)

and

∆Mus = MU (3.10)

where V1, V2, V3 and M are N ×N matrices and these matrices are sparse.
Remark 1. Although the weight function in MLS does not affect the approxi-

mation order as shown in Lemma A.2 in Appendix A, however the stability can be
affected. For example, two popular weight functions used in MLS are Wendland func-
tion defined as

w(d) =

(
1− d

D

)4(
4d

D
+ 1

)
, (3.11)

which is well defined on the interval d ∈ [0, D] and w(0) = 1, w(D) = 0, w′(D) = 0
and w′′(D) = 0, and inverse of squared distance function 1/(d2 + ε2). These two
weight functions work fine for pretty uniform point clouds but may be unstable for
non-uniform ones. On the other hand, the special weight function

w(d) =

{
1 if d = 0
1/K if d 6= 0

(3.12)

introduced in [17] works for more general data set.
Remark 2. All the above formulations extend naturally to embedded manifolds

with high-codimensions. Using local PCA one can find the true dimension of the man-
ifold as well as the tangent and normal spaces. Local approximation of the manifold
and function defined on the manifold can be parametrized by the tangent space. For
example, assume a manifold of n dimension is embedded in Rd, n < d. Local PCA pro-
vides a local coordinate system (x1, . . . , xn, xn+1, . . . , xd), where x1, . . . , xn belong to
the tangent space and xn+1, . . . , xd belong to the normal space. One can construct a lo-
cal approximation of the manifold (x1, . . . , xn, xn+1(x1, . . . , xn), . . . , xd(x1, . . . , xn)) as
well as a local approximation of a function f defined on the manifold as f(x1, . . . , xn)
in the same coordinate system using MLS. Local metric gij = 〈Γxi ,Γxj 〉, i, j = 1, . . . , n
as well as differentiation of functions on the manifold can be approximated as before.
The complexity of our method scales well with the true dimension of the manifold
rather than the embedded dimension. We will show examples of solving PDEs on high
co-dimensional manifold in Section 5.
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3.4. Discretizations preserving structures of the PDE. One issue of using
MLS to approximate a function and its derivatives is that it only takes into account
local approximation error. When solving a PDE, one also needs to preserve certain
property of the differential operator after discretization. For examples, for an elliptic
or a parabolic PDE, such as Laplace equation or heat equation, maximum princi-
ple is a very important property that should be preserved after discretization, while
for hyperbolic PDE, information propagates along characteristics and hence upwind
scheme should be used. Below we give two concrete examples for designing such
discretizations.

3.4.1. Maximum principle preserving discretized Laplace-Beltrami op-
erator. Here we present a constrained optimization approach to approximate a func-
tion and its derivatives which can utilize the flexibility that there are more degrees
of freedom than constraints to enforce desired property in the discretization. We use
Laplace-Beltrami operator as an example to design a discretization that preserves the
maximal principle using constrained optimization. As shown in Appendix B, esti-
mates of partial derivatives of us can also be obtained from the following constrained
quadratic optimization problem: finding coefficients vector al ∈ RK for the approxi-
mation b̂l = aTl UN for l = 2, 3, · · · , 6 where b̂2, b̂3, b̂4, b̂5, b̂6 are estimates of ∂us

∂x (pi),
∂us

∂y (pi),
∂2us

∂x2 (pi),
∂2us

∂x∂y (pi),
∂2us

∂y2 (pi) respectively and UN = [us(xk)]
T
, k ∈ N(i) by

minimizing the quadratic form

Q =
1

2

∑
k∈N(i)

(
a

(l)
k

)2

w(‖pk − pi‖)
(3.13)

subject to the linear constraints∑
k∈N(i)

a
(l)
k bj(xk) = r

(l)
j for j = 1, 2, · · · , I (3.14)

where rl =
[
r

(l)
1 , r

(l)
2 , · · · , r(l)

I

]T
= αl!el and el is the l-th standard basis for RI .

For degree two bivariate polynomial, I = 6, b(x) =
[
1, x, y, x2, xy, y2

]T
, α1 = (0, 0),

α2 = (1, 0) α3 = (0, 1), α4 = (2, 0), α5 = (1, 1) and α6 = (0, 2). We call (3.14) as
“consistency constraint” (more details can be found in Appendix B).

To obtain estimates of ∂us

∂x (pi),
∂us

∂y (pi),
∂2us

∂x2 (pi),
∂2us

∂x∂y (pi) and ∂2us

∂y2 (pi), we can
either solve the MLS problem or solve the above constrained quadratic optimization
problem for l = 2, 3, · · · , 6. And the estimates from MLS are the same as those from
the above constrained quadratic optimization (more details in Appendix B). How-
ever, the constrained quadratic optimization formulation allows us to add additional
constraint to enforce extra property in the discretization. For example, one desirable
property for the discretized Laplace-Beltrami operator matrix M in (3.10) is diagonal
dominant, which is the discretized version of the maximum principle for Laplace-
Beltrami operator. Following [31] and section 6.5 of [32], we impose a sign restriction.

Using b̂l = aTl UN , expression (3.8) becomes

∆Mus(pi) = (A1a2 +A2a3 +A3a4 +A4a5 +A5a6)TUN (3.15)

Suppose N(i) = {i1, i2, · · · , iK} and without loss of generality i = i1, that is pi = pi1 .
Compare with expression (3.10), we know only K entries in each row of M are non-
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zero. And they are

Miik = A1a
(2)
k +A2a

(3)
k +A3a

(4)
k +A4a

(5)
k +A5a

(6)
k (3.16)

We impose the following sign restriction constraint.

Miik < 0 if i = ik, Miik ≥ 0 if i 6= ik (3.17)

Notice that b1(x) = 1 implies
∑
k a

(l)
k = 0, so

∑
kMiik = 0. The resulting matrix M

will then be diagonal dominant and hence positive semi-definite. We call constraint
(3.17) “diagonal dominant constraint”.

By solving the quadratic minimization problem (3.13) with “consistency con-
straint” (3.14) and “diagonal dominant constraint” (3.17), we obtain a discretized
Laplace-Beltrami operator matrix M that is positive semi-definite and satisfies the
discrete maximum principle. In general, (3.13)+(3.14)+(3.17) does not have a closed
form solution. One can use “quadprog” function in Matlab to solve the quadratic
optimization problem with the 2 systems of constraints.

Remark 3. Notice that the starting point of MLS approach is to provide a local
function approximation, while that of the constrained quadratic optimization approach
is to provide estimates of a function and its derivatives evaluated at a point. On the
other hand both methods produce the local Taylor expansion of the function. We give
an exact relation between these two constructions in Appendix B. Although two meth-
ods can achieve the same accuracy, the constrained quadratic optimization approach is
more computationally expensive. However it preserves maximum principle in discrete
solution and is more robust for more challenging examples, such as when the data
points are non-uniform.

3.4.2. Semi-Lagrangian scheme for hyperbolic PDE. We design an up-
wind scheme for hyperbolic PDE on point clouds using the semi-Lagrangian approach.
To compute the solution at a given point p at time tn+1, one can first find the charac-
teristic along the manifold that starts at p and goes backward by ∆t to p̂, and then
solve an ODE along the characteristic from p̂ to p with initial value given at p̂. To
find the characteristic along the manifold may not be easy itself. One can use a local
first order linear approximation and then project p̂ back to the manifold. To get the
value at p̂ at tn, we first find the KNN of p̂, and then use local PCA through the KNN
to define a local coordinate system. The value at p̂ at tn is then interpolated by the
values at the KNN at tn using MLS in this local coordinate system. For a concrete
example and details, please see advection equation on a torus in Section 5.1.2.

4. Solving PDEs on point clouds. Once we know how to discretize differential
operators on point clouds, we can solve PDEs on point clouds. Here we use two types
of PDEs as examples. One is the time dependent PDE of the following form

∂us
∂t

= F (x, us,∇Mus,∆Mus) (4.1)

the other is the eigenvalue problem for the Laplace-Beltrami operator,

−∆Mφ = λφ (4.2)

For the time dependent problem (4.1), we use simple time discretization, such as
forward Euler,

Un+1 = Un + ∆t · F (x, Un, [V1 V2 V3]Un,MUn) (4.3)
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More sophisticated time discretization to relax time step constraint, such as Crank-
Nicholson scheme, was designed in [24], which will not be discussed in this paper.
Solving (4.2) is equivalent to solving the eigenvalue problem for the discretized ma-
trix operator. A few examples based on MLS and some applications in computer
vision were reported in [17]. We will show a few more examples, especially using the
discretization based on the constrained optimization approach and for manifolds with
boundary.

4.1. Boundary condition. For closed manifold, there is no boundary condi-
tion involved. For open manifold one has to deal with boundary conditions at the
manifold boundary. A reasonable assumption is that we know what are boundary
points and interior points in the point cloud. We use the time dependent PDE (4.1)
as an example to demonstrate our approach. Without loss of generality, we assume
p1,p2, · · · ,pL are boundary points, that is we have L boundary points and N − L
interior points. And we can write U as U = [U1 U2]T where U1 = [u1, u2, · · · , uL]

T

and U2 = [uL+1, uL+2, · · · , uN ].

4.1.1. Dirichlet boundary condition. Dirichlet boundary condition is easy
to implement. At interior points we simply discretize the PDE using KNN as before.
Whenever boundary points are involved in the KNN, their prescribed values are used.
As an example, the time dependent PDE (4.1) with Dirichlet boundary condition has
the following form {

∂us

∂t = F (x, us,∇Mus,∆Mus) x ∈ Ω
us(x, t) = g(x, t) x ∈ ∂Ω

(4.4)

where g is a given function. We can discretize g(x, t) as a L-dimensional vector G(x, t),
since we know p1,p2, · · · ,pL are boundary points. Using (4.3), we have the following
solver {

Un+1
1 = Un1 + ∆t · F (x, Un, [V1 V2 V3]Un,MUn)

Un+1
2 = G(x, tn+1)

(4.5)

4.1.2. Neumann boundary condition. Implementation of Neumann bound-
ary condition is a little bit more complicated since geometric information of the bound-
ary, i.e., the normal, is involved. However, we can use the same procedure as before to
construct the boundary and approximate its normal in a local coordinate system and
then set up a discretized equation at a boundary point using the boundary condition.
Again we use the PDE (4.1) with Neumann boundary condition on two-dimensional
manifold in R3 as an example,{

∂us

∂t = F (x, us,∇Mus,∆Mus) x ∈ Ω
∂us

∂n = g(x, t) x ∈ ∂Ω
(4.6)

where n denotes the normal to the boundary ∂Ω in the tangent plane of Ω and g is a
given function.

At interior points we simply discretize the PDE using KNN as before. At the
boundary, which is a one-dimensional curve for a two-dimensional manifold, we need
to approximate ∂us

∂n = n ·∇Mus. At each boundary point, we first find its KNN from
the point cloud and approximate ∇Mus as before. Next we approximate the normal
to the boundary in the tangent plane, n. Since we already have the normal to the
surface in the first step when we approximate ∇Mus, we only need to approximate the
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tangent direction of the boundary curve. To do this we have to construct the boundary
curve in a similar fashion as we do for the surface. We find KNN of a boundary point
pi ∈ {pi|i = 1, 2, · · · , L} where all these KNN points belong to boundary points and
this K can be different from that for surface approximation. Then we construct a
local coordinate system 〈pi; ẽi1, ẽi2, ẽi3〉 using PCA from these boundary KNN. MLS
is used to approximate the boundary curve near pi as ri(x) = (x, yi(x), zi(x)) in this
local coordinate system 〈pi; ẽi1, ẽi2, ẽi3〉. From the MLS construction we can compute
the tangent direction of the boundary curve. Finally the normal n is defined as
the direction orthogonal to both the normal of the surface and the tangent of the
boundary. Use the above procedure, Neumann boundary condition can be disretized
as AU = G(x, t) where A is a L × N matrix and G(x, t) is a L-dimensional vector
function. We can write A as [A1 A2] where A1 and A2 are L × L and L × (N − L)
matrices. For the time dependent problem (4.6), we use the following scheme{

Un+1
1 = Un1 + ∆t · F (x, Un, [V1 V2 V3]Un,MUn)

A2U
n+1
2 = G(x, tn+1)−A1U

n+1
1

(4.7)

5. Numerical experiments. In this section we present numerical examples in
three and higher dimensions. In particular, convergence studies are carried out for ex-
amples where exact solutions are known. Some of the examples used here come from
[22], [23] and [16]. For simplicity, we use degree 2 polynomial for all examples. For
PDEs that contain Laplace-Beltrami operator, we use both MLS and quadratic opti-
mization approach with “consistency constraint” and “diagonal dominant constraint”
to discretize the PDEs. At the end of this section, an experiment of a benchmark
point cloud, the Stanford bunny, is presented.

5.1. Time dependent PDEs.

5.1.1. Diffusion equation on sphere. Consider first diffusion ∂us

∂t = ∆Mus on
the unit sphere. The unit sphere is parameterized as Γ = (cos θ sinφ, sin θ sinφ, cosφ),

the Laplace-Beltrami operator can be written as ∆M = 1
sin2 φ

∂2

∂θ2 + cosφ
sinφ

∂
∂φ+ ∂2

∂φ2 . With
initial condition

us(θ, φ, 0) = cosφ,

the solution at any time t is given by

us(θ, φ, t) = e−2t cosφ.

We apply our method to discretize the diffusion operator directly on point clouds
and use forward Euler (4.3) with time step ∆t = 0.1∆x2 where ∆x = mini,j ‖pi−pj‖
and constant K = 15 (number of KNN to be used). We calculate the max-norm
relative errors of the numerical solution at the final time t = 1 for several uniformly
distributed point clouds with different sample sizes. We calculate numerical solutions
for both MLS approach and constrained quadratic optimization approach, also we
use 2 popular weight functions, one is the Wendland function (3.11), the other is the
inverse of squared distance. For simplicity, we use D = 1.1 maxk dk for all experiments
and ε = 10−3 for 1/(d2 + ε2). These results are reported in Table 5.1.

This convergence test indicates a first-order convergence in the value of us with
respect to sample size (N) and second-order with respect to space (h) for both MLS
approach and constrained quadratic optimization approach. Also, we observe the
same convergence orders for both Wendland and inverse of squared distance weight
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sample size MLS [Wendland] MLS [1/(d2 + ε2)]
N Error Conv. in N Conv. in h Error Conv. in N Conv. in h

1002 1.54e-02 2.35e-02
1962 7.88e-03 1.00 1.99 1.19e-02 1.01 2.03
4002 3.90e-03 0.99 1.97 5.83e-03 1.00 2.00
7842 2.01e-03 0.99 1.97 2.96e-03 1.01 2.02
16002 9.97e-04 0.98 1.97 1.45e-03 1.00 2.00

sample size Constraint [Wendland] Constraint [1/(d2 + ε2)]
N Error Conv. in N Conv. in h Error Conv. in N Conv. in h

1002 1.54e-02 2.35e-02
1962 7.88e-03 1.00 1.99 1.19e-02 1.01 2.03
4002 3.90e-03 0.99 1.97 5.83e-03 1.00 2.00
7842 2.01e-03 0.99 1.97 2.96e-03 1.01 2.02
16002 9.97e-04 0.98 1.97 1.45e-03 1.00 2.00

Table 5.1
Max-norm relative errors for the diffusion equation on a unit sphere.

functions, which is also observed for the rest of the examples. For simplicity, we only
present Wendlend weight function results in the rest experiments. Notice that the
convergence is about one order higher than we expect in Lemma 3.1 due to symmetry
of the sphere and uniform sampling of the point clouds, which agrees with the super-
convergence result (Lemma A.3) in Appendix A. We will see similar results in later
experiments. An interesting observation is that the difference between MLS approach
and constrained quadratic optimization approach is very little for this simple shape
with uniform sampling. In other words, the discretized Laplace-Beltrami matrix from
MLS approach is close to be diagonal dominant in this case.

5.1.2. Advection equation on a torus. We next solve an advection equation

∂us
∂t

+
∂us
∂θ

+ 2
∂us
∂φ

= 0 (5.1)

on a torus given by Γ = ((R+ r cosφ) cos θ, (R+ r cosφ) sin θ, r sinφ) with R = 1 and
r = 0.5. The surface gradient can be written as ∇M = 1

(R+r cosφ)2 Γθ
∂
∂θ + 1

r2 Γφ
∂
∂φ

and (5.1) can be written as

∂us
∂t

+ v · ∇Mus = 0 with v = Γθ + 2Γφ (5.2)

We consider the initial profile

us(θ, φ, 0) = cos θ + sinφ

Our computation measures the max-norm of the difference between our computed
solution and the exact analytical solution

us(θ, φ, t) = cos(θ − t) + sin(φ− 2t)

Due to periodicity and smoothness of the solution, we can use MLS approximation
using all KNN for the discretization for this hyperbolic problem. Time-stepping is
carried out using forward Euler with 2 different time step-sizes ∆t = 0.01∆x and
∆t = 0.1∆x where ∆x = mini,j ‖pi − pj‖ and constant K = 15 (number of KNN to
be used). Relative errors in the result at the final time t = 1 are computed on the
torus using the max-norm for a variety of sample sizes. These results are reported in
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sample size ∆t = 0.01∆x MLS [Wendland] ∆t = 0.1∆x MLS [Wendland]
N Error Conv. in N Conv. in h Error Conv. in N Conv. in h

1035 9.54e-03 1.60e-02
1800 4.96e-03 1.18 2.36 1.10e-02 0.68 1.35
4050 2.07e-03 1.08 2.16 7.12e-03 0.54 1.07
7200 1.15e-03 1.02 2.04 5.27e-03 0.52 1.05
16200 5.49e-04 0.91 1.82 3.48e-03 0.51 1.02

Table 5.2
Max-norm relative errors for the advection equation on a torus.

Fig. 5.1. Point cloud sampled from torus with 1800 points. Convergence plot of max-norm
relative errors (for ∆t = 0.01∆x) using MLS approach with Wendland function as weight function
for the advection equation on a torus.

Table 5.2 and a convergence plot of the relative errors (for ∆t = 0.01∆x) is shown in
Figure 5.1.

Since we use forward Euler, a first order discretization in time, if ∆t is small
enough (0.01∆x), first-order convergence in the value of us with respect to sample
size (N) and second-order in space (h) are observed for this first order PDE, which
agrees with Lemma 3.1; if ∆t is large (0.1∆x), the error from time discretization will
dominate. As a result only first-order convergence in space (h) is observed. Standard
high order discretization in time, which will not be discussed in this paper, can be
used.

Now we apply the semi-Lagrangian method based on upwind scheme explained in
Section 3.4. Given the discretized time step ∆t, from the PDE we can approximate
un+1(pi) by un(p̂i) where p̂i = pi − ∆t · v(pi). We then use MLS as explained in
Section 3.4.2 to approximate un(p̂i). We first find KNN of p̂i in the point cloud, then
use local PCA through the KNN to compute a local coordinate system. Under this
coordinate system, we locally approximate the surface and the function un. Notice
that p̂i may not lie on the surface. Suppose p̂i has coordinate (x0, y0, z0) in the local
coordinate system. Since the local MLS approximation ũn of un only depends on
the first two local coordinates, so we use ũn(x0, y0) as the estimate of un(p̂i) and
un+1(pi) ≈ ũn(x0, y0). We test our upwind scheme using the same data and same
parameters. These results are reported in Table 5.3.

The tests show better numerical results than using MLS approximation. Upwind
scheme will be more stable in general. The accuracy can be further improved if
characteristics can be computed more accurately on the manifold to get p̂i.

5.1.3. Diffusion on a filament in 3D. We consider the diffusion equation on
an open helical curve in R3 parametrized by

(x, y, z) = (sin(2πs), cos(2πs), 2s− 1),
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sample size ∆t = 0.01∆x upwind ∆t = 0.1∆x upwind
N Error Conv. in N Conv. in h Error Conv. in N Conv. in h

1035 2.36e-02 1.12e-02
1800 1.06e-02 1.45 2.89 8.10e-03 0.59 1.17
4050 3.25e-03 1.46 2.92 5.28e-03 0.53 1.06
7200 1.46e-03 1.39 2.78 3.95e-03 0.50 1.01
16200 5.28e-04 1.25 2.51 2.64e-03 0.50 0.99

Table 5.3
Max-norm relative errors for the advection equation on a torus using upwind scheme.

where 0 ≤ s ≤ 1 and homogeneous Neumann condition is imposed at endpoint s = 0
and homogeneous Dirichlet condition is imposed at endpoint s = 1.

The initial condition is given by

us(s, 0) = cos(0.5πs).

We measure the max-norm of the difference between our computed solution and the
analytical solution

us(s, t) = exp
(
−(

π

2L
)2t
)

cos(0.5πs)

where L = 2
√

1 + π2 is the length of the helix.
We apply our approach and time-stepping is carried out using forward Euler with

time step-size ∆t = 0.1∆x2 where ∆x = mini,j ‖pi − pj‖ and constant K = 15
(number of KNN to be used). We use both MLS approach and constrained quadratic
optimization approach. Relative errors in the results at the final time t = 1 are
computed on the filament using the max-norm for a variety of sample sizes. These
results are reported in Table 5.4 and a convergence plot of the relative errors for MLS
approach with Wendland function as weight function is shown in Figure 5.2.

sample size MLS [Wendland] Constraint [Wendland]
N Error Conv. in N Conv. in h Error Conv. in N Conv. in h
90 1.00e-02 2.21e-03
180 2.06e-03 2.28 2.28 5.06e-04 2.13 2.13
360 3.47e-04 2.57 2.57 1.21e-04 2.06 2.06
720 5.21e-05 2.74 2.74 2.96e-05 2.03 2.03
1440 6.85e-06 2.93 2.93 7.31e-06 2.02 2.02

Table 5.4
Max-norm relative errors for the diffusion equation on a helix with boundary conditions.

This convergence test indicates at least a second-order (super-)convergence with
respect to both sample size (N) and space (h) for both MLS approach and constrained
quadratic optimization approach for this 1D curve.

5.1.4. Reaction diffusion system on sphere. We solve a reaction diffusion
system to get a spiral wave evolving on the point cloud of a unit sphere. The simulated
system in this experiment is the well-known Fitzhugh-Nagumo equations [33]

∂us
∂t

= (a− us)(us − 1)us − vs + ν∆Mus (5.3)

∂vs
∂t

= ε(βus − vs) (5.4)
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Fig. 5.2. Point cloud sampled from a filament with 180 points. Convergence plot of max-norm
relative errors using MLS approach with Wendland function as weight function for the diffusion
equation on a helix with boundary conditions.

where us is the excitation variable, ε = 0.01, a = 0.1, β = 0.5 and ν = 0.0001. We set
our initial conditions according to

(us, vs) =

 (1, 0) if x > 0, y > 0, z > 0,
(0, 1) if x < 0, y > 0, z > 0,
(0, 0) otherwise.

(5.5)

to obtain an attractive spiral wave. This simulation uses forward Euler with ∆t = 0.01
and K = 15 (number of KNN to be used). In this example, we use 16002 points
sampled from unit sphere and ∆x = 0.0227. The results of excitation variable us are
displayed at time t = 400, 450, 500 and 550 in Figure 5.3. The solution is displayed
on a triangulated mesh for better visual effect.

5.1.5. Diffusion equation on a flat 2-tours in 4D. We consider diffusion on
a flat 2-tours T 2, which is a two dimensional manifold embedded in R4 parameterized
as Γ = (cosα, sinα, cosβ, sinβ), with α, β ∈ [0, 2π]. The Laplace-Beltrami operator

can be written as ∆M = ∂2

∂α2 + ∂2

∂β2 .

For an initial profile

us(α, β, 0) = sin(α) + sin(2β)

the solution at any time t is given by

us(α, β, t) = e−t sin(α) + e−4t sin(2β).

We apply our method and use forward Euler with ∆t = 0.1∆x2 where ∆x =
mini,j ‖pi − pj‖ and constant K = 15 (number of KNN to be used). We calculate
numerical solutions at the final time t = 1 for several point clouds with different sample
sizes. We use both MLS approach and constrained quadratic optimization approach
when discretizing the diffusion operator. Relative errors in the results are computed
on a flat 2-tours T 2 using the max-norm. These results are reported in Table 5.5 and
a convergence plot of the relative errors for MLS approach with Wendland function
as weight function is shown in Figure 5.4.

This test indicates a first-order convergence in the value of us with respect to sam-
ple size (N) and second-order in space (h) (since the true dimension of the manifold
is 2) for both MLS approach and constrained quadratic optimization approach.
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Fig. 5.3. Fitzhugh-Nagumo equation evolving on a sphere. The excitation variable us is dis-
played at time t = 400, 450, 500 and 550. We use triangular mesh for better visualization, although
our solution is computed based on point cloud.

sample size MLS [Wendland] Constraint [Wendland]
N Error Conv. in N Conv. in h Error Conv. in N Conv. in h

1600 1.37e-02 1.37e-02
3600 6.16e-03 0.99 1.97 6.16e-03 0.99 1.97
6400 3.46e-03 1.00 2.01 3.46e-03 1.00 2.01
14400 1.55e-03 0.99 1.98 1.55e-03 0.99 1.98
25600 8.67e-04 1.01 2.02 8.67e-04 1.01 2.02

Table 5.5
Max-norm relative errors for the diffusion equation on a flat 2-tours T 2.

5.2. Eigenvalue problems. Here we show a few examples of eigenvalue prob-
lem for Laplace-Beltrami operator on point clouds. We mainly test our method for
open manifolds with Dirichlet or Neumann boundary conditions. More examples and
applications in computer vision can be found in [17].

5.2.1. Hemisphere in 3D with Dirichlet boundary condition. Consider
first eigenvalue problem for unit hemisphere in 3D. With homogeneous Dirichlet
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Fig. 5.4. Convergence plot of max-norm relative errors using MLS approach with Wendland
function as weight function for the diffusion equation on a flat 2-tours T 2.

boundary condition, the problem becomes{
−∆Mφ = λφ x ∈ Ω
φ(x) = 0 x ∈ ∂Ω

(5.6)

The exact value of the n-th eigenvalue is given by λn = n(n+ 1), with multiplicity n
for n = 1, 2, · · · . To measure the error of our approach in computing eigenvalues, we

compute the normalized error Emax,n = max(
|λ̃n,i−λn|

λn
), where λ̃n,i’s are the eigenval-

ues computed from our approach for eigenvalue λn, and i runs over each multiplicity.
Emax,n represents the worst possible error in computing λn. We use constant K = 15
(number of KNN to be used) and calculate numerical solutions for both MLS ap-
proach and constraint quadratic optimization approach. We show Emax,n for n = 5
and 13 for several point clouds with different sample sizes to illustrate convergence of
our approach. These results are reported in Table 5.6 and a convergence plot of the
relative errors for MLS approach with Wendland function as weight function is shown
in Figure 5.5.

sample size λ = 30 MLS [Wendland] λ = 30 Constraint [Wendland]
N Error Conv. in N Conv. in h Error Conv. in N Conv. in h

521 3.98e-02 4.03e-02
1009 2.22e-02 0.88 1.77 2.25e-02 0.88 1.76
2041 1.18e-02 0.90 1.79 1.19e-02 0.90 1.81
3977 6.39e-03 0.92 1.84 6.43e-03 0.92 1.85
8081 3.31e-03 0.93 1.86 3.32e-03 0.93 1.86

sample size λ = 182 MLS [Wendland] λ = 182 Constraint [Wendland]
N Error Conv. in N Conv. in h Error Conv. in N Conv. in h

521 3.14e-01 2.44e-01
1009 1.31e-01 1.32 2.65 1.33e-01 0.92 1.84
2041 6.96e-02 0.90 1.80 7.01e-02 0.91 1.82
3977 3.76e-02 0.92 1.85 3.79e-02 0.92 1.84
8081 1.91e-02 0.96 1.91 1.93e-02 0.95 1.90

Table 5.6
Max-norm relative errors Emax,n for eigenvalues 30 and 182.

This test indicates a first-order convergence in the value of eigenvalue λn with
respect to sample size (N) and second-order with respect to space (h) for both MLS
approach and constrained quadratic optimization approach.

5.2.2. Hemisphere in 3D with Neumann boundary condtion. Next we
consider eigenvalue problem for unit hemisphere in 3D with homogeneous Neumann
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Fig. 5.5. Point cloud sampled from hemisphere with 1009 points, and points with blue circle are
boundary points. Convergence plot of max-norm relative errors using MLS approach with Wendland
function as weight function for eigenvalue problem on unit hemisphere with Dirichlet boundary
condition.

boundary condition. The problem becomes{
−∆Mφ = λφ x ∈ Ω
∂φ
∂n = 0 x ∈ ∂Ω

(5.7)

The exact value of the n-th eigenvalue is given by λn = (n− 1)n, with multiplicity n
for n = 1, 2, · · · . Again we compute Emax,n for n = 6 and 14 for several point clouds
with different sample sizes to illustrate convergence of our approach. We use constant
K = 15 (number of KNN to be used) and calculate numerical solutions for both MLS
approach and constraint quadratic optimization approach. These results are reported
in Table 5.7 and a convergence plot of the relative errors for MLS approach with
Wendland function as weight function is shown in Figure 5.6.

sample size λ = 30 MLS [Wendland] λ = 30 Constraint [Wendland]
N Error Conv. in N Conv. in h Error Conv. in N Conv. in h

521 6.42e-02 4.92e-02
1009 3.11e-02 1.10 2.19 2.60e-02 0.96 1.93
2041 1.47e-02 1.06 2.13 1.31e-02 0.97 1.95
3977 7.46e-03 1.02 2.03 6.89e-03 0.96 1.93
8081 3.67e-03 1.00 2.00 3.48e-03 0.96 1.93

sample size λ = 182 MLS [Wendland] λ = 182 Constraint [Wendland]
N Error Conv. in N Conv. in h Error Conv. in N Conv. in h

521 3.13e-01 2.59e-01
1009 1.97e-01 0.70 1.40 1.49e-01 0.84 1.67
2041 9.94e-02 0.97 1.94 7.82e-02 0.92 1.83
3977 4.86e-02 1.07 2.15 4.12e-02 0.96 1.92
8081 2.29e-02 1.06 2.12 2.05e-02 0.98 1.97

Table 5.7
Max-norm relative errors Emax,n for eigenvalues 30 and 182.

This convergence test indicates a first-order convergence in the value of eigenvalue
λn with respect to sample size (N) and second-order with respect to space (h) for
both MLS approach and constrained quadratic optimization approach.

5.2.3. Flat 3-tours T 3 in 6D. Consider eigenvalue problem for flat 3-torus T 3,
a three dimensional manifold embedded in R6 paramterized as

Γ = (cosα, sinα, cosβ, sinβ, cos θ, sin θ)
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Fig. 5.6. Convergence plot of max-norm relative errors using MLS approach with Wendland
function as weight function for eigenvalue problem on unit hemisphere with Neumann boundary
condition.

with α, β, θ ∈ [0, 2π]. Using our approach, the manifold is locally approximated as

Γ = (x1, x2, x3, y1(x1, x2, x3), y2(x1, x2, x3), y3(x1, x2, x3))

and the eigenfunction φ is locally approximated as Φ(x1, x2, x3), where y1, y2, y3 and Φ
are 3-dimensional degree 2 polynomials. Our method apply to this 3D manifold in R6

in a straight forward way. The “ground truth” eigenvalues and their multiplicities are
not available, instead we use some test functions to measure the error. We compute
the L∞ error for ∆Mf for the functions f = x, x2, ex on T 3, where x is the first
coordinate in R6, and the closed forms of their surface Laplacian are known. The L∞
error is defined as E∞ = ||MF−U ||∞

||U ||∞ , where M is the discretized Lapalce-Beltrami

operator defined in (3.10), F is the N -dimensional vector for f evaluated on data
points and U is the N -dimensional vector for the known values of ∆Mf in its closed
form.

We apply our approach and calculate the E∞ relative errors of the numerical
solutions for several point clouds with different sample sizes. We use constant K = 20
(number of KNN to be used) and both MLS approach and constrained quadratic
optimization approach. These results are reported in Table 5.8 and a convergence plot
of the relative errors for MLS approach with Wendland function as weight function
for test function f = x is shown in Figure 5.7.

Fig. 5.7. Convergence plot of E∞ relative errors using MLS approach with Wendland function
as weight function for test function f = x on T 3.

Again, second-order super-convergence with respect to space (h) for both MLS
approach and constrained quadratic optimization approach is observed.
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sample size f = x MLS [Wendland] f = x Constraint [Wendland]
N Error Conv. in N Conv. in h Error Conv. in N Conv. in h

3375 4.51e-02 4.51e-02
8000 2.51e-02 0.68 2.04 2.51e-02 0.68 2.04
15625 1.60e-02 0.67 2.02 1.60e-02 0.67 2.02
27000 1.10e-02 0.69 2.06 1.10e-02 0.69 2.06
46656 7.64e-03 0.67 2.00 7.64e-03 0.67 2.00

sample size f = x2 MLS [Wendland] f = x2 Constraint [Wendland]
N Error Conv. in N Conv. in h Error Conv. in N Conv. in h

3375 6.43e-04 6.43e-02
8000 2.65e-04 1.03 3.08 2.65e-04 1.03 3.08
15625 1.41e-04 0.94 2.83 1.41e-04 0.94 2.83
27000 9.21e-05 0.78 2.34 9.21e-05 0.78 2.34
46656 5.21e-05 1.04 3.12 5.21e-05 1.04 3.12

sample size f = ex MLS [Wendland] f = ex Constraint [Wendland]
N Error Conv. in N Conv. in h Error Conv. in N Conv. in h

3375 2.65e-02 2.65e-02
8000 1.45e-02 0.70 2.10 1.45e-02 0.70 2.10
15625 9.62e-03 0.61 1.84 9.62e-03 0.61 1.84
27000 6.85e-02 0.62 1.86 6.85e-02 0.62 1.86
46656 4.60e-03 0.73 2.18 4.60e-03 0.73 2.18

Table 5.8
E∞ relative errors for test functions f = x, x2, ex on T 3.

5.3. Diffusion on Stanford bunny. We conclude our numerical experiments
by the heat equation on the point cloud for Stanford bunny with a point source in
the left ear. We normalize the point cloud so that it is bounded by unit box. The
total number of points is 35296. The minimal distance between data points ∆x may
not be a good indicator of h for complicated shape. Instead, we report the mean
of the distance between data point and its closest neighbor ∆̃x = mean∆xi where
∆xi = minj ‖pi − pj‖. For our normalized bunny, we have ∆̃x = 0.0047 . In this
simulation forward Euler is used with ∆t = 1e−5 and K = 20 (number of KNN to be
used). The results of numerical solution us are displayed at time t = 0.1, 0.2, 0.4 and
0.8 in Figure 5.8. Again, the solution is displayed on a triangulated mesh for better
visual effect.

The above simulation is based on the constraint quadratic optimization approach
with the Wendlend weight function. We want to point out that using MLS approach
with standard Wendland or inverse of squared distance weight function works well for
pretty uniformly distributed point clouds. However, in more challenging situation,
such as for non-uniform point clouds, one may need to use the constrained quadratic
optimization approach which is more robust and works independent of the choice of
weight function. The MLS approach with the Wendlend weight function produces
negative values for this example. Similarly, using MLS with the Wendlend weight
function to solve eigenvalue problem for Laplace-Beltrami operator on this point cloud
produces negative eigenvalues, while using the constrained quadratic optimization
approach does not. Another interesting fact is that the special weight function (3.12)
for MLS seems more robust and works well for non-uniform point clouds like this
example.

6. Conclusion. In this work, we present a general approach to solve PDEs on
manifolds represented by point clouds. The key idea is to approximate differential
operators on the manifold by constructing the function, the manifold and hence the
metric in a local coordinate system at each point. In this way a global parametrization
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Fig. 5.8. Solve heat equation on Stanford bunny. The numerical solution us is displayed at
time t = 0.1, 0.2, 0.4 and 0.8. The black dot is the heat source. Again, we use triangular mesh for
better visualization, although our solution is computed directly on point cloud.

or mesh can be avoided, which allows this approach to handle manifolds with arbitrary
dimensions and co-dimensions. Moreover, the complexity of the methods scales well
with the total number of points and the true dimension of the manifold. Different
least square approximations, treatment of boundary conditions, approximation error
analysis, and numerical tests are presented.

Appendix A. Approximation error for MLS. In this appendix, we rewrite
some results in [28] to provide a proof of the approximation error for the MLS problem
(2.3).

First, we introduce some notations. To expedite the presentation, multi-index
notation is used. If α := (a1, a2, · · · , ad) is a d-tuple of nonnegative integers ai and
its length is defined as

|α| :=
d∑
i=1

ai (A.1)

We then denote

xα := xa11 xa22 · · ·x
ad
d (A.2)

and the α-th derivative of function f as

Dαf :=
∂a1

∂xa11

∂a2

∂xa22

· · · ∂
ad

∂xadd
f (A.3)



22 JIAN LIANG AND HONGKAI ZHAO

Use the same notations in Section 2.2, Πd
m is the space of polynomials of total

degree m in d-dimensions and b(x) = [(x− x)α1 , (x− x)α2 , · · · , (x− x)αI ]
T

is the

polynomial basis vector where I = (d+m)!
d!m! is the number of basis in Πd

m. Denote E as
a K×I matrix with Eij = bj(xi), W = Diag{w1, w2, · · · , wK} with wk = w(‖xk−x‖)
and F = [f(x1), f(x2), · · · , f(xK)]

T
. Assume I ≤ K, Rank(E) = I and w(·) > 0, the

solution (2.5) of MLS problem can be written as

c(x) =
(
ETWE

)−1
ETWF (A.4)

The following completeness condition holds.

Lemma A.1. Assume I ≤ K, Rank(E) = I and w(·) > 0. The moving least
squares (MLS) approximation function fx(x) (2.4) can reproduce any polynomials
f(x) ∈ Πd

m exactly by using the sample values, viz.

fx(x) = b(x)T c(x) = f(x) (A.5)

where c(x) is given by (2.5) or (A.4) and the result holds for any weight function
w(·) > 0.

Proof. It suffices to show that for 0 < i < I, if f(x) = bi(x) = (x − x)αi , then
c(x) = ei where ei is the i-th standard basis for RI .

Assume f(x) = bi(x), then

c(x) =

[∑
k

wkb(xk)b(xk)T

]−1∑
k

wkb(xk)bi(xk)

=


∑
wkb1(xk)b1(xk) · · ·

∑
wkb1(xk)bI(xk)

...
. . .

...∑
wkb1(xk)bI(xk) · · ·

∑
wkbI(xk)bI(xk)


−1 

∑
wkb1(xk)bi(xk)

...∑
wkbI(xk)bi(xk)


= ei

where Laplace theorem is used in the last step.

Next we give the following lemma for approximation error of MLS method.

Lemma A.2. Assume f ∈ Cm+1(Rd), I ≤ K, Rank(E) = I and w(·) > 0.
The solution (2.5) of MLS method can be used to approximate a function f and its
derivatives. More precisely, denote h as the smallest radius such that the K given
points lie in a ball of such radius and centered at x, i.e., h = maxk ‖xk − x‖ then∣∣∣∣ci − 1

αi!
Dαif(x)

∣∣∣∣ = C(w, f, αi)h
m+1−|αi| (A.6)

where C is a constant depends on w, f and αi.

Proof. By Taylor expansion

f(xk) =

I∑
i=1

1

αi!
Dαif(x)bi(xk) +

∑
|α|=m+1

1

α!
Dαf(x + θ(xk − x))(xk − x)α (A.7)

Denote A =
[∑K

k=1 wkb(xk)b(xk)T
]
, the first term in (A.7) as I1 and the second
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term as I2, use Lemma A.1, we have

c(x) = A−1
K∑
k=1

wkb(xk)(I1 + I2)

=

I∑
i=1

1

αi!
Dαif(x)A−1

K∑
k=1

wkb(xk)bi(xk) +A−1
K∑
k=1

wkb(xk)I2

=

I∑
i=1

1

αi!
Dαif(x)ei +A−1

K∑
k=1

wkb(xk)I2

Denote A = [Aij ] and A−1 =
[
Aij
]
, then we have

∣∣∣∣ci − 1

αi!
Dαif(x)

∣∣∣∣ =

∣∣∣∣∣∣
∑
j

Aij
∑
k

wkbj(xk)I2

∣∣∣∣∣∣
≤
∑
k

wk
∑
j

|Aij | · |bj(xk)| · |I2|

Notice that Aij ∼ O(h|αi|+|αj |), Aij ∼ O(h−|αi|−|αj |), bj(xk) ∼ O(h|αj |) and I2 ∼
O(hm+1), so each term in the above sum is with O(hm+1−|αi|), hence∣∣∣∣ci − 1

αi!
Dαif(x)

∣∣∣∣ = C(w, f, αi)h
m+1−|αi| (A.8)

for i = 1, 2, · · · , I.
Finally, we show super-convergence for MLS approximation due to cancellation

of errors. We first present a precise statement in 1D .
Lemma A.3. For f ∈ Cm+2(R), I = m+1 ≤ K, Rank(E) = m+1 and w(·) > 0.,

if P = {xk|k = 1, 2, · · · ,K} are symmetrically distributed around x, that is if xk ∈ P
then 2x− xk ∈ P . We have the following∣∣∣∣ci+1 −

1

i!
f (i)(x)

∣∣∣∣ = C(w, f, i)hm+2−i (A.9)

for i (∈ {0, 1, · · · ,m}) with the same parity of m, where C is a constant depends on
w, f and i.

Proof. By Taylor expansion

f(xk) =
∑m
i=0

1
i!f

(i)(x)bi(xk) + 1
(m+1)!f

(m+1)(x)bm+1(xk)

+ 1
(m+2)!f

(m+2)(x+ θk(xk − x))bm+2(xk)
(A.10)

where bi(x) = (x− x)i. Denote A =
[∑K

k=1 wkb(xk)b(xk)T
]
, the first term in (A.10)

as I1, the second term as I2 and the third term as I3, use computations in Lemma
A.2, we have

c(x) =

m∑
i=0

1

i!
f (i)(x)ei+1 +A−1

K∑
k=1

wkb(xk)(I2 + I3)
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and ∣∣∣∣ci+1 −
1

i!
f (i)(x)

∣∣∣∣ ≤
∣∣∣∣∣∣
m+1∑
j=1

Ai+1j
K∑
k=1

wkbj−1(xk)I2

∣∣∣∣∣∣+O(hm+2−i)

Denote Î2 =
∑
j A

i+1j
∑
k wkbj−1(xk)I2 andAi+1j = ai+1j/ det(A), where det(A) =

O(h2s) with s = m(m + 1)/2 and ai+1j =
∑
µ

∏m
ν=1

∑
k wkp

(µ)
ν (xk) where p

(µ)
ν (x)

is some polynomial and summation of the degree of p
(µ)
ν (x),

∑
ν degree(p

(µ)
ν (x)) is

2s− (i+ 1)− j for each µ. (The notations here are a little complicated, please see the
following example for better understanding.)

Î2 =
1

det(A)

1

(m+ 1)!
f (m+1)(x)

∑
j

(
ai+1j

(∑
k

wkbj−1(xk)(xk − x)m+1

))

Now that wk = w(|xk−x|), {xk|k = 1, 2, · · · ,K} are symmetrically distributed around
x and i has the same parity as m. We can divide the above summation into two sub-
group summations, one is for j that has the same parity as i, the other different.
For j that has the same parity as i, now 2s − (i + 1)− j is odd, there exists some ν̂

(depends on µ) for each µ in the summation for ai+1j that p
(µ)
ν̂ (x) is an odd degree

polynomial and
∑
k wkp

(µ)
ν̂ (xk) = 0, hence ai+1j = 0. On the other hand, for j that

has different parity as i (also m), bj−1(x)(x − x)m+1 = (x − x)j+m is an odd degree

polynomial and
∑
k wkbj−1(xk)(xk − x)m+1 = 0. After all, we have Î2 = 0.

We give a concrete example for better understanding of Lemma A.3. Consider
MLS problem in 1D with symmetric distributed sampling around x. We construct
quadratic polynomial (m=2) to estimate f ′′(x). Now Î2 can be written as

Î2 =
1

2 det(A)
f (3)(x)

∑
j

(
a3j

(∑
k

wkbj−1(xk)(xk − x)3

))

For j = 1 and 3,
∑
k wkbj−1(xk)(xk − x)3 =

∑
k wk(xk − x)j+2 = 0. For j = 2, a32 =∑

wk(xk −x)
∑
wk(xk −x)2−

∑
wk
∑
wk(xk −x)3. For µ = 1, we have p

(1)
1 = x−x

and
∑
wkp

(1)
1 (xk) = 0; for µ = 2, we have p

(2)
2 = (x − x)3 and

∑
wkp

(2)
2 (xk) = 0.

After all, we have Î2 = 0.

For high dimensional MLS, super-convergence result still holds for |αi| with the
same parity as m. Below is a brief argument with more complicated computations
and notations. Again using Taylor expansion we have

f(xk) =
∑I
i=1

1
αi!
Dαif(x)bi(xk) +

∑
|α|=m+1

1
α!D

αf(x)(xk − x)α

+
∑
|α|=m+2

1
α!D

αf(x + θk(xk − x))(xk − x)α
(A.11)

Denote A =
[∑K

k=1 wkb(xk)b(xk)T
]
, the first term in (A.11) as I1, the second term

as I2 and the third term as I3, use computations in Lemma A.2, we have

c(x) =

I∑
i=1

1

αi!
Dαif(x)ei +A−1

K∑
k=1

wkb(xk)(I2 + I3)
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and ∣∣∣∣ci − 1

αi!
Dαif(x)

∣∣∣∣ ≤
∣∣∣∣∣∣
∑
j

Aij
∑
k

wkbj(xk)I2

∣∣∣∣∣∣+O(hm+2−|αi|)

Denote Î2 =
∑
j A

ij
∑
k wkbj(xk)I2 and Aij = aij/det(A), where det(A) =

O(h2s) with s =
∑I
i=1 |αi| and aij =

∑
µ

∏I−1
ν=1

∑
k wkp

(µ)
ν (xk) where p

(µ)
ν (x) is some

d-dimensional polynomial and summation of the degree of p
(µ)
ν (x),

∑
ν degree(p

(µ)
ν (x))

is 2s− |αi| − |αj | for each µ.

Î2 =
1

det(A)

∑
|α|=m+1

1

α!
Dαf(x)

∑
j

aij
∑
k

wkbj(xk)(xk − x)α

Again Î2 is the leading term in the error and cancellation has to occur for super-
convergence. Assume there are some symmetry in the distribution of given points
{xk|k = 1, 2, · · · ,K} around x. For j such that |αj | has the same parity as m,
bj(x)(x − x)α is an odd degree polynomial since bj is a d-dimensional polynomial of
degree |αj |. Error cancellation will occur in

∑
k wkbj(xk)(xk − x)α. For j such that

|αj | and m (also |αi|) have different parities, 2s− |αi| − |αj | is odd, there exists some

ν̂ (depends on µ) for each µ in the summation for aij that p
(µ)
ν̂ (x) is a odd degree

polynomial. Again cancellation will occur in
∑
k wkp

(µ)
ν̂ (xk). Error cancellation in

the summation over k of these odd-degree polynomials will give super-convergence.
Although strict symmetry condition is difficult to satisfy in high dimensions, perfect
cancellation is not necessary. Often one observes super-convergence up to one order
due to cancellation to some extent. For most of the tests in Section 5, the term Î2
can achieve one order higher and we do observe super-convergence when |αi| has the
same parity as m.

Remark 4. The above super-convergence result agrees with the study of recovery
method in [34].

Appendix B. Connection between MLS and constrained quadratic op-
timization problem. We show how we use approach in [27] to recast the MLS
problem (2.3) as a constrained quadratic optimization problem, from which we can
add additional constraint. Based on equation (2.4) and (A.4), f(x) can be approxi-
mated by fx(x) where fx is the MLS approximation computed around x and it can
be written as

fx(x) = b(x)T c(x) (B.1)

And Dαifx(x) = [Dαib(x)]
T

c(x) = αi!e
T
i c(x) = αi!ci is an estimate of the true

derivative Dαif(x). Such approximation is a linear combination of fi = f(xi), since
c(x) is a linear combination of fi (see (2.5) or (A.4)). Let us consider the following

problem: finding coefficients vector ai ∈ RK for the approximation f̂i = aTi F of
Dαif(x) by minimizing the quadratic form

Q =
1

2

K∑
k=1

(
a

(i)
k

)2

wk
=

1

2
aTi W

−1ai (B.2)
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subject to the linear constraints

K∑
k=1

a
(i)
k bj(xk) = r

(i)
j for j = 1, 2, · · · , I (B.3)

where ri =
[
r

(i)
1 , r

(i)
2 , · · · , r(i)

I

]T
= αi!ei.

Now we prove that MLS estimates evaluated at x are equivalent to approximations
from the above minimization problem.

Lemma B.1. The estimate Dαifx(x) (from MLS) of the true derivative Dαif(x)

is equivalent to the estimate f̂i from the above constrained quadratic optimization
problem for all i = 1, 2, · · · , I, assuming I ≤ K, Rank(E) = I and w(·) > 0.

Proof. The constraint minimization problem (B.2)-(B.3) is transformed, using
Lagrange multipliers z1, z2, · · · , zI , into the linear system

W−1ai + Ez = 0 and ETai = ri (B.4)

Notice that the matrix of the system,[
W−1 E
ET 0

]
(B.5)

is non-singular, and the solution is given by

ai = WE(ETWE)−1ri and z = −(ETWE)−1ri

Hence, f̂i = aTi F = rTi (ETWE)−1ETWF . Using (A.4), we have f̂i = rTi c(x) =
αi!e

T
i c(x) = αi!ci = Dαifx(x) for all i = 1, 2, · · · , I.
Remark 5. The proof of Lemma B.1 is almost the same as that of the proof for

Proposition 1 in [27], we modify it for our problem.
Remark 6. We call constraint (B.3) “consistency constraint”, since it repro-

duce the MLS estimates and hence the solution from the above quadratic optimization
problem shares the same accuracy with MLS approach.
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