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Abstract

In this paper, we propose a general framework for ap-
proximating differential operator directly on point clouds
and use it for geometric understanding on them. The dis-
crete approximation of differential operator on the under-
lying manifold represented by point clouds is based only
on local approximation using nearest neighbors, which is
simple, efficient and accurate. This allows us to extract
the complete local geometry, solve partial differential equa-
tions and perform intrinsic calculations on surfaces. Since
no mesh or parametrization is needed, our method can work
with point clouds in any dimensions or co-dimensions or
even with variable dimensions. The computation complex-
ity scaled well with the number of points and the intrinsic
dimensions (rather than the embedded dimensions). We use
this method to define the Laplace-Beltrami (LB) operator
on point clouds, which links local and global information
together. With this operator, we propose a few key applica-
tions essential to geometric understanding for point clouds,
including the computation of LB eigenvalues and eigenfunc-
tions, the extraction of skeletons from point clouds, and the
extraction of conformal structures from point clouds.

1. Introduction
The representation of geometric entities, such as shapes

and surfaces, has been a central problem in 3D modeling.
In practice, the majority of these entities are represented
by triangular meshes specifying both points and connectiv-
ity. In reality, the raw data of these objects are mostly point
clouds. For example, geometric data of a solid object in 3D
are often obtained by a 3D camera, where the position of
a dense array of points are determined using a laser scan-
ner. As such, it is important and desirable to analyze and
understand the intrinsic geometry directly on point clouds
in many applications. Geometric understanding of point
clouds is essential in 3D modeling to determine the geomet-
ric quantities on shapes and surfaces, such as the mean and
Gaussian curvatures, the surface metric, conformal factors

and distortions of surface mappings. From a high level per-
spective, a correct interpretation of the surface geometry is
the key for constructing skeleton from shapes, or computing
segmentation on surfaces.

Although this problem is fundamental, most literature in
3D modeling starts by working on given triangular meshes.
This is literally taking the geometry from point clouds for
granted. Since the connectivity in triangular meshes dictates
the complete geometry of shapes and surfaces, a suboptimal
triangulation could cause the inaccuracy in the computed
geometric quantities. The error is more serious than it may
seem, since many geometric quantities of interest are of sec-
ond or higher order, such as the mean and Gaussian cur-
vatures. More seriously, the topology of the triangulation
could be completely different from reality, which seriously
affects the high level understanding of shapes.

In applications such as data mining or machine learning,
data are usually represented in high dimensions for which
laying down a mesh or grid is often impossible. Hence point
cloud is the only feasible way to represent the data. How-
ever, it is believed that these data points may actually live on
a manifold with much lower intrinsic dimensions. Hence, it
is an important but challenging task to extract global infor-
mation and structure directly from point clouds. Mathemat-
ically and computationally one can obtain a lot of intrinsic
information by studying the behavior of differential equa-
tions, such as heat equation, or eigenvalue problem for dif-
ferential operators, such as Laplace-Beltrami operator, on
manifolds [6, 17, 26, 22, 30, 3, 11, 4].

In this paper we first propose a framework for approxi-
mating differential operator directly on point clouds based
on local surface reconstruction developed in the work by
Leung et al. [20] for solving PDEs on moving interfaces us-
ing grid based particle method. However, a major challenge
is to extract global information from the given point clouds
due to the lack of connectivity. A possible way to tackle
this problem is to create certain special designed tools to re-
cover point clouds’ global geometric information from their
local information. In this paper, we propose a novel use of
the Lalpace-Beltrami (LB) operator as a bridge linking lo-
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cal information and global information. First, generic LB
eigenfunctions of surfaces are Morse functions [31], which
can tell us the global topological information of surfaces.
As a high level understanding of surface’s global informa-
tion, surface skeletons can be constructed from LB eigen-
functions [29]. Second, the LB operator is closely related
to surface conformal mapping onto standard domains such
as the plane, the unit sphere and the n-torus under the uni-
formization theorem. Thus the LB operator can be used to
construct conformal maps from the given point clouds to
standard domains, where their known geometries plus the
constructed conformal maps can recover the geometries of
the point clouds.

In this paper, we first carefully describe our method to
approximate the LB operator on point clouds based on local
surface reconstruction by moving least square approxima-
tion, which is simple and accurate. By testing the operator
on surfaces with known geometry and/or eigenvalues, such
as the sphere and the torus, we show that our approximation
is more accurate than both method on point clouds and tri-
angular mesh based method. After that, skeleton structures
of point clouds are constructed using the first nontrivial LB
eigenfunction. Moreover, we illustrate how we can “con-
formally” map point clouds onto domains with completely
known geometry, and hence recover their intrinsic geome-
try. To demonstrate this, we further test our method on point
clouds reconstruction and texture mapping.

2. Theoretical Background
To clearly explain our idea of using the LB operator as

bridge to connect surface local and global geometric infor-
mation, we first introduce some theoretical background of
the LB operator and demonstrate how surface global infor-
mation can be obtained from it. For simplicity, we only
consider two-dimensional manifold in R3, we refer [8] to
readers for more details and definitions of the derivatives
for more general manifolds.

Let (M, g) be a smooth surface in R3 and (s1, s2) be
its local parametrization near some point p ∈ M. For a
smooth function f : M → R, the Laplace-Beltrami (LB)
operator ∆M acting on f near p is given by

∆Mf =

2∑
i,j=1

1
√
g

∂

∂si

(
√
ggij

∂f

∂sj

)
(1)

where the coefficients gij are the components of the in-
verse of the metric tensor G = [gij ] and g = det(G).
The above intrinsic LB operator is self adjoint and ellip-
tic, hence its spectrum is discrete. Denote the eigenval-
ues of ∆M as 0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · and the
corresponding eigenfunctions as φ0, φ1, φ2, · · · such that
−∆Mφn = λnφn, n = 0, 1, 2, · · · . We call {λi, φi}|∞i=0

an eigen-system of the LB operator on (M, g) [10].

According to the above formula (1), the action of LB
operator on any function is only determined by the local
geometric information of M. However, the eigenfunc-
tions of the LB operator can be utilized to extract surface
global information. One of evidences is a famous theorem
proved by Unlenbeck [31], generic LB eigenfunctions of
surfaces are morse functions, which enable LB eigenfunc-
tions as descriptors for the topologies of the surfaces. As
a demonstration of this theorem, surface skeleton, which
is an intuitive graph representation and high level realiza-
tion of surface global information [5], can be intrinsically
constructed using the Reeb graph of the first nontrivial LB
eigenfunction due to the recent work in [29]. In addi-
tion, a new surface quadrangulation can be also obtained
using the Morse-Smale complex of certain LB eigenfunc-
tion [13]. Moreover, LB eigenfunctions can be viewed as
either global or local embedding to analyze surface geomet-
ric structures [30, 7, 28, 17, 18].

Furthermore, the LB operator is also closely related to
harmonic maps between two surfaces. In particular, it is
the key part to construct global conformal structures for
genus-0 surfaces by minimizing the harmonic energy func-
tion [27].

Given two Riemann surfaces M and N with metrics g
and g̃ respectively. A diffeomorphism f : M → N intro-
duces a new Riemannian metric f∗(g̃) on M, induced by
f and g̃, called the pull back metric. We say that the map
f is conformal if f∗(g̃) = e2ug, where u : M → R is a
smooth function on M. A parametrization ϕ : R2 → M
is a conformal parameterization if ϕ is a conformal map.
Intuitively, a map is conformal if it preserves the inner prod-
uct of the tangent vectors up to a scaling factor, called the
conformal factor e2u. An immediate consequence is that
every conformal map preserves angles.

For genus-0 surfaces, conformal map is closely related
to harmonic map, which is defined to be a critical point of
the harmonic energy:

E(f) =
1

2

∫
M
e(f)dM (2)

where e(f) = ‖df‖2 =
∑
i,j=1,2 g

ij〈f∗∂xi , f∗∂xj 〉g̃ is the
energy density and f∗∂xi is the standard push-forward map.

For a map f : M → N between two genus-0 sur-
faces M and N , f is conformal if and only if it is a har-
monic map [27]. Therefore, the global conformal structure
of genus-0 surfaceM can be obtained by computing a con-
formal map between M and the unite sphere S2. More
importantly, the optimizer of the above harmonic energy
can be essentially obtained by gradient descent approaches,
which are highly related to computation of the LB operator
ofM [15, 14, 19]. Therefore, in our case of point cloud rep-
resentations of surfaces, we can expect to use LB operators
to extract the global conformal structures for point clouds
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of genus-0 surfaces.
In summary, we illustrate that LB operator can be viewed

as a bridge between local structures and global structures
for point clouds. In the rest of this paper, we will first show
our numerical approximation of LB operator for point cloud
representations of manifolds, and then demonstrate its capa-
bility to obtain global information of the given point cloud
by constructing its global skeleton structure and conformal
structure.

3. Approximation of Laplace-Beltrami Opera-
tor Based on Local Reconstruction

Given a point cloud P = {pi|i = 1, . . . , N} sampled
from a smooth surface/manifold, the first step of geometric
understanding is the construction of local geometry, which
allows intrinsic computations on surfaces, such as differen-
tiation. In particular, we are interested in defining the LB
operator on P . There are several different ways to construct
the LB operator due to different representations of surfaces.
Mesh based approaches are proposed in [25, 12, 33]. How-
ever, these methods typically assume a good triangulation,
which may be a challenging and costly task itself. Clos-
est point method is proposed to construct the LB operator
in [24]. The requirements of surface implicit representa-
tions and non-intrinsic uniform underlying volumetric grid
make their approximation inefficient. Point Cloud Data
(PCD) Laplace based on an integral approximation of the
LB operator is introduced in [4] . Although PCD Laplace
is the first provable reconstruction of the LB operator for
point clouds, it requires quite strict sampling conditions on
the point clouds and is not very accurate in practice. In
this section, we construct our LB operator based on local
moving least square approximation. For simplicity, we use
two-dimensional manifold in R3 to illustrate our approach,
it is straightforward to generalize the approach to higher di-
mensions, more details can be found in [23]. Comparison of
our approach to other methods will be discussed in section
5.1.

As shown in equation (1), there are two necessary re-
quirements, namely a local parametrization (s1, s2) near ev-
ery point pi ∈ P , and the derivatives of smooth functions
near pi. Since there is no connectivity information on P ,
for each point, we rely on its K nearest neighbors (KNN,
including itself) for local geometric understanding. LB op-
erator takes a function f : M → R as input and produces
another function ∆Mf : M → R as output. Numerically,
a function f defined on the manifold can be represented as
a N -dimensional vector F = [f(p1), . . . , f(pN )]

T . Since
LB operator is a linear operator, the discrete LB operator
can be represented by an N ×N matrix L.

In this section, we propose an algorithm which con-
structs our discrete LB operator for point clouds without
connectivity information. Our method proceeds in three

steps. First, we define at each point pi a local coordinate
system. Then we use moving least square (MLS) to cal-
culate a bivariate polynomial which best approximates the
surface locally. In this paper we use quadratic polynomial
although higher order polynomial can be used if necessary.
In the last step, we modify the classical MLS by introducing
a special weight function to locally approximate any func-
tion f defined onM.

3.1. Computation of Local Coordinate System

Denote the indices set of KNN of each point pi ∈ P by
N(i), it is widely accepted and justified that the normal and
the local coordinates ofM at p can be approximated well
using principal component analysis (PCA) [16, 9]. Using
the covariance matrix Pi of N(i), defined by:

Pi =
∑

k∈N(i)

(pk − ci)T (pk − ci) (3)

we can estimate some local geometric information near pi.
Here, ci is the local barycenter ci = 1

K

∑
k∈N(i) pk. The

eigenvectors (ei1, e
i
2, e

i
3) of Pi form an orthogonal frame

associated with eigenvalues (λi1, λ
i
2, λ

i
3) with λi1 ≥ λi2 ≥

λi3 ≥ 0. For ease of computation, pi is always taken
as the origin of the local coordinate system, and vectors
(ei1, e

i
2, e

i
3) form the orthogonal axes near pi. In this way,

we have defined a local coordinate system 〈pi; ei1, ei2, ei3〉
at each point in P . KNN of pi have local coordinates
(xik, y

i
k, z

i
k), which will be used for surface and function

approximations.

3.2. Surface Approximation Using Moving Least
Square

Approximation of surfaces using MLS has been pro-
posed in [21, 1], and is shown to be effective in modeling lo-
cal surface geometry. With important geometric quantities
such as the mean and Gaussian curvatures being of second
order, it suffices to compute a degree 2 polynomial which
fits best to the KNN at each point. Once a local coordinate
system for a point pi is constructed, a local degree 2 bivari-
ate polynomial zi(x, y) is approximated by minimizing the
following weighted sum:∑

k∈N(i)

w(‖pk − pi‖)
(
zi(x

i
k, y

i
k)− zik

)2
(4)

where w(·) is some positive weight function and
(xik, y

i
k, z

i
k) are local coordinates of point pk in the KNN of

pi. A typical choice is w(d) = exp (− d2

h2 ) and we choose
h = maxk∈N(i) ‖pk − pi‖. Γi = (x, y, zi(x, y)) is thus a
smooth representation of the surface near the point pi under
local coordinate system 〈pi; ei1, ei2, ei3〉.

With this local parametric approximation, we can easily
compute the metric tensor and other important quantities.
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For example, the LB operator (1) can be written as a linear
combination of derivatives on the surface, given by

∆Mf = α1
∂f

∂x
+α2

∂f

∂y
+α3

∂2f

∂x2
+α4

∂2f

∂x∂y
+α5

∂2f

∂y2
(5)

where αi’s are obtained by expanding and simplifying equa-
tion (1) and they only depend on coefficients of local surface
approximation zi(x, y). In the next subsection, we show
how this can be combined with the local approximation of
functions on M to give a linear operator representing the
LB operator.

3.3. Function Approximation Using Moving Least
Square

In order to perform intrinsic computations on M, such
as differentiation or computing the LB operator acting on
a function on M, it is necessary to approximate functions
onM. Again, we use MLS to locally approximate a func-
tion f on M by constructing a degree 2 bivariate polyno-
mial approximation Fi(x, y) which minimizes the follow-
ing weighted sum:∑

k∈N(i)

w(‖pk − pi‖)
(
Fi(x

i
k, y

i
k)− fk

)2
(6)

where fk = f(pk). Once we have the approximation
Fi(x, y), computing derivatives becomes straight forward.

Since Fi is a degree 2 bivariate polynomial, it takes the
form Fi(x, y) = ci1 + ci2x + ci3y + ci4x

2 + ci5xy + ci6y
2.

Finding the minimizer of (6) amounts to setting its partial
derivatives to zero. This gives the following linear system:∑

wkV
i
k (V ik )TCi =

∑
wkV

i
kfk (7)

where wk = w(‖pk − pi‖), Ci =
[
ci1, c

i
2, c

i
3, c

i
4, c

i
5, c

i
6

]T
and V ik =

[
1, xik, y

i
k, (x

i
k)2, xiky

i
k, (y

i
k)2
]T

. We can write
solution to this system as Ci = M iF , where M i is some
6 × N matrix. Since we set pi to be the origin of the lo-
cal coordinate system, partial derivatives of f can be easily
computed. For example, ∂f∂x (pi) = ci2. Now, using equation
(5), we can easily write the approximation of the LB op-
erator as ∆Mf(pi) = LiF , where Li is some row vector.
Therefore, the i-th row of our MLS LB operator is simply
Li.

The choice of weight w(d) in equation (6) is crucial to
make the discrete LB operator accurate and robust with re-
spect to noise and non-uniform data especially since the
eigenvalue problem is a non-local problem. After exten-
sive testing, we find that some commonly used weight func-
tions, such as w(d) ≡ 1, w(d) = exp (− d2

h2 ), w(d) =
(1− d/h)4(4d/h+ 1) or w(d) = 1

d2+ε2 , do not work very
well for our problem. For w ≡ 1, it does not give good ac-
curacy since the construction is not localized enough. The

other three give accurate local approximation for the LB
operator. However, they lack enough overlap among lo-
cal reconstructions to enforce communication among data
points especially when the point cloud is non-uniform. This
makes them fail when we use them to compute global geo-
metric information, such as eigenvalues and eigenfunctions.
According to our experiments, we find that best results are
achieved by choosing a special weight function as the fol-
lowing:

w(d) =

{
1, if d = 0

1/K, if d 6= 0
(8)

which keeps a balance between accurate local approxima-
tion and global communication.

Remark 1 We refer readers to [23] for convergence of our
MLS LB operator and more details in high-dimensional
manifold case. Also, [23] gives a constraint quadratic op-
timization approach for approximating LB operator which
guarantees diagonal dominant property for the resulting
matrix, which preserves some desired property of the con-
tinuous operator.

4. Geometric Understanding of Point Clouds
In this section, we use our discrete LB operator to solve

some interesting problems related to geometric understand-
ing of point clouds. We first solve the well-studied LB
eigenvalue problem. Then, we use the first non-trivial
LB eigenfunction to construct global skeleton structures
for point clouds. Finally, based on the recent algorithm
proposed in [19], we adapt it to find conformal mappings
from point clouds of simply connected closed surfaces onto
spheres. This allows us to find the conformal structures on
these surfaces, which give the complete geometric informa-
tion for point clouds.

4.1. Solving Eigenvalue Problem

The eigenvalue problem for a smooth manifold is de-
fined as finding eigenvalues and eigenfunctions of the cor-
responding LB operator−∆Mφ = λφ. Using our MLS LB
operator defined above, eigenvalue problem for point clouds
sampled from manifolds becomes

− LΦ = λΦ (9)

where Φ = [φ(p1), · · · , φ(pN )]
T is the N -vector repre-

sentation of φ. Solving the above spectral decomposition
problem is a well-known problem in numerical linear alge-
bra. For example, in MATLAB we can use function eig() to
compute the complete decomposition or the function eigs()
to compute part of the spectrum. Comparison of our ap-
proach with Point Cloud Data (PCD) Laplace [4] and finite
element method [12] will be discussed in section 5.1.
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4.2. Construction of Skeletons from Point Clouds

Based on the first nontrivial eigenfunction, a novel ap-
proach of computing surface skeletons is proposed in [29],
where the construction of skeleton is realized by construct-
ing Reeb graphs from the first nontrivial LB eigenfunction.
Their idea is to define the Reeb graph R(φ1) of φ1 as the
quotient space defined through the equivalent relation x ∼ y
if φ1(x) = φ1(y) for x, y ∈ M. We adapt their method
to construct skeletons for point clouds without connectivity
information. We solve eigenvalue problem (9) to obtain the
first non-trivial eigenfunction φ1. By connecting barycen-
ters of level sets of φ1, one can find skeleton of the point
cloud.

Given the first nontrivial LB eigenfunction φ1 and its lo-
cal polynomial approximation Φ1 using approach proposed
in section 3.3, the level contour φ1 = c can be computed.
For each pi such that φ1(pi) ∈ [c− δ, c+ δ], we find a point
p that is the minima of the following:

min
p
‖p− pi‖2 + β(Φ1(p)− c)2 (10)

By choosing δ small and β large, we find a point that is
close to pi and its function value is close to c. Once all
level contours of φ1 are computed, we take their barycenter
as the skeleton point of that level set. By connecting these
barycenters, the skeleton structure for the given point cloud
can be obtained.

4.3. Construction of Conformal Mappings from
Point Clouds

As long as the LB operator can be locally approximated
for a given point cloud, we can extract global geometric
structures of the given point cloud. As an example, we
adapt the efficient harmonic energy minimization algorithm
in [19] to study global conformal structures for point clouds
of genus-0 surfaces.

Given a genus-0 surfaceM, its conformal structure can
be obtained by conformal map from M to the sphere S2.
Gu et al. [15, 14] propose realizing conformal map between
genus-0 surfaces as a harmonic energy minimization prob-
lem, which is implemented by gradient descent of harmonic
energy and projection back to the sphere. More recently,
a more efficient algorithm for harmonic energy minimiza-
tion problem from genus-0 surfaces to sphere is proposed
in [19], where authors consider the harmonic energy mini-
mization problem fromM to S2 to the following optimiza-
tion problem with spherical constraints:

min
~F=(f1,f2,f3)

E(~F ) =
1

2

∫
M

∑
i=1,2,3

‖∇Mfi‖2dM

s.t. ‖~F (x)‖ =
√
f21 + f22 + f23 = 1, ∀x ∈M

(11)

Write H = ∇E(~F ) = −(∆Mf1,∆Mf2,∆Mf3) as the
Fréchet derivative of E(~F ) with respect to ~F and define a
skew-symmetric matrix A := H ~F ∗ − ~FH∗. Similar as the
algorithm for orthogonality constraint proposed in [32], a
update path ~Y [τ ] := ~F− τ

2A(~F+~Y [τ ]) is proposed in [19],
which has the following property:

Proposition 1 For every τ , Y [τ ] satisfies ‖~Y [τ ](x)‖ = 1
point-wise. In addition, it is given in the closed-form

~Y [τ ] =
(
I +

τ

2
A
)−1 (

I − τ

2
A
)
~F (12)

which can be computed as ~Y [τ ] = α[τ ]~F + β[τ ]H , where

α[τ ] =

(
1 + τ

2 〈~F (x), H(x)〉
)2
−
(
τ
2

)2 ‖~F (x)‖2‖H(x)‖2

1−
(
τ
2

)2 〈~F (x), H(x)〉2 +
(
τ
2

)2 ‖~F (x)‖2‖H(x)‖2

β[τ ] =
−τ‖~F (x)‖2

1−
(
τ
2

)2 〈~F (x), H(x)〉2 +
(
τ
2

)2 ‖~F (x)‖2‖H(x)‖2

Note that the key of the update path ~Y [τ ] is computation
ofH . Our problem of computing conformal map from point
clouds of genus-0 surfaces to the sphere can be view as the
discretization of the continuous problem (11). Using our ap-
proximation of LB operator, the above update path can be
fully adapted to compute conformal map of point clouds.
Furthermore, nonmonotone curvilinear search with an ini-
tial step size determined by the Barzilai-Borwein formula
[2, 34] can be used to speed up the whole process, which is
exact the same as the algorithm used in [19]. Moreover,
a conformal correction technique based on weighted LB
eigensystem is introduced in [19] to remove folding issues
for mapping surfaces with long and sharp features. Their
technique can also be adapted here to compute conformal
map of point clouds for genus-0 surfaces with complicated
structures.

5. Experimental Results
In this section, we present the results of our algorithm on

various point clouds data. First, we compare our approx-
imation of LB operator with the Point Cloud Data (PCD)
Laplacian [4] and mesh based method [12], and show that
our method obtains better accuracy compared to these ap-
proaches. The eigenfunctions of several point clouds are
presented to show the robustness of our method. Next, we
demonstrate that our numerically computed LB eigenfunc-
tions can be used to extract skeletons from point clouds. Fi-
nally, we show that our method can be used to compute con-
formal mapping effectively, and obtain triangular meshes
and texture mapping directly from point clouds. This shows
that our method can be applied to extract both geometric in-
formation and high level understanding of point clouds.
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sample size 1002 1962 4002 7842 16002
MLS Laplacian

λ = 20 0.0516 0.0306 0.0135 0.0046 0.0020
λ = 72 0.1541 0.0774 0.0476 0.0298 0.0138

PCD Laplacian
λ = 20 0.0773 0.0487 0.0431 0.0411 0.0403
λ = 72 0.1391 0.1174 0.1128 0.1108 0.1100

finite element method
λ = 20 0.0165 0.0085 0.0042 0.0021 0.0010
λ = 72 0.0660 0.0342 0.0169 0.0087 0.0043

Table 1. Emax errors for uniform sampling on unit sphere.

5.1. Comparison of Laplace-Beltrami Operator Ap-
proximated by Different Methods

We first test our MLS LB operator for LB eigenvalue
problems on point clouds of sphere and torus, where the ex-
act closed form solutions are known. For sphere, we test
point clouds uniformly sampled from unit sphere. For the
regular point cloud of the torus, points are sampled regu-
larly and evenly from its standard parametric form using
two parameters.

On the unit sphere, the exact value of the n-th eigenvalue
is given by λn = n(n + 1), with multiplicity 2n + 1. To
measure the error of the MLS LB operator in computing
eigenvalues, we compute the normalized error Emax,n =

max(
|λ̃n,i−λn|

λn
), where λ̃n,i’s are the eigenvalues computed

from the MLS LB matrix L for eigenvalue λn, and i runs
over each multiplicity. Emax,n represents the worst possible
error in computing λn. We show Emax,n for λ = 20 and 72
in Table 1 of our MLS method, the method in Belkin et
al. [4], and mesh based method [12]. It can be seen that
the error of our approach is of the same order as the mesh
based method, while we are more accurate by at least an
order compared to the PCD Laplacian method. The results
for non-uniform point clouds sampled on the unit sphere are
similar.

We also test our method by looking at how accurately
our method computes the Laplacian of functions on point
clouds of the torus with major radius 1 and minor radius
0.2. “Ground truth” eigenvalues are not available, instead
we compute the L∞ error for the functions f = z, z2, ez

on the torus, where z is the third coordinate in 3D, and the
closed forms of their surface Laplacians are known. The
L∞ error is defined as E∞ = ‖Û−U‖∞

‖U‖∞ , where U is the

known value of ∆f in its closed form, and Û is the result
by applying different discrete LB operators on f . In this
test, both errors in the MLS LB and the PCD Laplacian
operator decrease at a rate of around 1/N . However, our
method achieves consistently better results than the PCD
Laplacian in this test. The error for mesh-based method,
however, blows up since some triangles in the mesh are de-
generate. The actual values for the errors are shown in Table

sample size 1080 1920 4320 8892 17280
MLS Laplacian

f = z 0.2054 0.1108 0.0457 0.0257 0.0109
f = z2 0.1039 0.0842 0.0344 0.0388 0.0209
f = ez 0.1699 0.0926 0.0383 0.0212 0.0104

PCD Laplacian
f = z 0.1163 0.1558 0.0872 0.0961 0.0808
f = z2 0.0993 0.1239 0.1150 0.1240 0.1002
f = ez 0.1070 0.1512 0.0829 0.0841 0.0775

finite element method
f = z 0.4761 0.4996 0.9354 9.3957 7.0114
f = z2 0.4659 0.4791 0.9965 5.8476 6.4285
f = ez 0.4270 0.4948 0.8735 6.8495 4.8258

Table 2. E∞ errors for uniform sampling on torus.

sample size 3375 8000 15625 27000 46656
MLS Laplacian

f = x 0.0448 0.0249 0.0158 0.0109 0.0076
f = x2 0.00095 0.00043 0.00023 0.00014 0.00009
f = ex 0.0263 0.0146 0.0096 0.0069 0.0046

Table 3. E∞ errors for uniform sampling on T 3.

2. This shows that our method is the best among the three.
We conclude this subsection by presenting a high dimen-

sion example to show the applicability of our approach to
high dimensional point clouds. Consider eigenvalue prob-
lem for flat 3-torus T 3, a three dimensional manifold em-
bedded in R6 parameterized as

Γ = (cosα, sinα, cosβ, sinβ, cos θ, sin θ) (13)

with α, β, θ ∈ [0, 2π]. Using our approach, the manifold is
locally approximated as

Γ = (x1, x2, x3, y1(x1, x2, x3),
y2(x1, x2, x3), y3(x1, x2, x3))

(14)

and the eigenfunction φ is locally approximated as
Φ(x1, x2, x3), where y1, y2, y3 and Φ are 3-dimensional de-
gree 2 polynomials. Our method applies to this 3D manifold
in R6 in a straight forward way. “Ground truth” eigenval-
ues and their multiplicities are not available, instead we use
some test functions to measure the error. We compute the
L∞ error for ∆Mf for the functions f = x, x2, ex on T 3,
where x is the first coordinate inR6, and the closed forms of
their surface Laplacians are known. The results are reported
in Table 3.

5.2. Applications of Our Method in Geometric Un-
derstanding of Point Clouds

In this subsection, we present applications in geometric
understanding of point clouds, namely the computation of
the LB eigenfunctions from point clouds, the extraction of
skeletons from point clouds, and computation of conformal
structures from point clouds.
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5.2.1 Computation of Laplace-Beltrami Eigenfunc-
tions from Point Clouds

Since the MLS LB operator we defined has the same size as
the discrete LB operator using finite element method, com-
putation of eigenfunctions on point clouds using our method
is as efficient as the finite element method, with the addi-
tional advantage that connectivity is unnecessary and the ac-
curacies are comparable. We computed some sample eigen-
functions from point clouds of different geometries, includ-
ing the sphere, the torus, a complicated knot, the Stanford
Bunny, the 2-torus and the Armadillo. As shown in Figure
1, the computed eigenfunctions color-coded on these shapes
are smooth and our method works without knowing connec-
tivity information.

Figure 1. Eigenfunction examples. The above figures show 2 non-
trivial eigenfunctions computed by our MLS LB operator for sev-
eral point clouds data.

5.2.2 Computation of Skeletons from Point Clouds

Using the first non-trivial eigenfunction computed by the
MLS LB operator, we compute skeletons for several point
clouds using algorithm proposed in section 4.3. As shown
in Figure 2, the extracted skeletons agree well with our in-
tuition of the most essential feature, or a “backbone” con-
stituting a shape. This shows that our method is able to
achieve high level understanding of the raw data of point
clouds, which are only myriads of points in the 3D space in
a low level sense.

5.2.3 Computation of Conformal Structures from
Point Clouds

Finally, we demonstrate the use of the MLS LB operator to
recover the geometry from point clouds. This is achieved by
computing a conformal mapping from a point cloud onto a

Figure 2. Skeletons examples. The first row: surfaces are color-
coded by their first non-trivial eigenfunctions φ1 computed by
MLS LB operator. The second row: skeletons computed by our
proposed algorithm. Blue dots are data points, black curves are
the level contours of φ1, red dots are centers of the corresponding
level set curves and red lines are the resulting skeletons.

sphere using the algorithm in Section 4.3. Once a confor-
mal mapping is computed, the point cloud directly inher-
its full connectivity and conformality information from the
unit sphere. As shown in Figure 3, we apply our algorithm
to the point clouds of a fish and the Stanford bunny. After
both connectivity and conformality are found, we apply a
texture mapping on the point clouds to show their confor-
mal structures. Locally, the checkerboard patterns are very
close to squares, indicating that our algorithm successfully
captures the complete geometric information on these point
clouds.

Figure 3. Texture mapping examples. The first row: point clouds
of fish and bunny. The second row: texture mappings computed
by our proposed algorithm.

7



6. Conclusion

In this paper, we develop a simple, efficient and accu-
rate algorithm for geometric understanding for point clouds
using Lalplace-Beltrami (LB) operator. Our approxima-
tion of differential operator is based on local moving least
square reconstruction of the surface. We show its advan-
tages over two other methods in the literature. Using LB op-
erator, we demonstrate several applications on point clouds,
where traditionally, global triangulations are required, in-
cluding the computation of LB eigenfunctions, the extrac-
tion of skeletons from point clouds, and the computation of
conformal structures and complete geometries from point
clouds. These promising results represent a novel approach
of 3D modeling and geometric understanding without tri-
angular meshes. In the future, we will look into more ap-
plications of this approach, such as solving PDEs on point
clouds, shape classification and analysis for point clouds.
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