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Abstract

Cheeger cut has recently been shown to provide excellent classification results for two classes. Whereas
the classical Cheeger cut favors a 50-50 partition of the graph, we present here an asymmetric variant
of the Cheeger cut which favors, for example, a 10-90 partition. This asymmetric Cheeger cut provides
a powerful tool for unsupervised multi-class partitioning. We use it in recursive bipartitioning to detach
one after the other each of the classes. This asymmetric recursive algorithm handles equally well any
number of classes, as opposed to symmetric recursive bipartitioning which is naturally better suited for
2m classes. We obtain an error classification rate of 2.35% and 4.07% for MNIST and USPS benchmark
datasets respectively, drastically improving the former 11.7% and 13% error rate obtained in the literature
with symmetric Cheeger cut bipartitioning algorithms.

1 Introduction

Partitioning data points into sensible groups is a fundamental problem in machine learning and science
in general. Given a set of data points V = {x1, . . . , xn} and similarity weights {wi,j}1≤i,j≤n, an efficient
approach is to find a balanced cut of the graph of the data. A popular balanced cut is the Cheeger cut
[5] defined as a minimizer of

C(S) =

∑
xi∈S

∑
xj∈Sc wi,j

min{|S|, |Sc|} (1)

over all the subset S ⊂ V . Here |S| is the number of points in S. The above balanced cut problem is
NP-hard and approximate solutions are therefore needed. To this aim spectral clustering methods are
widely used. They consist in minimizing the Rayleigh quotient

E(f) =
1
2

∑
i,j wi,j |fi − fj |

2∑
i |fi −m2(f)|2 (2)

over the function f : Ω → R. Here m2(f) stands for the mean of f . The minimizer of (2) is the first
nontrivial eigenvector of the Graph Laplacian matrix and therefore it can be computed very efficiently
with standard linear algebra software for very large data set. Unfortunately the approximation provided
by spectral clustering methods can be weaker than the solutions of (1) and therefore can fail to cluster
somewhat benign problems; for example the two-moon example.

The authors of [3] introduce the `p, 1 < p < 2, equivalent of (2)

E(f) =
1
2

∑
i,j wi,j |fi − fj |

p∑
i |fi −mp(f)|p , (3)

where mp(f) = argminc
∑
i |fi−c|

p. For p close to 1, minimizing this energy gives a better approximation
of the Cheeger cut than the one provided by (2). In [16] and subsequently in [10, 11, 2] it was proposed
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to use `1 optimization techniques from image processing to directly work with the `1 problem

E(f) =
1
2

∑
i,j wi,j |fi − fj |∑
i |fi −m1(f)| (4)

where m1(f) is the median of f . The minimum of this energy is achieved by the indicator function of
the Cheeger cut, therefore minimizing (4) provides a tight relaxation of the Cheeger cut problem (1).
Unfortunately, there is no algorithm that guarantees to find solutions to this `1 relaxation problem.
Nevertheless, experiments in [16, 10] report high quality cuts for data clustering, outperforming spectral
clustering methods. Solving problem (4) is not as fast as solving problem (2), but recent advances in
`1 optimization offer powerful tools to design fast and accurate algorithms to solve the minimization
problem (4). Other `1 related approach based on phase field modeling has been introduced in [1]. We
also notice that total variation-based algorithms on graph have been used in image processing in the
context of image denoising with intensity patches [8, 12].

Minimizing (1) favors a 50\50 partition of the graph. In this work we introduce an asymmetric
variant of the Cheeger cut which favors a θ\(1 − θ) partition. This asymmetric Cheeger cut provides a
powerful tool for multi-class data partitioning. It allows one to detach each class one after the other as
opposed to recursively dividing the data set into two equal groups of classes as it is done with symmetric
cut. Whereas recursive bipartitioning with symmetric cut is naturally better suited for 2m classes, our
asymmetric partitioning algorithm handles equally well any number of classes. In a recent work [11],
other interesting variants of the Cheeger cut have been investigated.

In section 2 we present the asymmetric Cheeger cut as well as its tight relaxation. In section 3 we
present our asymmetric recursive bipartitioning algorithm and we illustrate on a simple example how
it outperforms symmetric recursive bipartitioning algorithm when the number of class is not dyadic
(i.e. a power of two). In section 4 we introduce the optimization scheme and in section 5 we provide
experimental results on the MNIST and USPS datasets, demonstrating drastic improvements compared
to previous Cheeger cut bipartitioning algorithms [16, 10, 11, 2].

2 Asymmetric Cheeger cut

Fix a set of points V = {x1, . . . , xn} and a nonnegative symmetric matrix {wi,j}1≤i,j≤n which collects
the relative similarities between the points of V . Let λ > 0 and θ = (1 + λ)−1. The λ-asymmetric
Cheeger cut problem is:

minimize Cλ(S) =

∑
xi∈S

∑
xj∈Sc wi,j

min{λ|S|, |Sc|} (5)

over all the subset S ⊂ V . Note that in order to maximize the denominator, one need to choose a subset
S which satisfies

λ|S| = |Sc|, or equivalently |S| = θn

from which we see that the λ-asymmetric Cheeger cut favors a θ\(1 − θ) partition of the graph. Note
that the energy Cλ is asymmetric in the sense that Cλ(S) 6= Cλ(Sc).

Problem (5) has the following tight continuous relaxation:

minimize Eλ(f) =
1
2

∑
i,j wi,j |fi − fj |

infc
∑
i |fi − c|λ

=
1
2

∑
i,j wi,j |fi − fj |∑
i |fi −mλ(f)|λ

(6)

over the nonconstant functions f : V → R. Here the asymmetric absolute value | · |λ is defined by

|x|λ =

{
x if x ≥ 0

−λx if x < 0

and the λ-median µλ(f) is defined by

µλ(f) = min{c ∈ range(f) satisfying |{f ≤ c}| ≥ θn}. (7)

In (6) the notation fi stands for f(xi) and in (7) the notation {f ≤ c} stands for {xi ∈ V : f(xi) ≤ c}.
The following theorem precises in which sense the relaxation (6) is tight.
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Theorem 1. Let S∗ be a global minimizer of Cλ over the subset S ⊂ V . Then for any a < b, the binary
function

f∗(xi) =

{
a if xi ∈ S∗

b if xi ∈ (S∗)c
(8)

is a global minimizer of Eλ over the non-constant functions f : V → R.

The proof of this result, which can be found in the appendix, is standard and follows the same steps
than in [6]. See also [16] for an alternative proof based on [14].

3 Asymmetric recursive bipartitioning

Suppose that we want to divide a data set V = {x1, . . . , xn} into k groups of comparable size – that is
the size of every group is somewhere around n/k. By using the asymmetric Cheeger cut with θ = 1/k, we
first try to detach from the data set a group of approximatively n/k points. We then repeat the process
with the remaining points (and with suitable θ in order to keep aiming for groups of approximatively
n/k points).

In practice the above algorithm may detach two or three groups at once. In order to remedy this
problem, each extracted group Vi is revisited and tested for possible cutting. This leads to the recursive
bipartitioning algorithm described in 1.

Algorithm 1 Asymmetric Cheeger cut recursive bipartitioning algorithm

while number of clusters l < k do
Let V1, . . . , Vl be the clusters and let n1, . . . , nl be their size.
Tentatively divide each cluster Vi with a λ-asymmetric Cheeger cut where λ satisfies:

ni
λ+ 1

=
n

k
, that is λ = k(ni/n)− 1.

Among all these l divisions, keep the one with smallest λ-asymmetric Cheeger cut value Cλ.
Now we have l + 1 clusters.

end while

Compared to previous symmetric Cheeger–based bipartioning algorithms which are naturally better
suited for a dyadic number classes [16, 10, 11, 2], our asymmetric bipartitioning algorithm allows us to
handle arbitrary number of classes and greatly outperforms symmetric bipartitioning algorithms when
the number of classes is not 2m. This is illustrated on a five-moon example on Figure 1. Each moon has
1000 data points in R100.

4 Algorithm

This section presents an algorithm for

min
f :V→R

∑
i,j wi,j |fi − fj |∑
i |fi −mλ(f)|λ

. (9)

No algorithm can guarantee to compute global minimizers of (9) as the problem is non-convex. However,
recent advances in `1 optimization offer powerful tools to design fast and accurate algorithms to solve
problems of the form (9). We develop here an algorithm based on [7, 17, 15]. Let T (f) :=

∑
i,j wi,j |fi−fj |

and L(f) :=
∑
i |fi|λ. Observe now that minimizing (9) is equivalent to:

min
f :V→R

T (f)

L(f)
s.t. mλ(f) = 0, (10)

as the ratio energy is unchanged by adding a constant. So the minimization problem can be restricted
to functions with zero λ-median. The next step applies the method of Dinkelbach [7] to replace the ratio
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(a) (b)

Figure 1: Comparison between symmetric and asymmetric Cheeger cut recursive bipartioning algorithms.
The asymmetric algorithm aims at extracting one class at a time as opposed to the symmetric algorithm
which divides at each stage every group into two sub-groups of comparable size. In the above five-moon
example, the symmetric algorithm fails because five is not a dyadic integer.

minimization problem into a sequence of parametric problems:{
fk+1 = arg minf T (f)− ηkL(f) s.t. mλ(f) = 0

ηk+1 = T (fk+1)

L(fk+1)

(11)

The previous iterative scheme is not guaranteed to converge to a solution of (9) because of the nonlinear
λ-median constraint. Without considering the median constraint, the `1 minimization problem in (11)
is a minimization problem of a difference of convex functions, which can be solved accurately using
a proximal method as proposed e.g. in [17, 15]. We propose the following approximate algorithm to
minimize T (f)− ηL(f) s.t. mλ(f) = 0. The implicit explicit gradient flow is:

fn+1−fn
τn

= −
(
∂T (fn+1)− η∂L(fn)

)
s.t. mλ(f) = 0, (12)

or equivalently fn+1−(fn+τnη∂L(fn))
τn

= −∂T (fn+1) s.t. mλ(f) = 0, which leads to the iterative scheme:{
en+1 = fn + τnη∂L(fn)
fn+1 = arg minf { T (f) + 1

2τn
||f − en+1||22 s.t. mλ(f) = 0 }. (13)

The first step of the above scheme is simply given by en+1 = fn + τnη signλ(fn) where

signλ(x) =

{
−λ if x < 0

1 if x ≥ 0
.

Without the λ-median constraint the second step would be a standard ROF problem [13] that can be
solved efficiently using approaches such as augmented Lagrangian method [9] or primal-dual method [4].
We artificially enforce the λ-median constrain by substracting at each iteration of the ROF algorithm
the λ-median from the current function. To summarize, the proposed algorithm to solve the asymmetric
Cheeger minimization problem (9) is given by Algorithm 2.

4



Algorithm 2 Asymmetric Cheeger cut (9)

fk=0 indicator function of a random data point
while outer loop not converged do
fk+1 given by inner loop
while inner loop not converged do
en+1 = fn + τnηksignλ(fn)
fn+1 = arg minf { T (f) + 1

2τn ||f − e
n+1||22 s.t. mλ(f) = 0 }

end while
ηk+1 = T (fk+1)

L(fk+1)

end while

Asymmetric algorithm Symmetric algorithm
MNIST 2.35% 11.72%
USPS 4.07% 28.49%

Table 1: Comparison between the asymmetric recursive bipartioning algorithm and the symmetric recursive
bipartioning algorithm with all 10 classes.

Asymmetric algorithm Symmetric algorithm
8-class MNIST 2.31% 2.28%
8-class USPS 4.43% 4.32%

Table 2: Comparison between the asymmetric recursive bipartioning algorithm and the symmetric recursive
bipartioning algorithm with 23 classes (the 0s and 1s were taken out).

5 Experiments

In all experiments we use a 10 nearest neighbors graph with the self-tuning weights as in [18] (the neighbor
parameter in the self-tuning is set to 7 and the universal scaling to 1).

We test our asymmetric Cheeger cut recursive bipartioning algorithm on the MNIST and USPS
datasets. The MNIST dataset is available at http://yann.lecun.com/exdb/mnist/. This dataset consists
of 70,000 28×28 images of handwritten digits, 0 through 9. Each digit is approximatively equally repre-
sented. Note that we combine the training and test samples. The data was preprocessed by projecting
onto 50 principal components. The USPS dataset is available at http://www-stat-class.stanford.edu/∼tibs/
ElemStatLearn/. This dataset consists of 9,298 16×16 images of handwritten digits, 0 through 9. The 0s
and the 9s are twice more represented than other digits. We also combine the training and test samples.
The data was not preprocessed.

Tables 1 and 2 compare the asymmetric Cheeger cut recursive bipartioning algorithms, Algorithm 1,
and the symmetric algorithm (that is Algorithm 1 where λ is always equal to 1). Table 1 consider the
original MNIST and USPS datasets with 10 classes and Table 2 consider modified MNIST and USPS
datasets with only 23 classes (the 0s and 1s were taken out). Note that the asymmetric and symmetric
algorithms perform comparably for 23 classes, but the asymmetric algorithm greatly outperforms the
symmetric one when the original datasets are considered.

Tables 3 and 4 show the confusion matrix for the MNIST and USPS using the asymmetric recursive
bipartioning algorithm.

Recently reported results in multi-class unsupervised Cheeger-based classification [16, 10, 11, 2] obtain
error rates above 11.7% for MNIST and 13% for USPS. Therefore, the 2.35% and 4.07% error rates
reported in this work represent a significant improvement.
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mode/true 0 1 2 3 4 5 6 7 8 9
0 6853 1 19 1 3 11 12 6 3 13
1 3 7631 6 3 5 0 4 17 30 5
2 8 160 6860 37 3 3 3 27 12 3
3 0 2 11 6901 1 59 0 1 45 103
4 0 19 4 1 6650 7 6 11 10 50
5 4 1 0 45 0 6130 31 0 19 14
6 20 4 6 1 20 42 6806 0 10 5
7 1 12 58 37 11 3 0 7153 8 29
8 10 5 21 73 5 27 14 6 6664 29
9 4 42 5 42 126 31 0 72 24 6707

Table 3: The confusion matrix for the clustering of MNIST using the asymmetric recursive bipartioning
algorithm. Compared to the confusion matrix of the symmetric recursive bipartioning algorithm available
in [16], the asymmetric algorithm does not merge the 4s and 9s, producing an accurate classification result.

mode/true 0 1 2 3 4 5 6 7 8 9
0 1250 0 0 3 0 1 0 2 0 0
1 3 889 7 2 3 3 1 2 0 5
2 0 5 775 0 5 0 1 30 2 1
3 3 6 0 789 2 4 13 4 28 1
4 0 1 23 1 687 3 0 8 1 3
5 3 1 0 6 3 810 0 0 0 4
6 1 9 3 2 0 0 758 5 14 0
7 0 3 9 0 2 5 2 649 2 0
8 9 1 2 47 4 0 17 2 774 1
9 0 14 5 2 10 8 0 6 0 1538

Table 4: The confusion matrix for the clustering of USPS using the asymmetric recursive bipartioning
algorithm. The asymmetric algorithm produces an accurate classification result.

6 Appendix

We first enumerate some elementary properties of the λ-median mλ = mλ(f):

Lemma 1. (i) mλ ∈ argminc
∑
i |fi − c|λ.

(ii) λ|{f < mλ}| < |{f ≥ mλ}| and λ|{f ≤ mλ}| ≥ |{f > mλ}|.
(iii) λ|{f < c}| < |{f ≥ c}| for all c < mλ and λ|{f < c}| ≥ |{f ≥ c}| for all c > mλ.

Proof. Let range(f) = {c1, . . . , cl} with c1 < c2 < . . . < cl. Also let nk = |{f ≤ ck}| = |{f < ck+1}|.
Clearly 0 < n1 < n2 < . . . < nl = n. From the definition of the λ-median (7), we see that mλ = ck0
where n

λ+1
∈ (nk0−1, nk0 ]. So we have

λnk0−1 < n− nk0−1 and λnk0 ≥ n− nk0
λ|{f < ck0}| < |{f ≥ ck0}| and λ|{f ≤ ck0}| ≥ |{f > ck0}|.

This proof (ii). Statement (iii) is direct consequence of (ii). We now turn to the proof of (i). Define the
convex function Φ(c) =

∑
i |fi − c|λ. For ε > 0 small enough we have

Φ(ck0 + ε) = ε (λ|{f ≤ ck0}| − |{f > ck0}|) ≥ 0

Φ(ck0 − ε) = ε (|{f ≥ ck0}| − λ|{f < ck0}|) > 0

and therefore ck0 is a global minimizer.

We now turn to the proof of Theorem 1.
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Proof of Theorem 1. Let hλ = minS⊂V Cλ(S) and let f : V → R be a nonconstant function with λ-
median mλ. Then, following [6, Theorem 2.9],

1

2

∑
i,j

wi,j |fi − fj | =
∫ +∞

−∞
Cut({f < r}, {f ≥ r}) dr (14)

=

∫ mλ

−∞

Cut({f < r}, {f ≥ r})
λ|{f < r}| λ|{f < r}|dr +

∫ +∞

mλ

Cut({f < r}, {f ≥ r})
|{f ≥ r}| |{f ≥ r}|dr (15)

≥ hλ
(∫ mλ

−∞
λ|{f < r}|dr +

∫ +∞

mλ

|{f ≥ r}|dr
)

(16)

= hλ
∑
i

|fi −mλ|λ (17)

where we have used the notation Cut(S, Sc) =
∑
xi∈S

∑
xj∈Sc wi,j . Equality (14) is simply the discrete

coarea formula. To go from (15) to (16) we have used statement (iii) of Lemma 1. To go from (16) to (17)
we have used the discrete layer cake formula. So Eλ(f) ≥ hλ for all nonconstant f : V → R. To conclude
the proof, one need to observe that if f∗ is the binary function defined by (8), then Eλ(f∗) = Cλ(S∗) = hλ.
So f∗ is a global minimizer of Eλ.
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