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Abstract. One of the main challenges in 3D shape analysis is the comparison of surfaces according to rigorous
metrics that can capture their intrinsic differences. A well-defined metric should be invariant to translation, rotation,
scaling, articulation, and more generally, isometric variations. On the other hand, surfaces are typically represented
as embedding manifolds in 3D where the explicit use of Euclidean coordinates makes it difficult to achieve the above
invariance. To overcome this difficulty, we propose in this work a novel metric, the spectral l2-distance, based on
optimizing the surface Laplace-Beltrami spectral embedding. Because the Laplace-Beltrami eigen-system is isom-
etry invariant, the proposed distance automatically satisfies the desired invariance. We also prove that the spectral
l2-distance meets the conditions of a metric, which allows the rigorous comparison of intrinsic shape differences.
One key advantage of this novel metric is that it enables us to perform robust analysis of global shape differences
and local shape features. For global shape analysis, we apply it to surface classification and show that it can achieve
intuitively meaningful results. For local shape analysis, we develop a template matching approach in the optimal
embedding space to tackle the challenging problem of identifying major sulci on vervet cortices. To further demon-
strate its power in local analysis, we design a direct surface mapping algorithm based on the correspondence induced
from the spectral l2-distance and illustrate its application on mapping cortical surfaces.
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1. Introduction. Research in 3D surface analysis, which studies topics such as classifi-
cation, mapping, local and global pattern analysis, has important applications in many fields
including computer vision, computer graphics, and medical image analysis [16, 20, 58, 22].
Among various 3D shape analysis tasks, surface comparison is a fundamental problem, which
ideally should quantitatively measure global shape differences and provide guidance to pin-
point these differences locally. On the other hand, surfaces are typically represented as em-
bedding manifolds in R3, where it is well known that intrinsically identical surfaces can have
significantly different representations due to actions such as translation, rotation, and more
general isometric transformations. To overcome this difficulty, one key challenge is to con-
struct a rigorous metric that measures intrinsic differences among surfaces. Motivated by the
global embedding framework with Laplace-Beltrami eigen-system proposed by P. Bérard et
al. [3], we develop in this paper a novel metric, the spectral l2-distance, based on optimizing
the Laplace-Beltrami spectral embedding of surfaces. This distance provides a new way of
measuring surface differences and performing detailed shape analysis.

There are generally three different classes of approaches to compare surfaces using in-
trinsic geometry. In early works, feature-based methods were developed in computer vi-
sion and graphics to compare surfaces in an intrinsic fashion. Various features were pro-
posed such as shape contexts, shape distributions, shape inner distance, conformal factor,
[43, 1, 18, 34, 57, 2] to characterize different aspects of surface geometry. Because such
features are usually application driven, they lack generality and does not typically have math-
ematically rigorous distance measures. The shape-space approach overcomes this difficulty
by introducing metric structures on the space of all surfaces, where the distance between
two surfaces can be measured by the metric structure introduced for the shape space. For
instance, the Teichmüller space, geodesic spectra and the computation of Teichmüller coor-
dinates is discussed in [36, 24, 25]. However, the extraction of local differences are difficult
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because each surface is viewed as a point in the shape space. More recently, a third class
of approaches were introduced based on the metric geometry [11]. In this approach, each
surface is treated as a metric space and surfaces are compared according to the theory of
metric geometry by measuring their Gromov-Hausdorff distance and Gromov-Wasserstein
distance [41, 38, 39, 40]. Diffusion distance [29, 15] on surface was applied to compute the
Gromov-Hausdorff distance and compare non-rigid geometry based on the metric geometry
[9]. While theoretically this class of methods can compute both local and global surface
differences, the need for optimization over all possible correspondences makes it computa-
tionally challenging to conduct detailed analysis of surface structures.

More recently, there have been increasing interests in using the Laplace-Beltrami (LB)
eigen-system in 3D surface analysis because it depends only on intrinsic geometry, is general
for arbitrary shapes, and easy to compute. Using LB eigenvalues as “shape DNA” [47], a
shape classification method was first proposed. However, the LB eigenvalues are not enough
to completely determine surface geometry [28, 42, 56, 44, 21, 31]. By combining LB eigen-
values and eigenfunctions, a series of interesting works have been developed for surface char-
acterization and applied to surface mesh processing [33, 60], surface quadrangulation [17],
skeleton construction [51], Hierarchical shape segmentation [46], 3D surface reconstruc-
tion [52], surface local parametrization [26], and heat kernel signatures (HKS) [55, 10].

For surface comparison, the LB eigen-system has been used to construct a common em-
bedding space to measure shape differences. A global embedding framework was proposed
by P. Bérard et al. [3] that uses heat kernel of the LB operator. In this framework, the distance
of surfaces is defined as the Gromov-Hausdorff distance of their embeddings. However, this
distance depends on the selection of the diffusion time and is not scale invariant. In practice,
the Gromov-Hausdorff distance could be sensitive to noise and it is interesting to develop
more robust distance measures in the embedding space. Instead of using heat kernel, Rus-
tamov [48] introduced an embedding called the Global Position Signature (GPS), which is
related to the Green function of the LB operator. This embedding is scale invariant, but is
non-unique because of the sign-ambiguity and multiplicity in the eigen-system. To overcome
this limitation, a heuristic histogram feature was introduced to measure surface differences.

Motivated by the global embedding framework in [3] and the GPS embedding in [48],
this work proposes a novel and mathematically well-defined metric, spectral l2-distance. This
distance is defined over all possible GPS embeddings, which takes into account the ambigu-
ity in the LB eigen-system, and we prove it is a rigorous metric. Compared with Gromov-
Hausdorff distance, the spectral l2-distance integrates over the whole surface and is thus more
robust to noise. Because the GPS embedding is isometry and scale invariant, the proposed
spectral l2-distance also has this property. In particular, it is invariant to translation, rotation,
scaling and more general pose variations such as articulation. The mathematical rigorousness
of the proposed spectral l2-distance provides us a solid foundation to study surface compar-
isons. Moreover, the optimal embedding bases induced from the spectral l2-distance can be
powerful tools to perform both global and local surface comparisons. To demonstrate the
application of the spectral l2-distance and the corresponding optimal embedding bases, we
develop practical algorithms to solve various shape analysis problems. We first applied the
proposed distance to perform 3D non-rigid surface classification and promising results are
presented. Using the optimal embedding bases, we developed a novel algorithm to solve the
challenging sulci identification problem in brain imaging. Furthermore, the potential of the
optimal embedding bases in surface mapping is demonstrated by showing its performance on
mapping the white and gray matter boundaries of the cortex.

2. Mathematical Background. In this section, we first review the concept of the Laplace-
Beltrami (LB) eigen-system on general surfaces and the numerical scheme for its computa-
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FIG. 2.1. Laplace-Beltrami Eigenfunctions obtained by the finite element method are color coded on surfaces.

tion on triangular meshes using the finite element method. The spectral l2-distance is then
proposed as an intrinsic metric to compare surfaces. Proofs will be provided that show the
proposed distance satisfying the conditions of rigorous metric.

2.1. The Laplace-Beltrami Eigen-system. Let (M, g) be a closed Riemannian sur-
face. For any smooth function φ ∈ C∞(M), the LB operator in a local coordinate system
{(x1, x2)} is defined as the following coordinate invariant form [27]:

4Mφ =
1√
G

2∑
i=1

∂

∂xi
(
√
G

2∑
j=1

gij
∂φ

∂xj
) (2.1)

where (gij) is the inverse matrix of g = (gij) and G = det(gij).
The LB operator is self-adjoint and elliptic, so its spectrum is discrete. We denote the

eigenvalues of 4M as 0 = λ0 < λ1 < λ2 < · · · and the corresponding eigenfunctions as
φ0, φ1, φ2, · · · such that

4Mφk = −λkφk, k = 0, 1, 2, · · · . (2.2)

If (M, g) is an open Riemannian surface with boundary ∂M and ~n is the unit normal vector
filed of ∂M with respect toM, we consider the LB eigen-system with Nuemann boundary
condition:

4Mφk = −λkφk,
∇Mφ · ~n|∂M = 0, k = 0, 1, 2, · · · . (2.3)

The set of eigenfunctions {φn} forms an orthonormal basis of the space of smooth func-
tions on M. The set {λn, φn} is called the LB eigen-system of (M, g). Let Ei = {u ∈
C2(M) | 4Mu = −λiu} denote the eigenspace associated with the eigenvalue λi. If the
eigenspace of all eigenvalues are one dimensional, the eigen-system {λi, φi}∞i=0 of M is
called simple [14].

To numerically solve (2.2) and (2.3), we consider the following weak formula of these
two equations: ∫

M
∇Mφk∇Mη = λ

∫
M
φkη, ∀ η ∈ C∞(M) (2.4)

By using the finite element method (FEM), we can solve this weak formula numerically and
compute the eigen-system of the LB operator [47]. Given a surfaceM in R3, we represent
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M as a triangular mesh {V = {vi}Ni=1, T = {Tl}Ll=1}, where vi ∈ R3 is the i-th vertex and
Tl is the l-th triangle. One can choose linear elements {ei}Ni=1 satisfying ei(vj) = δi,j as the
notation of Kronecker delta symbol, and write S = SpanR{ei}Ni=1. Then the discrete version
of the weak formula (2.4) is to find a φ ∈ S, such that∑

l

∫
Tl

∇Mφ∇Mη = λ
∑
l

∫
Tl

φη, ∀η ∈ S. (2.5)

If we write 
φ =

∑N
i xiei

A = (aij)N×N , aij =
∑
l

∫
Tl
∇Mei∇Mej

B = (bij)N×N , bij =
∑
l

∫
Tl
eiej ,

(2.6)

where the stiffness matrix A is symmetric and the mass matrix B is symmetric and posi-
tive definite, we can compute the LB eigen-system by solving the generalized matrix eigen-
problem: {

Ax = λBx,where x = (x1, · · · , xN )T

φ =
∑N
i xiei

(2.7)

Note that both A and B are sparse matrices of size N ×N . There are a variety of numerical
packages, such as MATLAB, to solve the above problem. In Figure 2.1, we illustrate our
computational results for LB eigenfunctions on different types of surfaces. It demonstrates
that the LB eigen-systems of different types of surfaces, such as the standard sphere, surfaces
with complicated geometry, surfaces with high genus, and open surfaces, can be robustly
computed with the finite element method.

From the signal processing point of view, the eigenfunctions of the LB operator are natu-
ral extensions of the Fourier basis functions from the Euclidean domain to general manifolds.
Another famous example is the spherical harmonics, which are the eigenfunctions of the LB
operator on the unit sphere, and they have been used in various functional analysis tasks on
spheres. Similar to Fourier analysis in Euclidean space and harmonic analysis on spheres, the
LB eigen-systems are also powerful tools for function analysis on surfaces. In particular, we
would like to list the following two remarkable properties of the LB eigensystem [49, 23].

• Due to the intrinsic properties of LB operator 4M , the induced LB eigen-systems
{λi, φi}∞i=0 are also completely intrinsic geometric quantities. In particularly, sur-
face LB eigen-systems are robust to translation, rotation and pose variations.
• Scale formula: Let c be a positive constant, {λi, φi} be the eigensystem of (M, g),

and {λ̃i, φ̃i} be the eigensystem of (M, c · g), then

λi = c · λ̃i and φi =
√
c · φ̃i (2.8)

In Figure 2.2, we demonstrate the intrinsic properties of LB eigenfunctions on five dif-
ferent poses of the shape David obtained from nonrigid shape database TOSCA [5, 7, 8].
Five different poses of David are color coded by LB eigenfunctions with their zero level con-
tours marked in red color. It is easy to see the pose invariance of LB eigenfunctions and the
corresponding zero level contours across the group of the shape David with different poses.

More importantly, the LB eigen-systems are not only useful for functional analysis on
surfaces but also powerful for studying the intrinsic geometry of the underlying surfaces. One
of the most famous examples to study surface geometry using LB eigen-systems is Kac’s
question [28]: “Can one hear a shape of a drum?” Namely, can we determine the geometry of
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FIG. 2.2. The first row: The surfaces are color coded by the corresponding first LB eigenfunctions and the red
contours mark the zero level line of the first LB eigenfunctions. The second row: The surfaces are color coded by the
corresponding fifth LB eigenfunctions and the red contours mark the zero level line of the fifth LB eigenfunctions.

surfaces using their LB eigenvalues? The relation between geometry of surfaces and their LB
eigenvalues was illustrated by heat trace formula [37]. However, LB eigenvalues, which are
just a part of LB eigen-systems, can not completely determine surface geometry [42, 56, 44,
21]. More fruitful information are stored in LB eigenfunctions. Bérard [3] introduced the first
theoretical result about using LB eigen-system as global embedding to analyze manifolds.
More recently, there have been increasing interests in using LB eigen-systems to study 3D
surface analysis problems. M. Reuter [47] proposed to use LB eigenvalues as fingerprints
to classify surfaces. Rustamov[48] was one of the first to use global embedding obtained
by LB eigen-system to analyze surfaces. P. Jones et al. [26] introduced a new manifold
local parametrization approach using LB eigenfunctions. J. Sun, M. Bronstein et al. [55, 10]
introduced intrinsic surface descriptors using heat kernels of surface heat equations. Recent
work [45, 51, 50, 31, 32] proposed many applications of LB eigen-system in medical image
analysis.

2.2. Metric in the embedding space. According to the above discussion of the com-
putability and robustness of surface LB eigen-systems, it is reasonable to consider LB eigen-
systems as signatures to characterize surfaces. While there have been many successful appli-
cations of LB eigen-systems in practical shape analysis, the challenge, however, is to define
a meaningful metric to rigorously measure difference of surfaces based on the LB eigen-
systems. To tackle this problem, a distance, spectral l2-distance, will be introduced in this
subsection, which depends only on the intrinsic geometry difference of surfaces. Meanwhile,
a co-product, optimal embedding bases, of this distance will be introduced. By combining the
spectral l2-distance and optimal embedding bases, we can conduct global and local analysis
in surface comparison.

To rigorously discuss the the underline definition space of the spectral l2 distance, we
would like to first introduce the scale invariant shape space formalized as follows.

DEFINITION 2.1 (shape scale equivalence). Given two surfaces (M, g) and (M̃, g̃). Let
f be a diffeomorphism fromM to M̃. Then f can naturally induce a pull-back metric onM
as follows [27]:

(f∗g̃)(v1, v2) = g̃(f∗(v1), f∗(v2)) (2.9)

where v1, v2 are any two tangent vector fields onM. We call (M, g) is equivalent to (M̃, g̃)
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if and only if there is a diffeomorphism f :M→ M̃ and a constant c such that g = c ·f∗(g̃),
which is denoted by (M, g) ∼ (M̃, g̃).

This equivalence relation characterize the intrinsic shape difference. In other words, we
view two surfaces to be the same if and only if they are isometric to each other up to a
constant scaling factor. With the above equivalence relation, we can define scale invariant
shape space as follows.

DEFINITION 2.2 (scale invariant shape space). Let W be the set of all surfaces. The
scale invariant shape space D is defined by the set of the equivalent classes describe by the
above equivalence relation. i.e. D = {(M, g)}/ ∼.

Obiviously, the quotient space D is equivalent to the set of all surfaces with normalized
area, namely D ∼= S = {(M, g) | Area(M) = 1}/ ∼. Remember our goal is to perform
translation, rotation, scale and pose invariant surface analysis. More precisely speaking, we
need to analyze objects in the scale invariant shape space D in which only surface intrinsic
geometry is described. To conduct surface analysis in the shape space D, one of the most
essential tools is to endure a well-behaved metric on D, then many other work, such as sur-
face classification, surface comparison etc. can be followed. To achieve this goal, we will
introduce the spectral l2-distance using LB eigen-system discussed in section 2.1.

Given a surface (M, g) and its LB eigen-system Φ = {λi, φi}, the scale-invariant em-
bedding proposed in [48] is defined as:

IΦ
M(x) = {φ1(x)√

λ1

,
φ2(x)√
λ2

, · · · , φk(x)√
λk

, · · · }, ∀x ∈M (2.10)

In Fig. 2.3, we show the embedding results of the unit sphere and a cortical surface using
the first three eigenfunctions. Generally speaking, the more eigenfunctions we use, the more
detailed information of the surface we can obtain.

FIG. 2.3. The first three columns are color coded by the first three eigenfunctions on each surface respectively.
The last column is obtained using the first three eigenfunctions as 3 coordinates to reconstruct the original surfaces

Due to the separable properties of LB eigen-system, the following theorem is demon-
strated in [48], which shows that the map in (2.10) is an embedding.

THEOREM 2.3. For any given surface (M, g), any given basis Φ = {φi}, the map IΦ
M

is an embedding and it is scale invariant by the scale formula (2.8).
The biggest advantage of this embedding is that we can put all surfaces into a common

space to factor out all pose and scale variations. However, the main challenge in constructing
a well-defined distance in the embedding space is that the eigen-system of a given surface
M is not unique. The mapping IM depends on the choice of an orthonormal basis of eigen-
functions. For instance, both φi and −φi can be an element of basis. For eigenvalues with
multiplicity greater than one, there is even more freedom to choose the basis. To overcome
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this difficulty, a modification of G2 distributions was proposed in [48] to describe the ”dis-
tance” between two surfaces. However, the G2 distribution may not be a rigorous distance.
Inspired by P.Bérard et.al’s work about heat kernel embedding [3], we propose the spectral
l2-distance as a metric to measure surface difference in the embedding space.

Given a surface(M, g), one can decompose the spaceL2(M, g) asL2(M, g) =
⊕∞

i=0Ei,
where Ei’s are the eigenspaces of the LB operator 4M associated with eigenvalue λi. We
denote B(M) =

∏∞
i=0 B(Ei) the set of corresponding orthonormal bases. The space B(Ei)

can be identified with the orthogonal group O(dim(Ei)) and hence B(M) is a compact set
with respect to the product topology. The spectral l2-distance for any given two surfaces
(M, g), (M̃, g̃) is defined as follows.

DEFINITION 2.4 (spectral l2-distance). Let (M, g) and (M̃, g̃) be two surfaces. For
any given LB orthonormal basis Φ ofM and Φ̃ of M̃, we define

dΦ̃
Φ(x,M̃) = inf

y∈M̃
||IΦ
M(x)− IΦ̃

M̃(y)||2 , ∀ x ∈M

dΦ̃
Φ(M, y) = inf

x∈M
||IΦ
M(x)− IΦ̃

M̃(y)||2 , ∀ y ∈ M̃. (2.11)

The spectral pre-l2-distance betweenM and M̃ with respect to Φ, Φ̃ is defined by:

dΦ̃
Φ(M,M̃) = max

{∫
M
dΦ̃

Φ(x,M̃)dM(x) ,

∫
M̃
dΦ̃

Φ(M, y)dM̃(y)
}

(2.12)

where dM(x),dM̃(y) are normalized area elements, i.e.,
∫
M dM(x) = 1 and

∫
M̃ dM̃(y) =

1. The spectral l2-distance d(M,M̃) betweenM and M̃ independent of the choice of eigen-
systems is then defined as:

d(M,M̃) = inf
Φ∈B(M),Φ̃∈B(M̃)

max
{∫
M
dΦ̃

Φ(x,M̃)dM(x) ,

∫
M̃
dΦ̃

Φ(M, y)dM̃(y)
}
.

(2.13)

Because B(M) and B(M̃) are compact, d(M,M̃) can attain the optimal value for certain
Φ∗ ∈ B(M), Φ̃∗ ∈ B(M̃), which are called the optimal embedding bases of the pair
{M,M̃}. The corresponding embedding IΦ∗

M and IΦ̃∗

M̃ are called the optimal embedding
pair of {M,M̃}.

Note that surface LB eigen-systems satisfy the robustness property as discussed in Sec-
tion 2.1. Therefore, the spectral l2-distance induced from LB eigen-systems also completely
reflect the intrinsic geometric difference between two surfaces, which is naturally robust to
rotation, translation, scale and pose variations. More precisely, the spectral l2-distance de-
fined as the above gives a good metic on the scale invariant shape space D, which is stated in
the following theorem:

THEOREM 2.5. The spectral l2-distance d(·, ·) is a metric on S. Hence it is also a metric
on D.

With this theorem, the spectral l2-distance can provide a rigorous measurement compare
surfaces intrinsically and globally. Moreover, one of the big distinction of the spectral l2-
distance is the induced optimal embedding bases, which will provide us a powerful tool to
conduct surface feature comparison locally.

For the self-completeness of this paper, we discuss the proof of theorem 2.5 in the rest
of this section. This proof is basically split as two lemmas, which can be also found in the
conference version of this paper [32]. It is easy to check that d(·, ·) is symmetric. To ensure
d(·, ·) is a metric on D, we also need the following two lemmas.
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LEMMA 2.6 (triangle inequality). Given any three surfaces (M, g), (M̃, g̃), (N , ĝ) ∈
S, then

d(M,M̃) ≤ d(M,N ) + d(N ,M̃). (2.14)

[Proof]: Given an arbitrary eigen-system Φ of M, Φ̃ of M̃, and Θ of N . For any point
x ∈M, y ∈ M̃ and z ∈ N . We have:

dΦ̃
Φ(x, y) ≤ dΘ

Φ(x, z) + dΦ̃
Θ(z, y)

infy∈M̃
=⇒ dΦ̃

Φ(x,M̃) ≤ dΘ
Φ(x, z) + dΦ̃

Θ(z,M̃)
infz∈N
=⇒ dΦ̃

Φ(x,M̃) ≤ dΘ
Φ(x,N ) + inf

z∈N
dΦ̃

Θ(z,M̃)

≤ dΘ
Φ(x,N ) + dΦ̃

Θ(z,M̃)

We integrate onM on the both side of the above inequality.∫
M=⇒

∫
M
dΦ̃

Φ(x,M̃) ≤
∫
M
dΘ

Φ(x,N ) +

∫
M
dΦ̃

Θ(z,M̃)

From the assumption (M, g), (M̃, g̃), (N , ĝ) ∈ S, therefore
∫
M dM(x) =

∫
M̃ dM̃(x) =∫

N dvolN (x) = 1.

=⇒
∫
M
dΦ̃

Φ(x,M̃) ≤
∫
M
dΘ

Φ(x,N ) + dΦ̃
Θ(z,M̃)

∫
N=⇒

∫
M
dΦ̃

Φ(x,M̃) ≤
∫
M
dΘ

Φ(x,N ) +

∫
N
dΦ̃

Θ(z,M̃)

Similarly, we can have:∫
M̃
dΦ̃

Φ(M, y) ≤
∫
N
dΘ

Φ(M, z) +

∫
M̃
dΦ̃

Θ(N , y).

By the definition of d(M,M̃) we then have:

d(M,M̃) ≤ d(M,N ) + d(N ,M̃). �

LEMMA 2.7 (Positive definiteness). For any two surfaces M,M̃ with Area(M) =
Area(M̃), d(M,M̃) > 0. Moreover, d(M,M̃) = 0 if and only ifM and M̃ are isometric.

[Proof]: From the definition of the spectral l2-distance, it is obviously to have d(M,M̃) > 0.
IfM and M̃ are isometric, we have d(M,M̃) = 0 because the LB eigen-system is isometric
invariant.

Next we show the opposite is also true. Let (M, g), (M̃g̃) denote two surfaces with
the same surface area. By the compactness of B(M) and B(M̃), we can find the optimal
eigen-system Φ = {(λi, φi}∞i=0, Φ̃ = {(λ̃i, φ̃i}∞i=0 of (M, g), (M̃, g̃), respectively, such that

d(M,M̃) = max
{∫
M
dΦ̃

Φ(x,M̃) ,

∫
M̃
dΦ̃

Φ(M, y)
}
.

Suppose d(M,M̃) = 0, we have:

dΦ̃
Φ(x,M̃) = 0, ∀ x ∈M and dΦ̃

Φ(M, y) = 0, ∀ y ∈ M̃.
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Therefore,

∀ x ∈M, ∃ yx = arg min
y∈M̃

||IΦ
M(x)− IΦ̃

M̃(y)||2 ∈ M̃,

s.t.
φi(x)√
λi

=
φ̃i(yx)√

λ̃i
, i = 1, 2, · · · (2.15)

We denote f :M→ M̃ : x 7−→ yx, and

∀ y ∈ M̃, ∃ xy = arg min
x∈M

||IΦ
M(x)− IΦ̃

M̃(y)||2 ∈M,

s.t.
φi(xy)√

λi
=
φ̃i(y)√
λ̃i
, i = 1, 2, · · · (2.16)

Similarly we define h : M̃ → M : y 7−→ xy . Both f, h are injective since IΦ
M, I

Φ̃
M̃ are

one-to-one. Thus f ◦ h = IdM̃ and h ◦ f = IdM and one can easily show that f and h are
diffeomorphisms.

Moreover, if we integrate (2.15) for all i ≥ 1:

0 =

∫
M

φi(x)√
λi

dM(x) =

∫
M

φ̃i(f(x))√
λ̃i

dM(x) =

∫
M̃

φ̃i(y)√
λ̃i
J (h)dM̃(y).

This means J (h), which is the Jacobian of h, is orthogonal to all Φ̃i, i ≥ 1. Therefore, J (h)
must be a constant. On the other hand, we have:

1 =

∫
M

dM(x) =
Area(M̃)

Area(M)

∫
M̃
J (h)dM̃(y)

=
Area(M̃)

Area(M)
J (h)

∫
M̃

dM̃(y) =
Area(M̃)

Area(M)
J (h).

So we have J (h) = Area(M)/Area(M̃) = 1. Similarly, one can show J (f) = 1.
To conclude, we have shown that both f, h are isometry. Therefore M is isometric to

M̃. �
In summary, the first lemma proves the triangular inequality of a metric. The second

lemma tells us the distance of two surfaces is always nonegative and two surfaces of equal ar-
eas are “the same”1 in R3 if and only if their spectral l2-distance is zero. This completes our
proof that the spectral l2-distance is a rigorous metric on D. Notice that we can construct sur-
face correspondence from formulas (2.15) and (2.16) in the above proof. These two formulas
can provide us an algorithm for surface mapping, which will be discussed in Section 6.

3. Numerical Implementation of Spectral l2-distance. The implementation of the
spectral l2-distance includes two parts, the distance itself and the optimal embedding bases.
To implement the spectral l2-distance in general form is computationally not tractable. How-
ever, Uhlenbeck [59] proved that surfaces with simple LB eigen-systems are generic. In
other words, most surfaces in practice have simple LB eigen-systems. We describe here how
to compute the spectral l2-distance between surfaces with simple LB eigen-systems.

Let (M, g) and (M̃, g̃) be two surfaces with simple eigen-systems Φ = {(λi, φi)}∞i=0

and Φ̃ = {(λ̃i, φ̃i)}∞i=0 respectively. Then the only freedom in determining the optimal bases

1Geometrically, “the same” means two surfaces are isometric to each other
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is the sign of the eigenfunctions. If we write Γ = {γ = (γ0, γ1, · · · ) | γi ∈ {1,−1}} and
Φ̃γ = {(λ̃i, γiφ̃i)}∞i=0, the spectral l2-distance will have the following form:

d(M,M̃) = inf
γ∈Γ

max
{∫
M
d

Φ̃γ
Φ (x,M̃)dM(x) ,

∫
M̃
d

Φ̃γ
Φ (M, y)dM̃(y)

}
(3.1)

This shows that the computation of the spectral l2-distance is a combinatorial optimization
problem for surfaces with simple eigen-systems. It is numerically intractable to compute in-
finite number of eigenfunctions to obtain the exact embedding defined in (2.10). However,
since {φi(x)/

√
λi}∞i=1 is convergent, we can approximate the spectral l2-distance to the the-

oretical definition using the first n LB eigenfunctions in the following way.
Let us write

I
Φ(n)
M (x) =

(
φi(x)√
λi

)n
i=1

∈ Rn, I
Φ̃γ(n)

M̃ (x) =

(
γiφ̃i(x)√

λ̃i

)n
i=1

∈ Rn

d
Φ̃(n)
Φ(n)(x,M̃) = min

y∈M̃
||IΦ(n)
M (x)− IΦ̃γ(n)

M̃ (y)||2 , ∀ x ∈M

d
Φ̃γ(n)
Φ(n) (M, y) = min

x∈M
||IΦ(n)
M (x)− IΦ̃γ(n)

M̃ (y)||2 , ∀ y ∈ M̃

The first n LB eigenfunctions can define a distance:

dn(M,M̃) = inf
γ∈Γ(n)

max
{∫
M
d

Φ̃γ(n)

Φ(n) (x,M̃)dM(x) ,

∫
M̃
d

Φ̃γ(n)

Φ(n) (M, y)dM̃(y)
}

(3.2)

where Γ(n) =
{
γ = (γ0, γ1, · · · , γn) | γi ∈ {1,−1}, i = 0, 1, · · · , n

}
.

Numerically, two surfaces are represented by triangle meshesM =
{
V = {vi}Ni=1, T =

{Tl}Ll=1

}
and M̃ =

{
Ṽ = {ṽi}Ñi=1, T̃ = {T̃l}L̃l=1

}
. We denote the embedding im-

ages of vertices by
{
wi = I

Φ(n)
M (vi)

}N
i=1

and
{
w̃i = I

Φ̃(n)

M̃ (ṽi)
}Ñ
i=1

respectively, then
the corresponding triangle meshes of their LB embedding images can be represented by
I

Φ(n)
M (M) =

{
I

Φ(n)
M (V ) = {wi}Ni=1, T = {Tl}Ll=1

}
and I

Φ̃(n)

M̃ (M̃) =
{
I

Φ̃(n)

M̃ (Ṽ ) =

{w̃i}Ñi=1, T̃ = {T̃l}L̃l=1

}
. We approximate the distance dn(M,M̃) as follows:

d
Φ̃(n)
Φ(n)(vi,M̃) = min

y∈M̃
||IΦ(n)
M (vi)− I

Φ̃γ(n)

M̃ (y)||2,

≈ min
T̃l=(l1,l2,l3)∈T̃

min
α1,α2,α3≥0

α1+α2+α3≤1

||wi − (α1w̃l1 + α2w̃l2 + α3w̃l3)||2 (3.3)

The integral onM can be approximated by:∫
M
d

Φ̃γ(n)

Φ(n) (x,M̃)dM(x) ≈ 1

area(M)

N∑
i=1

d
Φ̃γ(n)

Φ(n) (vi,M̃) ·Ai (3.4)

where Ai = 1
3

∑
vi∈Tl area(Tl).

Similarly, we have:

d
Φ̃(n)
Φ(n)(M, ṽi) = min

x∈M̃
||IΦ(n)
M (x)− IΦ̃γ(n)

M̃ (ṽi)||2,

≈ min
Tl=(l1,l2,l3)∈T

min
α1,α2,α3≥0

α1+α2+α3≤1

||(α1wl1 + α2wl2 + α3wl3)− w̃i||2

(3.5)
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∫
M̃
d

Φ̃γ(n)

Φ(n) (M, y)dM(y) ≈ 1

area(M̃)

Ñ∑
i=1

d
Φ̃γ(n)

Φ(n) (M, ṽi) · Ãi (3.6)

where Ãi = 1
3

∑
vi∈T̃l area(T̃l).

To demonstrate the approximated distance and its ability of picking the optimal embed-
ding bases for shape analysis, we show in Fig. 3.1 the embedding of two cortical surfaces
with the first three eigenfunctions. Out of the eight possible embeddings, the one achieving
the distance d3(M,M̃) is highlighted inside the red circle. While the right cortical surface
with red color and the left cortical surface with green color have significantly different poses
in the Euclidean space, their embedding are very close to each other, which reflects the fact
that these two surfaces share very similar intrinsic geometry. This example clearly illustrates
the power of the optimal embedding in characterizing the intrinsic geometry of surfaces.

FIG. 3.1. The first column: two input surfaces for computing their spectral l2-distance.The last four columns:
8 possible embedding due to sign ambiguity of the first three eigenfunctions.

Since the spectral l2-distance actually is dominated by the first n eigenfunctions, the
optimal embedding bases of dn(·, ·) will be the first n bases functions of the optimal em-
bedding bases of the spectral l2-distance. Therefore, we just need to compute dn(·, ·) to
approximate the spectral l2-distance d(·, ·) and obtain the first n eigenfunctions of the opti-
mal embedding bases. However, the complexity of the combinatorial optimization problem
(3.2) to compute dn(·, ·) is still 2n. Based on the fact that the sequences {φi(x)/

√
λi}∞i=1

and {φ̃i(x)/
√
λ̃i}∞i=1 rapidly converge to zero, we propose to recursively optimize dn(·, ·)

and obtain the optimal embedding bases, which is described by the the following Frequency
Band-wise Search (FBS) approach.
Algorithm (Frequency Band-wise Search):

1. Fix a number n0, we compute dn0
(·, ·) to obtain (γ0, γ1, · · · , γn0

) of the first n0

components of the optimal embedding bases by optimize the problem (3.2) with
exhaustive search;

2. For a positive integer p, suppose dpn0
(·, ·) has been computed with the first pn0

components of the optimal embedding bases. Then d(p+1)n0
(·, ·) is computed by

fixing the first pn0 components of the optimal embedding bases and searching the
rest pn0 + 1, · · · , (p+ 1)n0 bases.

In practice, n0 is chosen to be a small integer such as 3 or 4. Given a number n, we first
write n as k ∗ n0 + m with 0 ≤ m < n0. Then, dn(·, ·) and the corresponding optimal em-
bedding bases are recursively computed by the above FBS approach. With this approach, the
combinatorial optimization problem (3.2) with complexity 2n can be dramatically simplified
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and approximated by k + 1 subproblems with total complexity (k + 1)2n0 . To check the ro-
bustness of the proposed FBS algorithm, we conduct experiments of computing d15(·, ·) from
a hippocampus surface to several other surfaces with different geometry. The complexity of
the true combinatorial optimization problem is 215, which is very time consuming with the
exhausted search method. However, the computation cost can be decreased to 5 × 23 with
n0 = 3 or, 3 × 24 + 23 with n0 = 4 using the proposed FBS method. In Table 3.1, we il-
lustrate the efficiency and accuracy of the proposed FBS algorithm to compute d15(·, ·). The
error here is naturally defined by

error =
True value from exhausted search− Results from FBS

True value from exhausted search
.

By comparing with the results obtained by exhausted search requiring hours of computation,
it is clear to see that the FBS algorithm provides us a very efficient and accurate method to
approximate the spectral l2-distance.

TABLE 3.1
Comparison of spectral l2-distance obtained by FBS with true value obtained by exhausted search

Spectral l2-distance to Hippocampus 1
True value by exhausted search The proposed FBS algorithm

n0 = 3 n0 = 4
distance time (h:m:s) distance time (s) error distance time (s) error

Hippo2 0.0391 6:54:28 0.0391 2.502 0.0 0.0391 3.406 0.0
Hippo3 0.0322 6:51:14 0.0322 2.544 0.0 0.0322 3.426 0.0

Puteman 0.1603 20:43:26 0.1640 7.596 2.31% 0.1614 10.200 0.69%
Caudate 0.1460 10:08:14 0.1474 3.840 0.96% 0.1474 5.593 0.96%

david 0.4571 16:58:02 0.4571 8.526 0.0 0.4571 11.650 0.0
cat 0.2436 16:55:27 0.2463 8.258 1.11% 0.2436 11.386 0.0
dog 0.3349 16:49:02 0.3349 8.388 0.0 0.3349 11.607 0.0

gorilla 0.3337 9:30:11 0.3525 4.722 5.6% 0.3337 6.536 0.0
horse 0.3392 16:54:17 0.3392 8.328 0.0 0.3392 11.366 0.0

Because the spectral l2-distance depends completely on the intrinsic geometry of sur-
faces, we expect intuitively its value will reflect the similarity between surfaces. In other
words, as a global quantity, the spectral l2-distance can provide us a useful tool to intrin-
sically characterize surface differences. Inspired by this observation, a valuable application
of proposed spectral l2-distance is to study surface classification problems, which will be
discussed in more detail in Section 4.

Moreover, the spectral l2-distance does not only provide us global quantities to clas-
sify surfaces, but also will provide us tools to conduct local surface comparison, which is
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the biggest distinction of our proposed approach from other feature-based approaches [43, 1,
34, 57] or shape space-based approaches [25], Notice that the definition of our spectral l2-
distance is coming from the scale invariant embedding obtained by LB eigensystems, which
means the optimal embedding bases can be obtained as co-products of the spectral l2-distance.
With the spectral l2-distance and the resulting optimal embedding bases, we can compare sur-
faces locally in the common embedding space. This is a critical component in many different
applications such as identifying meaningful and stable parts across a large group of surfaces
with similar intrinsic geometry, constructing correspondences between surfaces. In the fol-
lowing sections about applications of the spectral l2-distance, we will demonstrate how to
utilize the proposed framework to conduct surface classification, surface feature identifica-
tion and surface mapping.

FIG. 4.1. Pairwise spectral l2-distance under global inflation ( the first row) and local shrinkage ( the second
row). The blue circles in the second row mark the local shrinkages

4. Application I: Surface Similarity Measurement. Due to the theorem 2.5, the pro-
posed spectral l2-distance will reflect the intrinsic surface geometry. To illustrate the ge-
ometric meaning of the spectral l2-distance, we demonstrate in three experiments how the
proposed distance can help us to describe either local or global surface difference.

In our first two synthetic examples, we consider two groups of surfaces obtained from
global and local deformation respectively, which are two cases usually considered in medical
imaging due to certain disease induced anatomic structure deformations. In this example,
a hippocampus surface obtained from the magnetic resonance image of a human brain is
considered as the initial surface. As shown in Figure. 4.1, global inflations and local shrink-
age operations were applied to the hippocampus to generate synthetic examples for analysis.
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Global inflations are generated via outward deformation along normal directions, and local
shrinkages are genarated via inward deformation along normal directions in regions high-
lighted with blue circles. Shapes in both groups are ordered with increased degree of defor-
mation from left to right. We compute the proposed spectral l2-distance by calculating its
approximation with the first 20 LB eigenfunctions using the FBS method with n0 = 4 as
discussed in last section. Pairwise spectral l2-distances of surfaces in each group are labeled
in Figure. 4.1. From the pairwise distances shown in Figure. 4.1, it is clear that the proposed
distance is compatible with the geometric intuition. For instance, the spectral l2-distance cap-
tures the increasing shape difference from M0 to M1, M2 and M3. A similar trend can be
observed in the examples generated via local shrinkages. Overall we can see surfaces with
more similar shapes have smaller spectral l2-distances.

FIG. 4.2. MDS embedding results with the spectral l2-distance.

To further demonstrate the ability of spectral l2-distance in surface global geometry de-
tection, we apply the spectral l2-distance to classify 30 different surfaces. Three human,
three dogs, three gorilla, three lioness, three horses, three seahorses, three wolves and three
centaur surfaces with different poses are from public available data base TOSCA [5, 7, 8]
and three hippocampus and three caudate surfaces are from LONI in UCLA. In this experi-
ment, we choose the first 20 LB eigenvalues and eigenfunctions to approximate the spectral
l2-distance. To visualize the embedding, we utilize the multi-dimension scaling(MDS) [4]
technique to project these surfaces into a 2D plane as shown in Fig. 4.2. It clearly shows that
surfaces with similar intrinsic geometry cluster together under the spectral l2-distance.

5. Application II: Sulci Identification on Vervet Cortical Surfaces. In this section,
we apply our spectral l2-distance to the problem of automated sulci identification in 3D med-



Spectral l2-distance for Intrinsic 3D Shape Analysis 15

ical image analysis. The identification of major sulci is one of the critical steps in cortical
surface analysis [54]. However, the manual labeling of sulcal regions becomes impractical
with the increasing availability of large data set. Therefore, it is important to find a robust
way to identify the major sulci automatically. In this section, we develop a robust approach
to identify sulcal regions based on the spectral l2-distance. To demonstrate our method, we
further apply the algorithm in a real data set, vervet cortical surfaces provided by S. Fears and
R. P. Woods [19, 62].

To identify sulcal regions of a given cortical surface, the first step is to parcellate the
cortical surface into sulcal and gyral regions. Using the mean curvature as an image defined
on the surface, we extend the convexified version of Chan-Vese(CV) [13, 12] model to 3D
triangulated surfaces for the extraction of sulcal regions [30]. Let I : M → R be an image

(a) (b) (c)

FIG. 5.1. (a), (b): two different views of CV segmentation. The surfaces are color coded with its mean
curvature and the red contours mark the boundary of the sulcal and gyral regions. (c): sulcal regions obtained by
the CV segmentation model on the cortical surface.

on a surfaceM. The parcellation of the cortical surfaces then can be obtained by solving the
following convexified version of CV segmentation model onM;

arg min
06u61

c1,c2

(∫
M
|∇Mu|+ µ

∫
M
u((c1 − I)2 − (c2 − I)2)

)
(5.1)

In Fig. 5.1, we show the segmentation result obtained by applying the CV segmentation model
to a vervet cortex. The resultant of sulcal regions are also shown.

Because all cortical surfaces share similar geometry, they will cluster together in the
embedding space determined by the spectral l2-distance. As we illustrated in section 3, these
surfaces overlap quite well in the embedding space. For major sulci on cortical surfaces, their
relative positions on the cortex are stable and so are their locations in the embedding space.
This suggests that the same sulcal line from different cortical surfaces will form clusters in
the embedding space.

Assuming we have a large group of cortical surfaces, we use template matching to build
an automated approach to label sulci on vervet cortical surfaces. Let M denote a template
cortical surface that has a set of manually labeled sulci to be identified. For an arbitrary vervet
cortical surface M̃, we find the major sulci on M̃ by comparing it withM in the embedding
space determined by the spectral l2-distance. The detailed algorithm for the automated sulcal
identification process is as follows:

1. Use the CV segmentation model to extract sulcal regions for bothM and M̃. Let
the sulcal regions ofM,M̃ be denoted by {l1, · · · , lk}, {l̃1, · · · , l̃k̃}, respectively.
For the template cortical surfaceM, the labeling of its sulci is known a priori.

2. Choose a suitable number n, compute dn(·, ·) as a numerical approximation of the
spectral l2-distance between M and M̃ to obtain the optimal embedding bases
{φi/
√
λi}ni=1, {φ̃i/

√
λ̃i}ni=1 forM,M̃ respectively.
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3. To identify the sulcal regions {l̃1, · · · , l̃k′} of M̃, we compute the sulcal region
correspondence σ : {l̃1, · · · , l̃k̃} → {l1, · · · , lk}. For each sulcal region l′j of the
target surface M̃, we compute its spectral pre-l2-distance in the embedding space
to each sulcal region ofM with respect to {φi/

√
λi}, {φ̃i/

√
λ̃i}. We label l′j to a

sulcal region σ(l̃j) ofM who attains the shortest distance to l̃j .

FIG. 5.2. The first row: the template cortical surface with sulcal regions marked in red; the second row: target
cortical surfaces with sulcal regions marked by different colors; the third row: sulcal regions of the template and
target cortical surfaces in the Euclidean space; the fourth row: sulcal regions of the template and target cortical
surfaces in the embedding space.

In our experiment, we illustrate the pose and scale invariance of our method by com-
paring a template brain and five other brains with different poses and scales. The results are
shown in Fig 5.2. To visualize the embedding images of two surfaces, we choose the first
three eigenfunctions and compute d3(·, ·) to obtain the optimal embedding bases. The five
surfaces shown in the second row have various pose and scales differences in the Euclidean
space as compared to the template. As shown in the third row, the positions of similar sulci
in the Euclidean spaces are misaligned. However, similar sulci will automatically cluster
together in the embedding space under the optimal basis as shown in the fourth row. This
demonstrates that the spectral l2-distance and the embedding based on its associated optimal
basis reflect intrinsic geometry and they are rotation, translation and scale invariant.

6. Application III: Direct Surface Mapping. The problem of surface mapping con-
siders the construction of meaningful correspondences among surfaces with complicated ge-
ometric structures. It has applications in various problems including measuring non-rigid
geometric difference in computer graphics [6, 64], and mapping structures in brain imaging
study [53, 61, 50, 63, 35]. Generally surface maps are computed on parameterization domains
[65, 35]. Given two surfacesM and M̃, they are first parametrized on a simple domain D
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such as the plane, the sphere, or a coarse simplicial domain to obtain two parametrization
maps π : M → D and π′ : M̃ → D. Then a selfmap ρ : D → D can be introduced to
adjust the overall correspondence which is represented by Π = π′−1 ◦ ρ ◦ π : M → M̃.
However, parametrization is a challenge problem for a general surfaces and may introduce
inaccuracy for surfaces with complicated geometry. As the third application, our spectral l2-
distance can be further utilized to the problem of surface mapping. The biggest advantage of
the new approach proposed here is that the correspondences are directly constructed between
two surfaces without the need of parameterization.

Assuming we have two surfaces M and M̃, we introduce the following procedure to
construct surface mapping using the spectral l2-distance.

1. By choosing a suitable n, we first compute dn(·, ·) as the approximation of spectral
l2-distance betweenM and M̃ to obtain the optimal embedding bases {φi/

√
λi}ni=1,

and {φ̃i/
√
λ̃i}ni=1, forM and M̃ respectively.

2. As we discussed in the proof of lemma 2.7, for any point x ∈ M , we define its
corresponding point in M̃ by

yx = arg min
y∈M̃

||IΦ
M(x)− IΦ̃

M̃(y)||2 (6.1)

Similarly, for any point y ∈ M̃, we define its corresponding points inM by

xy = arg min
x∈M

||IΦ
M(x)− IΦ̃

M̃(y)||2 (6.2)

Therefore, we have two maps f : M → M̃ x 7−→ yx and f ′ : M̃ → M y 7−→ xy .
Note that for two triangulated surfacesM = {V = {vi}Ni=1, T = {Tl}Ll=1} and M̃ = {Ṽ =

{ṽi}Ñi=1, T̃ = {T̃l}L̃l=1}, the correspondence is not necessarily vertex to vertex. The surface
embeddings in l2 we consider are not only the embedding of vertices but also the embedding
of interior points of each triangle. Therefore, the correspondence of each vertex in source
surfaceM might be an interior point of certain triangle on the target surface M̃.

Using this algorithm, we can directly compute the correspondences between surfaces
without the need of parameterization. Due to the optimal embedding bases, the resulting
map can automatically capture the geometric information of two surfaces, i.e., patches having
similar geometry on two surfaces will be mapped to each other. Due to the intrinsic properties
of LB eigen-systems, the mapping algorithm depends only on the intrinsic geometry of source
and target surfaces. It is rotation, translation, scale and pose invariant.

FIG. 6.1. Two views of the constructing map between a left vervet cortical surface and a right vervet cortical
surface.
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To illustrate our surface mapping method, we demonstrate in two experiments the con-
struction of correspondences among anatomic structures. In the first experiment, we compute
correspondences between two vervet cortical surfaces. The approximation of spectral l2-
distance used for this experiment is d30(·, ·). These two vervet cortical surfaces are from
the same vervet brain, one is the left cortical surface and the other is the right cortical sur-
face. Therefore, they have very close intrinsic geometry but different Euclidean coordinate
representations. As shown in Fig. 6.1, accurate surface mapping can be established with our
method even though the Euclidean representation of these two surfaces are quite different.

In brain image analysis, it is critical to consider the correspondence between white and
gray matter surfaces. Meaningful correspondences could be further used to cortex analy-
sis such as studying cortex thickness, detecting cortex cellular layers, etc. However, the
highly folded sulcal and gyral structures make it a difficult task to map the white matter and
gray matter surfaces in the Euclidean domain. To tackle this problem, we apply our direct
surface mapping approach using d30(·, ·) to approximate the spectral l2-distance. The cor-
respondences between the white matter surface and the gray matter surface are illustrated in
Fig. 6.2. It is clear to see that our mapping algorithm successfully establishes sulci-to-sulci
and gyri-to-gyri correspondences between these two highly complicated surfaces.

FIG. 6.2. An illustration of the map between a white mat-
ter and gray matter surface.

7. Conclusions. In summary, we
proposed a general framework for
surface global and local analysis by
constructing a mathematically rigor-
ous distance, spectral l2-distance, on
shape space based on surface Laplace-
Beltrami eigen-systems. This distance
captures the intrinsic geometry of sur-
faces, which is robust to translation, ro-
tation, scale and pose variations. Com-
pared with other distance measures of
surfaces, one distinct feature of the
spectral l2-distance is that it provides
a pair of optimal embedding bases on
two surfaces. The combination of the
spectral l2-distance and its induced op-
timal embedding bases enables us to
compare surfaces in both local and
global perspectives. To demonstrate applications of the proposed spectral l2-distance, we
first illustrate its application in surface classification. We also developed a robust approach
to identify major sulci on vervet cortical surfaces, which are salient local features on com-
plicated surfaces. Finally, we proposed a direct surface mapping algorithm and illustrated its
application in computing detailed correspondences between cortical surfaces.

Acknowledgment. Rongjie Lai’s work is supported by Zumberge Individual Award
from USC’s James H. Zumberge Faculty Research and Innovation Fund. Yonggang Shi’s
work was partially supported by NIH grants 5P41RR013642. Authors would like to express
their gratitude to Prof. Roger P. Woods and Prof. Scott Fears for providing the vervet cortical
surfaces database.

REFERENCES



Spectral l2-distance for Intrinsic 3D Shape Analysis 19

[1] S. BELONGIE, J. MALIK, AND J. PUZICHA, Shape matching and object recognition using shape contexts,
IEEE Trans. Pattern Anal. Machine Intell., 24 (2002), pp. 509–522.

[2] M. BEN-CHEN AND C. GOTSMAN, Characterizing shape using conformal factors, Proceedings of Euro-
graphics Workshop on Shape Retrieval, (Crete, April, 2008).
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