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Abstract. Using fiducial markers on patient’s body surface to predict the tumor

location is a widely used approach in lung cancer radiotherapy. The purpose of this

work is to propose an algorithm that automatically identifies a sparse set of locations

on the patient’s surface with the optimal prediction power for the tumor motion. In

our algorithm, it is assumed that there is a linear relationship between the surface

marker motion and the tumor motion. The sparse selection of markers on the external

surface and the linear relationship between the marker motion and the internal tumor

motion are represented by a prediction matrix. Such a matrix is determined by solving

an optimization problem, where the objective function contains a sparsity term that

penalizes the number of markers chosen on the patient’s surface. Bregman iteration is

used to solve the proposed optimization problem. The performance of our algorithm

has been tested on realistic clinical data of four lung cancer patients. Thoracic 4DCT

scans with 10 phases are used for the study. On a reference phase, a grid of points

are casted on the patient’s surface (except for patient’s back) and propagated to other

phases via deformable image registration of the corresponding CT images. Tumor

locations at each phase are also manually delineated. We use 9 out of 10 phases of the

4DCT images to identify a small group of surface markers that are most correlated with

the motion of the tumor, and find the prediction matrix at the same time. The 10th

phase is then used to test the accuracy of the prediction. It is found that on average

6 to 7 surface markers are necessary to predict tumor locations with a 3D error of

about 1mm. It is also found that the selected marker locations lie closely in those

areas where surface point motion has a large amplitude and a high correlation with

the tumor motion. Our method can automatically select sparse locations on patient’s

external surface and estimate a correlation matrix based on 4DCT, so that the selected

surface locations can be used to place fiducial markers to optimally predict internal

tumor motions.
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1. Introduction

Modern radiotherapy techniques, such as Intensity Modulated Radiation Therapy

(IMRT), are capable of delivering highly conformal radiation dose to a cancerous target

while sparing critical structures and normal tissues. Intra-fraction tumor motion caused

by patient respiration, however, may lead to geometric miss of the target and hence5

potentially compromise the efficacy of these techniques while treating tumors at lung

or upper abdomen area. To mitigate this problem, a number of techniques have been

developed, such as gated treatment, for which accurate modeling and prompt prediction

of tumor motion are necessary (Jiang, 2006b; Jiang, 2006a).

Tumor localization methods can be generally categorized according to the locations10

of surrogates. Methods using internal surrogates, such as gold markers implanted in

or near tumor, are accurate but have issues like the risks of pneumothorax for lung

cancer patients (Arslan et al., 2002; Geraghty et al., 2003), marker migration (Nelson

et al., 2007), and the extra imaging radiation dose (Jiang, 2006b). In contrast, external

surrogate based tumor localization is usually noninvasive and radiation free. In such15

methods, a regression model is first built between the coordinates of some empirically

selected external surrogates and those of the tumor using a training data set. Such a

model will be utilized to predict the tumor location using the real-time measurements of

the marker locations during a treatment via, for example, Cyberknife Synchrony system

(Accuray Corporate, Sunnyvale, CA, USA) (Pepin et al., 2011). Yet, the accuracy of this20

method usually relies on the correlation between external marker motion and internal

tumor motion for a particular patient (Hoisak et al., 2004).

In fact, there are a few questions one should keep in mind while using external

markers for tumor tracking. First of all, how many external markers are necessary?

While using more markers may potentially provide more comprehensive information for25

tumor location estimation, it is evident that the motion of points on a patient surface is

strongly correlated and information from many surface markers is likely to be redundant.

Clinically, it is necessary and desirable to use a minimum number of markers to predict

the tumor motion to a satisfactory degree. Second, given the number of markers, where

shall we optimally place them? Despite a lot of studies regarding the patient breathing30

pattern and the selection of marker locations(Yan et al., 2006; Wu et al., 2008), markers

are placed empirically in most clinical practice.

In this study, we will attempt to answer the aforementioned two questions utilizing

a sparse optimization approach. Specifically, our objective is to choose a sparse set of

points from all the points on the front surface of a patient, so that a linear motion model35

yields the smallest error in tumor location prediction. With a novel optimization model

to formulate this objective in a clean and precise mathematical language, as well as

an effective numerical algorithm to solve the problem, we can effectively yet efficiently

identify the key surface points used to predict tumor motion. A linear regression model is

also developed during the optimization process, such that those markers collaboratively40

predict tumor locations to a satisfactory extent.
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2. Methods and Materials

We start with an introduction of some notations. Denote Y ∈ R
3×m as a 3 × m

matrix whose column vectors are the three Cartesian coordinates of the center of

the tumor at various times tj with j = 1, 2, . . . , m. Suppose there are k candidate45

surface points available for tumor motion prediction. We denote the coordinates of

the collection of all of those surface points at a given time tj as a column vector

Xj = [�x1(tj), �x2(tj), . . . , �xk(tj)]
T , where each vector �xi = [�xi1, �xi2, �xi3] for i = 1, ..., k

contains three entries corresponding to the three Cartesian coordinates of the point i.

If we assemble all the collections of markers Xj associated with different time tj , we will50

have the following matrix X := [X1, X2, · · · , Xm] ∈ R
3k×m.

2.1. Optimization Model

Assume, for simplicity, there is a linear motion model that relates the external marker

motion and the tumor motion. Mathematically speaking, there exist a matrix A ∈ R
3×3k

such that AX ∼ Y . Note that the columns of the matrix A can be also associated to55

those k surface points, each with three coordinates. If one column of the matrix A is

non-zero, the corresponding coordinate for that surface point is then utilized to predict

the tumor motion. As it is our purpose to select only a few surface points for tumor

motion prediction, the problem can be casted as finding a matrix A with only a few

non-vanishing columns, such that the motion of tumor recorded in Y can be accurately60

characterized by AX . Although this is simply a linear motion prediction model, our

numerical experiments indicate that such an assumption is reasonable and leads to

accurate tumor location estimations. We shall refer to the problem of optimal marker

selection as the problem of finding the linear dependence of the motion of the internal

tumor with the motion of some sparsely selected markers.65

We propose our optimal marker selection model as follows:

min
A

{‖A‖2,1 : AX = Y } , (1)

where ‖A‖2,1 :=
∑

j

(∑
i a

2
i,j

) 1
2 and A = (ai,j). In this optimization problem, the

objective function is defined in such a way that it groups all the matrix elements

in a column of A utilizing an �2-norm and then takes �1-norm among all columns.70

Minimizing such an objective function term enables us to enforce sparsity at only the

level of matrix columns. This idea is inspired by that of compressed sensing (Candes

et al., 2006; Candes and Tao, 2006; Candes and Tao, 2005; Donoho, 2006), which is a

recent revolutionary concept in information theory. The applications of such a �2,1 norm

has been recently explored in many problems, such as beam orientation optimization75

for IMRT(Jia et al., 2011), to effectively select only a few groups of elements. Similar

idea was also used in (Esser et al., 2011) where the �1,∞ norm was used for matrix

factorization with applications in hyperspectral image unmixing. We remark that the

model (1) not only sparsely selects markers needed to track the motion of an internal



Optimal Marker Locations for Tumor Motion Estimation 4

tumor, but also provides the linear dependence of the motion of the selected markers80

with that of the tumor at the same time. All such information is integrated within the

solution matrix A.

2.2. Fast Numerical Algorithm

To solve the proposed optimization problem (1), we use a Bregman distance-based

algorithm proposed by Yin et. al. (Yin et al., 2008), which is proven to be efficient for85

�1 minimization problems. Given matrices X and Y , the fast algorithm that solves (1)

can be written into an iterative form as:

Ak+1 = argmin
A

{
μ‖A‖2,1 + 1

2
‖AX − Y k‖2F

}
,

Y k+1 = Y k + Y − Ak+1X,
(2)

where k is the iteration index and ‖ · ‖F is the Frobenius norm. The optimization

problem in the first subproblem of (2) can be solved using the proximal forward-90

backward splitting algorithm (Combettes and Wajs, 2006; Hale et al., 2007), which

by itself is an iterative algorithm as:

Ap+1 = Tµ(A
p − δ(ApX − Y k)XT ), (3)

where p is the iteration index in this subproblem and Tµ(B), for a given matrix

B = [B1, B2, . . . , Bm], is defined as

Tµ(B) :=

[
max(|B1| − μ, 0)

B1

|B1|
, · · · ,max(|Bm| − μ, 0)

Bm

|Bm|

]
.

We note that (Donoho, 1995; Wang et al., 2007) Tµ(B) is the closed form solution

to min
X

{
μ‖X‖2,1 + 1

2
‖X − B‖2F

}
. For computation efficiency, we shall not solve the95

subproblem (2) accurately by using numerous iterations of (3), but only use one iteration

instead. Now, applying (3) (with only one iteration) to (2), we have the following fast

algorithm that solves (1) (also known as the Bregmanized operator splitting algorithm

(Zhang et al., 2010)):

Algorithm 1 Optimal Marker Selection Algorithm

Step 0. Initialization: k = 0, A0 = 0 and Y 0 = 0.

while stopping criteria is not satisfied do

Step 1.

Ak+1 = Tµ(A
k − δ(ApX − Y k)XT )

Step 2.

Y k+1 = Y k + Y − Ak+1X

end while

The proof of the mathematical properties of this algorithm, such as convergence,100

is beyond the scope of this paper. Interested readers can consult references for more

details(Yin et al., 2008; Zhang et al., 2010).
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For realistic patient data, because of the presence of noise and the fact that the

motion of internal tumor is only approximately linearly dependent on the external

markers, we should not expect the relative residual ‖AkX−Y ‖F/‖Y ‖F decrease to 0. In

fact, numerically we observe that the relative residual should have a lower bound whose

value depends on X and Y and it is very difficult to estimate beforehand. Therefore,

we adopt the following stopping criteria:

‖AkX − Y ‖F
‖Y ‖F

< ε1 or
‖Ak−1 −Ak‖F

‖Ak‖F
< ε2.

In other words, we fix an ε1 as a satisfactory amount for the residual; meanwhile, if such

residual is not attainable, we will terminate the algorithm when Ak is not changing too

much according to the tolerance ε2.105

2.3. Patient Data

To validate our algorithm with realistic clinical cases, 4DCT scan data of four lung

cancer patients is used. For those patients, a four-slice GE LightSpeed CT scanner

(GE Medical Systems, Milwaukee, WI, USA) was used to acquire the 4DCT data for

treatment simulation. Each axial CT slice has a thickness of 2.5mm and the 4DCT110

was obtained using respiratory signals from the Varian RPM system (Varian Medical

Systems, Inc., Palo Alto, CA, USA). The 4DCT scan consists of ten different phases

of one breathing cycle; and the CT volume at each respiratory phase consists of 100 to

144 slices of CT images covering the most of thorax area depending on patients. Each

slice of CT image has 512× 512 pixels, with a pixel size of 0.977× 0.977mm2. For each115

patient, tumor GTV was manually contoured on 4DCT scan images of ten respiratory

phases by an expert observer and the 3D tumor center coordinates were identified.

Table 1 summarizes the number of CT image slices for each CT image volume and

the average tumor motion amplitude in the superior-inferior(S-I) direction and average

surface motion amplitude for each patient. It can be observed that the average tumor120

motion amplitude in the S-I direction range from 3.3mm to 9.0mm. The average surface

point motion amplitude ranges among all the patients are found to be 0.8mm to 2.0mm.

Patient No. of slices Tumor motion ampli-

tude in S-I (mm)

Average surface mo-

tion amplitude (mm)

1 144 6.3 2.0

2 100 9.0 1.5

3 132 7.4 1.8

4 104 3.3 0.8

Table 1. Summary of patient data with number of CT slices, average tumor motion

amplitude in S-I direction, and average surface motion amplitude for each patient.

Meanwhile, the external surfaces of each patient, excluding the patient’s back, at

each phase are extracted by segmenting the CT images using a simple threshold method.
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For each patient, the CT image volume at the end of inhale is set as the target image;125

the other nine CT image volumes, corresponding to the other nine different respiratory

phases, are set as moving images. The correspondence between surfaces at different

phases is established by deformable image registration (Thirion, 1998; Gu et al., 2010).

When surface points are available on the external surfaces of each patient, we further

sub-sampled the point sets uniformly to reduce the total number of candidate points130

for a better computational efficiency. In our experiments, we choose approximately 200

candidate surface points for each patient.

2.4. Validation

To validate our marker selection algorithm, we employ an leave-one-out cross validation

(LOOCV) method. Specifically, 10 tests are performed for a patient, and for each test,135

we single out one of the 10 respiratory phases and use the other 9 to form the matrix Y

and solve for the matrix A using Algorithm 1. We then validate our method by using

the matrix A to predict the location of the tumor at the phase that has been singled

out. The deviation of the predicted tumor location from the actual tumor location is

characterized by the 3D Euclidean distance between them in mm.140

The patients’ 4DCT image volumes cover a complete breathing cycle, hence contain

information of external surface motion. We could in principle identify regions of interest

(ROIs) on the patient surface that strongly correlate with tumor motions. It is expected

that the marker locations selected by Algorithm 1 should fall closely into those ROIs.

This also serves as a criterion for the justification of the correctness of our marker145

selection algorithm. To select the ROI, we consider the following two metrics. First,

from the deformation vector fields between different respiratory phases, the motion

trajectory for all surface points were extracted. The correlation function between the

internal tumor motion in the S-I direction and the motion vector of each point on the

external surface was employed as a metric. However, only part of the external surface150

has considerable motion amplitude and those points with small motion amplitude should

not be considered for predicting tumor motions despite their possible high correlations

with tumor S-I motion. Therefore, we only focus on the surface region with large

motion amplitudes. Combining the two criteria, we define the ROI as the areas on the

surface in which the motion amplitude is larger than 80% of the maximum value and155

the correlation is above 0.85. Although those threshold values for the two criteria are

chosen empirically, the general conclusions presented in the rest of this paper are found

not sensitive to them.

3. Results

3.1. Marker selection160

We have studied the validation of our surface marker selection algorithm on 4 lung

cancer patients. The selected 6 surface markers in one typical patient (patient No. 4)
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Figure 1. Left: Markers selected by our algorithm are shown as red circles on one of

the patient’s surface. Right : the LOOCV results for the same patient using the phases

1 through 9 as training data (blue dots) and the phase 10 as the testing data (red dot).

The red circle is the predicted tumor location.

are drawn in 3D space on the patient surface, as shown in the left panel of Fig. 1.

Meanwhile, in the right panel of Fig. 1, we demonstrate the LOOCV results for the

same patient using the phases 1 through 9 as training data and the phase 10 as the165

testing data. Specifically, the blue dots are the locations of the tumor in the training

phases and the red dot is the location of the tumor at the phase 10. The red circle is the

predicted location using the selected surface markers and the matrix A. The 3D distance

between the true tumor location and the predicted location is 0.83mm, indicating the

great capability for tumor motion prediction of our algorithm.170

Error (mm) #Markers Time (sec)

Patient mean std mean std mean std

1 1.85 1.15 5.5 0.85 10.6 4.5

2 1.22 1.06 5.5 1.58 4.6 1.9

3 0.44 0.28 5.4 1.84 10.8 3.0

4 0.83 0.29 7.5 1.35 30.5 11.6

Average 1.08 0.69 5.98 1.04 14.1 5.2

Table 2. Summary of tumor location prediction errors, the numbers of markers

selected, and the computation time.

A summary of the results of all 10 tests for each of the 4 patients is given in Table 2.

For each patient, we compute the mean and the standard deviation of the 3D errors for

the predicted tumor locations and the number of selected markers over all the 10 tests

in the LOOCV. It is found that, on average, our algorithm can automatically select

about 6 surface markers that collaboratively predict tumor motion with an 3D error175

about 1mm.

Algorithm 1 is implemented using MATLAB on a laptop with Intel Core i7 (1.73

GHz) CPU and 8.0G RAM. As for the computation time, it is found that the average

time required to perform one optimization is about 14sec. We emphasize that the
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time reported here is the one for marker selection. Once the markers are selected, the180

matrix A becomes available. The prediction of tumor motion using selected markers

only requires a simple matrix multiplication and hence the prediction can be achieved

in a negligible amount of computation time. From Table 2, it is also found that the

computational time for marker selection varies from case to case, which is possibly

ascribed to the different patient sizes.185

3.2. Comparison with ROI

The correlation between the internal tumor motion in the S-I direction and the external

surface motion is shown on Fig. 2. In Fig. 3, we also present the amplitude of external

surface motion. Combining the correlation map and the motion amplitude map, the

ROIs for each patient can be identified, shown as red regions in Fig. 4, where the ROIs190

have correlation coefficients larger than 0.85 and surface motion amplitude greater than

80% of the maximum value. Apparently, the ROIs are highly dependent on different

breathing motion patterns among patients. We also plot in Fig. 4 the locations of

markers selected with our algorithm. We can see that most of the marker positions

selected by our algorithm fall inside or close to the ROIs, which indicate the robustness195

of our algorithm.
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Figure 2. Color maps showing the correlation coefficients between the external surface

motion and the internal tumor motion for 4 patients.
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Figure 3. Color maps showing the amplitude of external surface motion for 4 patients.
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Figure 4. Color maps showing the regions of interest (where the motion amplitudes

are relatively large and the correlation coefficients are relatively high) and the locations

of the selected markers.
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4. Conclusions

In this paper, we proposed a novel mathematical model to automatically determine the

optimal number and locations of fiducial markers on patient’s surface for predicting

lung tumor motion. We also introduced an efficient numerical algorithm for solving200

the proposed model. Experiments on the 4DCT data of 4 lung cancer patients have

shown that, by using our method, usually 6-7 markers are selected on patient’s external

surface. Most of these markers are in the regions where the surface motion is relatively

large and the correction between the surface motion and the internal tumor motion is

relatively high. Using these markers, the lung tumor positions can be predicted with an205

average 3D error of approximately 1mm. Both the number of markers and the prediction

accuracy are clinically acceptable, indicating that our method can be used in clinical

practice.
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