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Abstract. We present a method to enhance the quality of a video sequence

captured through a turbulent atmospheric medium. Enhancement is framed

as the inference of the radiance of the distant scene, represented as a “latent
image,” that is assumed to be constant throughout the video. Temporal dis-

tortion is thus zero-mean and temporal averaging produces a blurred version

of the scene’s radiance, that is processed via a Sobolev gradient flow to yield
the latent image in a way that is reminiscent of the “lucky region” method.

Without enforcing prior knowledge, we can stabilize the video sequence while

preserving fine details. We also present the well-posedness theory for the sta-
bilizing PDE and a linear stability analysis of the numerical scheme.

1. Introduction. Images of distant scenes, common in ground-based surveillance
and astronomy, are often corrupted by atmospheric turbulence. Figure 1 shows
sample frames from two video sequences of a synthetic target against a backdrop of
trees, taken from a distance of 1Km at a rate of 30 frames per second (FPS). The
first row (a)-(c) is taken in the morning and the second row (d)-(f) in the afternoon,
when the effects of atmospheric turbulence are more severe.

There are several different models of image formation under atmospheric turbu-
lence. In [8, 10, 28], a model of the form

fk = Dk(Kk(f idealk )) + nk
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(a) (b) (c)

(d) (e) (f)

Figure 1. Examples of two video sequences distorted by atmo-
spheric turbulence. The first row of images (a)-(c) is taken in the
morning and the second row of images(d)-(f) is taken in the after-
noon. Atmospheric turbulence causes both distortion of the domain
of the images (warping) as well as diffusive degradation of the range
of the images (blurring) that wash out fine details.

is used, where K represents the blurring kernel, D represents geometric distortion
and n represents the additive noise, all of which can be different in each of the
k = 1, . . . N frames of the video sequence. Based on this model, the majority of
approaches consider some diffeomorphic warping and image sharpening techniques:
first a median filter is applied to find a good reference image, and geometric distor-
tions are found via non-rigid registration, then the image is sharpened using blind
or non-blind deconvolution, as in [8, 10]. In [23], to recover a high resolution latent
image (f ideal), a further super resolution method is applied. In [14], the authors
explored two cases, FRD (finding diffeomorphism then deblurring) and DFG (each
frame is deblurred, and then a diffeomorphism is considered). The DFG method
usually yields more accurate reconstruction of the latent image. An extension to a
variational model using Bregman iteration and operator splitting with optical flow
is considered in [17]. In [29], the authors used B-spline for non-rigid registration
and produce images from the registered frames, then blind deconvolution is applied;
other relevant prior work includes [27, 28] and references therein.

Fried [9] considered the modulation transfer function for long and short exposure
images, and related the statistics of wave distortion to optical resolution. This is
in agreement with [13] on the long-term effect of turbulence in optical imaging,
and field experiments are considered in [5]. An extension on the tile effect in short
exposure is considered in [24]. A correlated imaging system is studied in [26],
where analytical expressions for turbulence effects are derived. The authors of [11]
used the Fried kernel and a framelet based deconvolution to find the latent image.
Many deblurring techniques can be applied to find a sharp latent image such as in
[11, 12, 19]. Other references and related works include [15, 16, 21, 22].
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Another class of the reconstruction methods employs the ideas from image se-
lection and data fusion to produce a high quality latent image. The “lucky frame”
method [25] selects the best frame from a video stream using sharpness to measure
the image quality. Since it is unlikely that there exists a frame that is sharp ev-
erywhere, Aubailly et. al. [2] proposed the Lucky-Region method which is a local
version of the lucky frame method.

In this paper, we propose a simple and numerically stable method to unwarp the
video and reconstruct a sharp latent image. Two of the main effects of atmospheric
turbulence are temporal oscillation and blurry image frames. We propose to apply
video frame sharpening and temporal diffusion at the same time. We apply a
Sobolev gradient method [6] to sharpen individual frames and mitigate the temporal
distortions by the Laplace operator. This eliminates explicit registration that can
be computationally expensive. Furthermore, we use the reconstructed video to
construct the latent image when the camera is stationary and the scene is static.
We apply an approach related to the lucky-region method but with a different
quality criterion to reconstruct a even sharper and more accurate image.

The paper is organized as follows. In Section 2, we review an image sharpening
method via Sobolev gradient flow [6], and prove the existence and uniqueness of the
solution. The new approach is discussed in Section 3. We consider the video recon-
struction and stabilization, and finding the latent image. Numerical experiments
are given in Section 4, which is followed by concluding remarks in Section 5.

2. Sobolev sharpening flow. The heat flow for u : Ω ⊂ R2 → R is the gradient
descent for the functional

E(u) =
1

2

∫
Ω

‖∇u‖2 =
1

2
‖∇u‖22 ,

with respect to the L2 metric. An alternative gradient flow can be derived relative
to the Sobolev metric. Let Ω be an open subset of R2 with smooth boundary ∂Ω
and ‖ ·‖2 be the L2 norm integrated over Ω. An inner product on the Sobolev space
H1(Ω) can be defined as 〈v, w〉 −→ gλ(v, w) = (1− λ)〈v, w〉L2 + λ〈v, w〉H1 for any
λ > 0. The Sobolev metric gλ on H1(Ω) is given by

∇gλE|u = −∆(Id− λ∆)−1u ,

where Id denotes the identity operator. Calder et. al. [6] introduce this idea for
image processing and prove the well-posedness of the linear Sobolev gradient flow
(SOB), i.e.,

ut = ∆(Id− λ∆)−1u , (1)

in both forward and backward directions. This can be easily understood via the
Fourier transform,

ût =
−4π2|ξ|2

1 + 4π2λ|ξ|2
û , (2)

where the “hat”ˆdenotes the Fourier transform with frequency coordinate ξ. Note
that the Fourier coefficients are uniformly bounded on any time interval, thus mak-
ing the problem (1) well-posed for all Sobolev spaces.

As the backward direction can be used for image sharpening, Calder et. al.
propose the following model:

Es(u) =
1

4
‖∇u0‖22

(
‖∇u‖22
‖∇u0‖22

− α
)2

, (3)
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where u0 is the initial condition and α is a scale: for α < 1, we get blurring and for
α > 1 we get sharpening. The gradient descent partial differential equation (PDE)
for the above functional with respect to the Sobolev metric is

ut =

(
‖∇u‖22
‖∇u0‖22

− α
)

∆(Id−∆)−1u . (4)

This is a nonlinear PDE. Its stopping time is implicitly encoded into the sharpness
factor α, as the gradient descent stops when the ratio of ‖∇u‖22 to ‖∇u0‖22 is α. We
prove the existence and uniqueness of its solution in the next subsection, while the
analysis of the linear PDE (1) is given in [6].

2.1. Existence and uniqueness of the solution to (4). We rewrite the non-
linear PDE in (4) as follows{

ut = (‖∇u‖22 − α)∆(Id− λ∆)−1u ,
u(·, 0) = u0, with u0 ∈ H1(Ω) and ‖∇u0‖2 = 1.

(5)

Theorem 2.1 (Local existence and uniqueness). Problem (5) has a unique solution
in C

(
[0, T ];H1(Ω)

)
for some T > 0.

Proof. Note that

du

dt
= F (u) ,where F (u) = (‖∇u‖22 − α)∆(Id−∆)−1u ,

defines an ODE on the Banach space H1(Ω). We want to show F is locally Lipschitz
continuous on H1(Ω) in order to use the Picard Theorem on a Banach space.

We first examine the L2 norm,

‖F (u)− F (v)‖2 6
∣∣‖∇u‖22 − ‖∇v‖22∣∣ · ‖∆(Id− λ∆)−1u‖2
+
∣∣‖∇v‖22 − α∣∣ · ‖∆(Id− λ∆)−1(u− v)‖2 . (6)

Let w = ∆(Id− λ∆)−1u. It follows from Parseval’s theorem that

‖∆(Id− λ∆)−1u‖22 = ‖w‖22 = ‖ŵ‖22 =
∑
ξ∈Z2

4π2|ξ|2

1 + 4π2λ|ξ|2
|û(ξ)|2

6
1

min(1, λ)

∑
ξ∈Z2

|û(ξ)|2 =
‖u‖22
λ0

where λ0 = min(1, λ). Substituting the above inequality into (6), we have

‖F (u)− F (v)‖2 6 C1‖∇u−∇v‖2 + C2‖u− v‖2 , (7)

with C1 = ‖u‖2√
λ0

∣∣‖∇u‖2 + ‖∇v‖2
∣∣ and C2 = 1√

λ0

∣∣‖∇v‖22 − α∣∣. Since the operators

∇,∆, (Id − λ∆)−1 commute, we can obtain a similar inequality for the H1 semi-
norm,

‖∇F (u)−∇F (v)‖2

6
∣∣‖∇u‖22 − ‖∇v‖22∣∣ ‖∇u‖2√

λ0

+
∣∣∣‖∇v‖22 − α∣∣∣ · ‖∇u−∇v‖2√

λ0

6

‖∇u‖2√
λ0

∣∣∣‖∇u‖2 + ‖∇v‖2
∣∣∣+

∣∣∣‖∇v‖22 − α∣∣∣
√
λ0

 ‖∇u−∇v‖2 . (8)
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Combining inequalities (6) and (8), we have

‖F (u)− F (v)‖H1 6 C‖u− v‖H1 , (9)

where C depends on the H1 norm of u and v. Therefore the local existence and
uniqueness of the solution follows immediately from Picard theorem, since a Sobolev
space is Banach.

Theorem 2.2 (Global existence and uniqueness). Problem (5) has a global unique
solution in C

(
[0,+∞);H1(Ω)

)
.

Proof. Given the local existence of the solutions, we only need to show that the
solution can be continued indefinitely. This requires an a priori bound for the H1

norm of the solution u depending only on the initial data. We will discuss two cases
as follows. Recall, ut = F (u), where F (u) = (‖∇u‖22 − α)∆(Id − ∆)−1u, and let
c(t) = ‖∇u(t)‖22 − α.

1. ‖∇u‖22 6 α.
It follows from Poincare inequality that there exists a constant C(Ω) de-

pending on Ω, such that

‖u− ū‖2 6 C(Ω)‖∇u‖2 (6 C(Ω)
√
α),

where ū = 1
|Ω|
∫

Ω
u(y)dy. We find that ū remains constant with respect to

time, since

d

dt
ū =

1

|Ω|

∫
Ω

utdy =
c(t)

|Ω|

∫
Ω

∆(Id− λ∆)−1u(y)dy = 0 .

Then, using the triangular inequality with the initial condition u0, we have
the following bound,

‖u‖22 + λ‖∇u‖22 6
(
‖ū0‖2 + C(Ω)

√
α
)2

+ λα . (10)

2. ‖∇u‖22 > α.
The time evolution of the L2 norm of u has the expression

1

2

d

dt
‖u‖22 =

∫
Ω

uut = c(t)

∫
Ω

u∆(Id− λ∆)−1u . (11)

Integrating by parts, we can obtain the time evolution of the H1 semi-norm
of u

1

2

d

dt
‖∇u‖22 = −c(t)

∫
Ω

∆u∆(Id− λ∆)−1u ,

= −c(t)
∫

Ω

u∆2(Id− λ∆)−1u , (12)

with the boundary condition, such as ut = 0 on ∂Ω or Neumann boundary
condition for u. We combine (11) and (12) in the following way,

1

2

d

dt
(‖u‖22 + λ‖∇u‖22) = c(t)

∫
Ω

u(Id− λ∆)∆(Id− λ∆)−1u

= −c(t)
∫
u∆u = −c(t)‖∇u‖22 6 0 . (13)

This implies that ‖u‖22 + λ‖∇u‖22 decreases as long as ‖∇u‖22 > α.

Combining two cases, we have a bound for ‖u‖22+λ‖∇u‖22 to be (‖ū0‖2+C(Ω)
√
α)2+

λα. This means that the constant C in (9) does not depend on the H1 norm of u
and v, which proves the global existence and uniqueness of the solution to (5).
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Figure 2. Close-up of the synthetic target (test board) in one
video frames in Figure 1. Notice the boundaries of the rect-
angles display oscillations in space. They also exhibit oscilla-
tory behavior in time, as one can see in the videos posted at
https://sites.google.com/site/louyifei/research/turbulence.

3. The proposed method. We believe that the main challenge in dealing with
atmospheric turbulence is the temporal undersampling that causes seemingly ran-
dom temporal oscillations and blurring in each video frame. As shown in Figure 2,
atmospheric turbulence makes the boundaries of rectangles oscillatory in the spatial
domain as well as in time. Our main objective is to stabilize these oscillations in
both space and time.

We compare the result of SOB (4) in Figure 3 with classical Perona-Malik (PM)
anisotropic diffusion [20] and the shock filter [1]. Notice for PM, the edges are
kept and smoothed along the direction of the boundaries of the rectangles without
adding additional sharpening to the image result. The shock filter, on the other
hand, is comprised of backward diffusion and a directional smoothing operator,
thus yielding a sharp image reconstruction. Compared to Perona-Malik and the
shock filter, the result of SOB, Figure 3 (d), looks more naturally sharp (although
oscillations on the boundary still exist). This experiment motivates us to choose
SOB as a sharpening method together with video stabilization. We will explain this
in detail in Section 3.2.

We will also discuss the problem of recovering the latent image in Section 3.4.
The results in Figure 3 (d), while sharp, show considerable residual oscillations.
As in many approaches cited before, the median filter or temporal average is used
as a baseline - for correcting object locations and stabilizing oscillations. Figure 4
shows these reconstruction techniques applied to the temporal average image. The
result such as image (d) is a good latent image. Here the temporal average among
the video sequence is computed, then Sobolev deblurring is applied to the temporal
average. Compared to Figure 3, the boundaries are noticeably more straight by
using the temporal average image.

3.1. Assumptions on the turbulent imaging model. Let the image domain
be Ω ⊂ R2, and the video sequence be u(x, y, k) where k is the time index, and
(x, y) ∈ Ω: u(x, y, k) : Ω× T → R+.

Atmospheric turbulent phenomena affect imaging data by distorting projection
rays, thus inducing on the domain of the image a deformation (relative to the ideal
medium). Such a deformation could be described by its infinitesimal generator,
a vector field v : R2 → R2, which in principle has non-trivial topology (sources,
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(a) (b)

(c) (d)

Figure 3. (a) one particular frame of the original video sequence,
where (b) Perona and Malik [20] anisotropic diffusion is applied, (c)
Shock filter [1], and (d) Sobolev gradient method [6]. Compared to
(b) and (c), image (d) is more naturally sharp (although oscillations
on the boundary still exist.)

(a) (b)

(c) (d)

Figure 4. (a) The temporal average of 30 frames. (b) Perona and
Malik [20] on (a). (c) Shock filter [1] applied to (a). (d) Sobolev
gradient method [6] applied to image (a). In (b), PM shows sharp
edges yet details are not well preserved. Image (c) is close to a
piece-wise constant function yet shows stair-casing effects. Image
(d) is more naturally sharp, while better preserving fine details.

sinks). However, because of temporal undersampling (image capture frequency is
typically lower than the intrinsic temporal scale of atmospheric turbulent phenom-
ena), there is a temporal averaging effect of fine-scale deformations that result in
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spatial blurring. We assume that the spatially blurred vector field has trivial topol-
ogy, and it generates a diffeomorphism w : Ω× T ⊂ R2 × R+ → R2 which has zero

mean displacement, i.e. for each (x, y) ∈ Ω we have that
∫ T

0
w(x, y, k) dk = 0 for T

sufficiently large.
Under these assumptions, we model turbulent imaging as blurring through a

non-isotropic, non translation-invariant linear operator H that is the composition
of an isotropic blur and a diffeomorphism: here x̄i = (xi, yi, k),

H(x̄1, x̄2)
.
=
hσ(x̄1 − w−1(x̄2))

|Jw|
,

where |Jw| is the determinant of the Jacobian of special variables of w for a fixed
time k, and hσ(·) is an isotropic, static kernel, for instance a bi-variate Gaussian
density

hσ(x̄1 − x̄2)
.
=

1√
2πσ

exp

(
−‖x̄1 − x̄2‖2

σ2

)
.

Both σ > 0 and w are unknown; σ can vary depending on distance, time of the day,
atmospheric conditions, otherwise constant both spatially and temporally on a small
time-scale. The diffeomorphism w, on the other hand, can vary significantly both
in space and in time. (It should be noted that the point-spread function neglects
dependency on wavelength, although this could be included if multi-spectral sensing
is available.)

We now describe the image formation model. We assume that the scene is Lam-
bertian, which can be done without loss of generality since the scene is assumed
to be seen from a stationary vantage point and constant illumination during the
time-scale of observation. We call ρ : S ⊂ R3 → R+ be the albedo of the scene, that
is a function supported on a (piecewise smooth, multiply-connected) surface S, and
is assumed to have a small total variation. Since we do not consider changes of van-
tage point (parallax), without loss of generality, we can assume S to be the graph
of a function (depth map) parametrized with (x, y) ∈ Ω. This can be expressed
as ρ : R2 → R+. Then, we can write the image-formation model as a convolution
product between an isotropic static kernel and a warped version of the albedo:

u(x, y, k) = hσ ∗ ρ ◦ w(x, y, k).

This can be verified with x̄ = (x, y, k) that

hσ ∗ ρ ◦ w(x, y, k) =

∫
R2

hσ(x̄− ȳ)δ(z − w(ȳ))ρ(z)dȳdz

=

∫
hσ(x̄− w−1(z))ρ(z)

1

|Jw|
dz

=

∫
H(x̄, z)ρ(z)dz = u(x̄).

Therefore, atmospheric deblurring reduces to two independent problems, one of
blind deconvolution and diffeomorphic blurring of a temporally under-sampled pro-
cess w. We assume that each temporal instance of the vector field {w(x̄)}(x,y)∈Ω,k∈T
is an independent and identically distributed sample from a stochastic process.
Therefore, we assume that there is no “predictive benefit” in knowing the history
of the process w. A dynamic texture model to estimate the diffeomorphism w is
discussed in [18].
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3.2. Video reconstruction/stabilization model. The main idea of reconstruct-
ing atmospheric turbulence is to stabilize temporal oscillation while sharpening in-
dividual video frames. We propose the following PDE model for Video Stabilization
(SOB+LAP):

ut(x, y, k) = S[u(x, y, k)] + µ ∂kku (14)

where S[·] denotes a deblurring method on the spatial domain, and ∂kku = u(x, y, k+
1)−2u(x, y, k)+u(x, y, k−1) is the Laplace operator in the time dimension k. From
the comparisons in Figures 3 and 4, we apply the Sobolev approach (4) as the de-
blurring method.

Typically, isotropic diffusion is not well suited to preserve fine details. However,
it performs well for time regularization in the case of video stabilization. This is
due to the assumption that the camera is stationary and the scene is static. If
anisotropic diffusion is applied in the time domain, it may lead to jumpy behaviors
in time. Figure 5 illustrates this effect. From image (a), the red line profile is
plotted in time in (b)-(d). Image (b) is the raw video sequence, while image (c)
shows when three-dimensional Perona-Malik is applied to the (x, y, k)-direction, and
image (d) shows when Perona-Malik is applied only on spacial direction of (x, y),
and simple time Laplacian is applied to time direction. From this comparison, we
can see that the space and time diffusion should be independent from each other,
and using anisotropic diffusion for the time direction is not ideal.

We choose SOB (4) as a spatial sharpening method since it achieves the best
performance in Figure 3 and 4. Furthermore, we apply the time Laplacian for
temporal regularization, which also helps to remove the noise amplified by the
sharpening method. The PDE evolution for SOB+LAP model goes as follows:

ut =

(
‖∇u‖22
‖∇u0‖22

− α
)

∆(Id− λ∆)−1u+ µ ∂kku , (15)

with u0 the original video sequence, which is also the initial value for this PDE,
and α > 1 for deblurring from (3). Note that the Laplace operator ∆ only acts on
the spatial domain Ω. As for the parameter µ, it balances each individual frame
deblurring with the temporal diffusion.

3.3. Numerical scheme and stability analysis. Calder et. al. [6] derive an
explicit expression to compute the operator (Id− λ∆)−1 on Ω = R2, i.e.,

(Id− λ∆)−1f(x) = Sλ ∗ f(x), with Sλ(x) =
1

4λπ

∫ +∞

0

e−t−
|x|2
4tλ

t
dt , (16)

where ∗ denotes the convolution operator.
We assume periodic boundary conditions and formulate a spectral solver for eq.

(15). Let uk(x, y) = u(x, y, k) and ûnk (m1,m2) be the discrete Fourier transform of
unk (x, y). We have

ûn+1
k − ûnk
dt

= Cnk
−4D(m1,m2)

1 + 4λD(m1,m2)
ûnk + µ(ûnk+1 + ûnk−1 − 2ûn+1

k ) , (17)

where Cnk =

∑
m1,m2

D(m1,m2)|ûnk (m1,m2)|2∑
m1,m2

D(m1,m2)|û0
k(m1,m2)|2

− α . (18)

where D(m1,m2) = sin(m1π
M1

)2 +sin(m2π
M2

)2 for discrete coordinates m1 = 1, · · · ,M1

and m2 = 1, · · · ,M2.
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(a)

(b) (c) (d)

Figure 5. The comparison of temporal diffusion: (a) A given
video frame at initial time k = 1. The red line is u(x1, y, 1) for
a fixed x1 and α ≤ y ≤ β. (b) The plot of y vs k for the raw
video frame: the plot of u(x1, y, k) with the fixed (vertical) loca-
tion α ≤ y ≤ β and the varying time 1 ≤ k ≤ N (horizontal). (c)
The plot of y vs k, after three-dimensional Perona-Malik is applied
to (x, y, k). (d) The plot of y vs k, with Perona-Malik on (x, y) and
the time Laplacian on k. Notice image (d) is more regularized than
image (c). The time Laplacian regularizes the temporal direction
better than anisotropic diffusion methods.

This approach yields a four-fold speed-up compared with the spatial domain
calculation in (16). This is because our formulation is fully on the spectral domain,
which only involves one pair of FFT and inverse FFT, while the evolution (16) has
to perform convolution during each iteration.

For stability analysis, we linearize Cnk in (17) with respect to ûnk (m1,m2). Let
ũ(m1,m2) be the steady state of ‖∇ũ‖2 = α. To simplify notations, we rescale

the initial value u0
k such that ‖∇u0

k‖2 = 1 and let p(m1,m2) = 4D(m1,m2)
1+4λD(m1,m2) .

Substituting ûnk = ũ+ εvnk into eq. (17), we have

vn+1
k (m1,m2)− vnk (m1,m2)

dt
= −2

∑
l1,l2

D(l1, l2)ũ(l1, l2)vnk (l1, l2)

 p(m1,m2)ũ(m1,m2) +

+µ(vnk+1(m1,m2) + vnk−1(m1,m2)− 2vn+1
k (m1,m2)) + o(ε).

(19)
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Multiplying D(m1,m2)ũ(m1,m2) on both sides and summing over m1,m2, we get

zn+1
k − znk
dt

= −2Aznk + µ(znk+1 + znk−1 − 2zn+1
k ) , (20)

where

znk =
∑
m1,m2

D(m1,m2)ũ(m1,m2)vnk (m1,m2)

A =
∑
m1,m2

p(m1,m2)D(m1,m2)ũ2(m1,m2) > 0.

Von Neumann stability analysis is conducted by replacing zkn with gn expikθ, i.e.,

g − 1

dt
= −2A+ 2µ(cos θ − g) .

The stability condition for (20) is that |g| < 1, which implies that dt 6 1/A. This
is a weak conditional stability in the sense that it is only for dt, not depending on
spatial grid resolution, as A 6 2

λ |ũ|
2

3.4. Constructing a latent image by image fusion. With the video sequence
u(x, y, k) reconstructed from SOB+LAP, we combine these video frames to con-
struct a sharp latent image. As in many related references, using mean or median
is a reasonable choice to find an image with correct location information for each
object. We also experimented with using the Sobolev approach on the temporal
average, which seems to give a reasonably good latent image, as in Figure 4 (d).
We further improve this latent image using an image fusion technique.

In order to improve the results from Figure 4 (d), we need to retain more details
of the video frames. One of the most effective image restoration methods is the
Non-local means (NLM) algorithm [3]. Its main idea is to replace the value of a
certain pixel by the weighted average of the intensity values of its neighboring pixels
for denoising purpose. The extension to video denoising is proposed in [4] where the
neighborhood pixels are considered in three dimensions. This approach can be used
as a fusion technique to further improve the latent image in Figure 4 (d). However,
it has a limitation that, as in the case of using registration methods, it lacks a good
template to compute the weight between itself and all the other images (the median
image is blurry, while each video frame is sharp with oscillations).

We consider an approach similar to the so-called “Lucky Region” method [2] for
image fusion. We first partition the image domain Ω into small sub-domains (image
patches) Ωj , such that

Ω = Ω1

⋃
Ω2

⋃
· · ·
⋃

ΩM

and Ωi
⋂

Ωj 6= ∅ for any two adjacent neighboring image patches Ωi and Ωj . This
is to ensure the compatibility between neighboring patches, that we assume two
adjacent patches overlap with one column or one row as in Figure 6.

From these partitions, we select the best patch u(Ωj , k̂) from all the frames for
each Ωj for 1 ≤ k ≤ N . The best patch is selected by measuring two terms: the
similarity to the mean and the sharpness. In particular, the similarity is measured
using the L2 distance to enforce the correct pixel location, while the sharpness is
defined to be the variance of the patch. Note that there are other measurements of
sharpness, such as H1 semi-norm, kurtosis [7], entropy, etc. Here we use variance
for simplicity.
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Figure 6. Partition of the image domain Ω. There is one row or
one column overlap between two adjacent sub-regions Ωi and Ωj .

Suppose the video sequence u(x, y, k) has a temporal mean v(x, y), v(x, y) =
1
N

∑
k u(x, y, k). We find the index of the best frame by the following measure: For

each patch Ωj , find

k̂ = max
1≤k≤N

{
(1− β)‖u(x, y, k)− a(x, y)‖2 + β ‖u(x, y, k)− ū(k)‖2

}
.

Here ū(k) = 1
|Ωj |

∫
Ωj
u(x, y, k)dxdy is the patch mean on Ωj , and the L2 norm and

the variance are computed on Ωj as well. Here β is a parameter to balance two

terms. We replace the patch values in the sub-domain Ωj by u(x, y, k̂). As for the
overlapping region, we take the value which is an average among the patches that
cover it.

Figure 7 shows the effect of this approach. Image (a) is Figure 5(d), which is
the Sobolev sharpening on the temporal average (average first then deblur). Image
(b) is the mean of the processed video SOB+LAP (deblur first then average), and
Image (c) is the improvement by the lucky frame image fusion. Comparing (a) and
(b) shows that it can give better results when each video frame is deblurred then
followed by a diffeomorphism (averaging is considered here), which is consistent with
[14]. The proposed method SOB+LAP not only sharpens each individual frame,
but also normalizes the temporal direction at the same time. Therefore, image
(b) is more regularized than just considering the diffeomorphism of sharp images.
Using our lucky region technique, image (c) is even clearer. By using SOB+LAP,
the straight edges of the rectangles, and especially around the small details, are
well-recovered. The sharpness is by far the best, clearly showing the number 3 (on
the bottom right corner of the image).

4. Numerical Experiments.

4.1. Video Reconstruction/Stabilization: Figure 8, 9 and 10 illustrate the re-
sults of SOB+LAP. It is best seen in the videos posted at our project’s website.1

We plot a few frames from the video sequences. As shown in the beginning of this
paper, two video sequences capture the same scene but at different times. For the
mild turbulent motion in the morning, we can restore the sharp and straight bars
using SOB+LAP, as shown in Figure 8. From the top row, (a)-(b) show the raw
data, the second row (c)-(d) the reconstructions of using only SOB on each frames,

1https://sites.google.com/site/louyifei/research/turbulence

https://sites.google.com/site/louyifei/research/turbulence
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(a) (b) (c)

Figure 7. Latent Images: (a) This is Figure 5 (d)- applying SOB
on the temporal mean. (b) The temporal mean of the video se-
quence after SOB+LAP. (c) Further improvement using our image
fusion technique from the video reconstruction by SOB+LAP. In
(c), notice the straight edges of the rectangles, and details are well-
recovered, which clearly shows the number 3 (on the bottom right
corner of the image).

and the third row (e)-(f), the reconstruction of SOB+LAP. Notice the second row
may look sharper, yet the oscillations on the boundaries persist - they are more
noticeable on the video. The proposed method SOB+LAP stabilizes the oscillation
on the boundaries while recovering the sharpness, as shown in (e)-(f), compared to
(b) the raw data and (d) SOB only on each frames.

Interlaced Video: A video sequence with interlacing is explored in Figure 9.
The top row shows the original video sequence with interlacing. The video frames
are preprocessed by taking the odd rows and interpolating the even rows. This new
sequence is shown on the second row, Figure 9 (b). It shows less interlacing phe-
nomena than the original sequence. The SOB result shown in the third row (c) and
the SOB+LAP result shown in the fourth row (d) are applied to the preprocessed
sequence in (b). Applying SOB for each frames makes the images sharper, yet the
interlacing effect is emphasized. The sequence in (d), SOB+LAP is more stable and
the interlacing effects are reduced. With the help of temporal diffusion, the small
details - white squares around the black borders - are more coherent and clearer in
sequence (d).

Moving object: Figure 10 illustrates a semi-synthetic example of a moving
object in the video sequence. We artificially crop the region of interest so that the
car moves forward for the first 15 frames, then forward and downwards for another
15 frames, that there is a discontinuity in the velocity of the car at the 15th frame.
The first row shows the raw frames, the second row shows SOB and the third
row shows SOB+LAP. Although the second row images appear sharp as individual
image, the oscillations of the raw frames are not stabilized as a video sequence,
and atmospheric turbulence effects are not corrected. SOB+LAP stabilizes the
oscillations and the reconstructed video sequence shows smooth movement of the
car. However, due to using the Laplacian operator in time, some ghost effects are
present in the 15th frame where there is a shift in the movement of the car. Visually,
the two bars in front of the car are doubled in the middle image of the row (c).

4.2. Latent image reconstruction and comparisons. Figures 11 and 12 are
our proposed method and further improvements using image fusion techniques.
These results are compared with [2], where the lucky-region fusion approach is
used for atmospherically distorted images, and [17], an extension from [14] to a
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(a) (b) zoom

(c) (d)

(e) (f)

Figure 8. Reconstruction of the video sequence captured in the
morning: The top row (a)-(b) is the raw data. The second row
(c)-(d) is the reconstructions of SOB only. The third row (e)-
(f) is reconstruction with SOB+LAP. The first three columns are
the 10th, 20th and 30th frame from each video sequence. The last
column (b), (d) and (f) shows the magnification of the target board
in the 30th frame, i.e. the third column. SOB+LAP stabilizes the
oscillation on the boundaries while recovering the sharpness.

variational model using Bregman iteration and operator splitting with optical flow.
These two methods do not deal with the inherent blur in the original video sequence,
so their outputs appear to be blurry. Image (d) is very sharp yet the oscillations of
the rectangles are not completely corrected. Image (e) has a better recovery of the
rectangles, yet using our image fusion technique can further improve the result as
in (f).

4.3. Challenging case - Afternoon turbulence. Figure 13 presents the chal-
lenging case of atmospheric turbulence. The top row clearly illustrates the severity
of the phenomenon. With SOB in the second row, the result looks sharper, yet the
effects of such severe turbulence are still visible. The last row shows our result: even
for this challenging example, the three bars on the top left corner of the pattern
board are somewhat recovered and the video sequence is stabilized.

We analyze this difficulty by looking into the turbulence motion of the morning,
Figure 8, and the afternoon, Figure 13. We first obtain a profile by tracking the
edge of the rectangle along a particular line, as shown in Figure 14 (this example
is of Figure 8). To automatically track their movement in the video sequence, we
first apply the Canny edge detector to get a binary edge map, then we record the
position of the edge points along the line. The plot, Figure 14 (b), shows only
one-dimensional vertical changes, while the true motion is two-dimensional in space
(and, the accuracy of the motion is in pixels). This is a rough estimate of the true
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(a)

(b)

(c)

(d)

Figure 9. Reconstruction of a video sequence with interlacing:
The top row (a) showing the original video with interlacing phe-
nomenon. The second row (b) is the preprocessed raw data - still
the interlacing effect is present. The third row (c) is the reconstruc-
tion of SOB only. The fourth row (c) is the reconstruction using
SOB+LAP. In row (c), the interlacing effect is emphasized. The
sequence in (d), SOB+LAP is more stable and interlacing effects
are reduced. With the help of the temporal diffusion, the small
details (white squares) around the black borders are more coherent
and clearer in the row (d).
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(a)

(b)

(c)

Figure 10. Reconstruction of a video sequence with a moving
object. From top to bottom: the raw data, the reconstructions of
SOB only and SOB+LAP. From left to right: the 5th, 15th and
25th frame. In the middle image of the row (c), the two bars in
front of the car are doubled, due to the discontinuity of the car
velocity and the time Laplacian in SOB+LAP.

motion, however, it shows that the motion is not individually random motion, but
moves in a group which is consistent with using the wave models in literature.

We apply this tracking algorithm on a single point on two video sequences for
Figure 8, and the afternoon, Figure 13. In Figure 15, two key points are marked as
the blue dots in (a) and (b): the horizontal motion is tracked for (a) (the morning)
and the vertical motion is tracked for (b) (the afternoon). The second row is the
histogram of their positions through time. It is consistent with the finding in [23]
that turbulent motion follows a Gaussian distribution. The third row shows the
profile comparison of the blue dot movement of the original one and the SOB and
SOB+LAP. Comparing the blue line (tracking of the key points) of (e) and (f), it
is clear the afternoon turbulence is very severe compared to the morning case, due
to the higher temperature during the day. Comparing the graphs, blue, red and
green in image (e) and (f), it is clear that applying SOB on the each frames does
not correct the temporal oscillation. However, SOB+LAP handles the oscillations
well and stabilizes the motion, even in the case of severe oscillation in (f), notice
the green line (SOB+LAP) is the most stable among the graphs.

5. Concluding remarks. We propose a simple and stable method to stabilize the
video and to find a sharp latent image. Two of the main effects of atmospheric
turbulence are temporal oscillation and blurry image frames, and we propose the
method (14) that stabilizes the temporal oscillation and sharpening the video frame
at the same time. The Sobolev gradient approach gives a natural deblurring in an
anisotropic manner, while the temporal dimension is regularized with the Laplace
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(a) (b) (c)

(d) (e) (f)

Figure 11. Latent image comparison: (a) One frame from the
original sequence. (b) Using the lucky-region fusion [2]. (c) Using
[17]. (d) One frame from SOB+LAP. (e) The temporal mean of
SOB+LAP. (f) The proposed method to find the latent image,
which is an improvement using image fusion technique from (d) or
(f). Since the methods [2] and [17] do not deal with the inherent
blur in the original video sequence, image (b) and (c) appear to be
blurry. Image (d) is very sharp yet the oscillations of the rectangles
are not completely corrected. Image (e) has a better recovery of
the rectangles, yet using our image fusion technique can further
improve the result as in (f).

operator. In addition, numerical computation is done using FFT, which makes
the algorithm very fast and efficient. SOB+LAP is a simple and stable methods
for video sequence stabilization and reconstruction. One of the challenges is to
construct a good latent image, and from the video result of SOB+LAP, we computed
the temporal average to get dependable latent images as in Figure 7 (a) and (b).
We further improve the results using the lucky-region image fusion and construct an
image such as Figure 7 (c). In some cases, the effects of atmospheric turbulence are
so severe that no existing method can correct them, as shown in Section 4.3. Our
algorithm performs in a way that is comparable with the state of the art, but still is
unable to resolve fine details in the case of destructive turbulent degradation. This
remains, therefore, an open problem with plenty of room for further investigation.
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(a) (b) (c)

(d) (e) (f)

Figure 12. Latent image comparison: (a) One frame from the
original sequence. (b) The lucky-region fusion [2]. (c) Using
[17]. (d) One frame from SOB+LAP. (e) The temporal mean of
SOB+LAP. (f) The proposed image fusion technique.
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in the morning and vertical motion in the afternoon respectively.
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