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Abstract

Given a graph where vertices represent alternatives and arcs represent pairwise comparison
data, the statistical ranking problem is to find a potential function, defined on the vertices,
such that the gradient of the potential function agrees with the pairwise comparisons.
Our goal in this paper is to develop a method for collecting data for which the least
squares estimator for the ranking problem has maximal Fisher information. Our approach,
based on experimental design, is to view data collection as a bi-level optimization problem
where the inner problem is the ranking problem and the outer problem is to identify data
which maximizes the informativeness of the ranking. Under certain assumptions, the data
collection problem decouples, reducing to a problem of finding multigraphs with large
algebraic connectivity. This reduction of the data collection problem to graph-theoretic
questions is one of the primary contributions of this work. As an application, we study the
Yahoo! Movie user rating dataset and demonstrate that the addition of a small number of
well-chosen pairwise comparisons can significantly increase the Fisher informativeness of the
ranking. As another application, we study the 2011-12 NCAA football schedule and propose
schedules with the same number of games which are significantly more informative. Using
spectral clustering methods to identify highly-connected communities within the division,
we argue that the NCAA could improve its notoriously poor rankings by simply scheduling
more out-of-conference games.
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1. Introduction

The problem of statistical ranking1 arises in a variety of applications, where a collection of
alternatives is ranked based on pairwise comparisons. Methods for ranking must address
a number of inherent difficulties including incomplete, inconsistent, and imbalanced data.
Despite and possibly as a consequence of these difficulties, although ranking from pairwise
comparison data is an old problem (David, 1963), there have been several recent contribu-
tions to the subject with applications in social networking, game theory, e-commerce, and
logistics (Langville and Meyer, 2012; Osting et al., 2013b; Hirani et al., 2011; Jiang et al.,
2010; Callaghan et al., 2007).

The statistical ranking problem can be generally posed as finding an estimate for a
ranking, φ, for a set of alternatives from a dataset which consists of (i) a set of alternative
pairs which have been queried, w, and (ii) noisy, cardinal2 pairwise comparisons for those
alternative pairs, y. We symbolically express an estimator for the ranking problem,

φ̂w = R(y, w), (1)

where the dependence of the ranking, φ̂w, on the queried pairs (data collected), w, is
emphasized by the subscript.

Consider the dependence of a ranking, φ̂w, satisfying (1), on the collected data, w.
Generally speaking, for a fixed number of alternatives, the more alternative pairs which
have been queried, the more informative we expect the ranking, φ̂w. That is, there is
a tradeoff between the amount of pairwise data collected and the informativeness of the
ranking. In this paper, we consider the following question: Given a pairwise comparison
dataset, (w0, y0), and the opportunity to collect ξ additional pairwise comparisons, which
pairs should be targeted to maximally improve the informativeness of a statistical ranking,
φ̂w, satisfying (1)?

We propose a learning algorithm for ranking from cardinal pairwise comparisons. To
accomplish this, we follow the methodology of the optimal design community (Haber et al.,
2008; Pukelsheim, 2006; Melas, 2006; Fedorov, 1972), and consider the Fisher information
for the ranking estimate, φ̂w, denoted F.I.(φ̂w). We are thus led to the following bilevel
optimization problem:

max
w

f
(

F.I.(φ̂w)
)

(2a)

such that φ̂w = R(y, w) (2b)

w ∈ ZN+ , w � w0, ‖w − w0‖1 ≤ ξ. (2c)

1. We use the term ranking to indicate a numerical score for each item in a collection, which is also
sometimes referred to as a rating.

2. A cardinal pairwise comparison dataset refers to quantitative (real-valued) comparisons between items,
as opposed to an ordinal pairwise comparison dataset, where only pairwise preferences are specified.
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where N :=
(
n
2

)
= n(n−1)

2 and f : Sn+ → R is a convex function. For general optimal design
problems, common choices for the scalar function f(A) include

f(A) = min
i

λi(A) E-optimal (3a)

f(A) = −trA−1 = −
∑
i

λi(A
−1) A-optimal (3b)

f(A) = detA =
∏
i

λi(A) D-optimal (3c)

where {λi(A)}ni=1 denote the eigenvalues of A. The constraint in (2c) specifies that only a
limited amount of additional data is collected.

The ranking problem can be represented on a complete directed graph, G = (V,A), with
vertices representing the alternatives and the pairwise comparison data, y, is a function on
the arcs. The queried pairs, w, can be viewed as an integer valued function on the arcs repre-
senting the number of times a pairwise comparison has been queried for that particular pair.
In §4, we show that for the least squares ranking estimate, φ̂w = arg min〈φ,1〉=0 ‖Bφ−y‖2,w,
where B is defined in §3, the constraint (2b) in the optimization problem (2) decouples,
yielding a graph synthesis problem of finding the graph whose w-weighted graph Lapla-
cian has desired spectral properties. For example, an E-optimal design (3a) corresponds
to finding edge weights w for which the w-weighted graph Laplacian has maximal second
eigenvalue (algebraic connectivity). This reduction of the data collection problem to graph-
theoretic questions is one of the primary contributions of this and previous work (Osting
et al., 2013a).

For the active learning problem for ranking from ordinal pairwise data, there has been
a large amount of recent work, which we briefly discuss in §2. However, the analogous
cardinal problem considered here has received less attention. Several recent papers have
proposed using iid random sampling (corresponding to an Erdös-Rényi graph) for quality
assessment algorithms and crowdsourcing experiments, see, e.g., Eichhorn et al. (2010) and
Xu et al. (2012). These algorithms collect pairwise comparisons from a large number of
distributed sources without considering the informativeness of the resulting rankings. Like
random sampling, the data collection methodology advocated here does not depend on the
previous pairwise preferences to select new pairwise queries; our proposed learning algorithm
is parallelizable.

In §5, we consider several applications of the methodology developed in §4 for the opti-
mal data collection problem (2). We begin with a few constructed examples and show that
graphs can be generated which have larger algebraic connectivity than Erdös-Rényi ran-
domly generated graphs. The rankings of the datasets represented by these well-connected
graphs are more informative then those represented by Erdös-Rényi graphs. We then con-
sider the data collection problem for ranking Yahoo! movies and for the 2011-2012 NCAA
Division 1 football season.

Application: improving the informativeness of Yahoo! movie rankings The
Yahoo! Movie user rating dataset consists of an incomplete user-movie matrix where entries
represent a score given to the movie by the user. By considering the differences in movie
reviews by each user, a pairwise comparison dataset (w0, y0) can be constructed. For this
dataset, we empirically demonstrate that the assumptions made in §4 are reasonable. By
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applying the methodology developed in §4, we show that the addition of a small number
of well-chosen pairwise comparisons can significantly increase the Fisher informativeness
of the ranking. The same number of randomly chosen additional pairs has no appreciable
impact on the Fisher information.

Application: sports scheduling The statistical ranking problem arises in competitive
sports. Here, teams (alternatives) are ranked based on the schedule (queried alternative
pairs) and the game results (pairwise comparisons). The dataset is incomplete if not all
teams play all other teams; inconsistent if there are teams A, B, and C, such that team
A beats team B, team B beats team C, and team C beats team A; and imbalanced if
the “strength of schedule” varies among the teams. In this setting, the tradeoff between
the amount of data collected (number of games) and the informativeness of the ranking is
especially transparent. In a single elimination tournament with n teams, there are only n−1
games played. Here, we expect that the “best team” wins the tournament, but it is difficult
to rank the remaining teams in any reasonable way. At the other extreme, a round-robin
tournament among n teams requires

(
n
2

)
games which may not be possible if n is large. The

optimal data collection problem (2) can be interpreted as designing the schedule so that
the rankings are the most informative, and thus we refer to the optimal design problem in
this context as schedule design. In §5.4, we study the 2011-12 NCAA football schedule and,
using the methodology developed in §4, propose schedules with the same number of games
which are significantly more informative. Using spectral clustering methods to identify
highly-connected communities within the division, we argue that the NCAA could improve
its notoriously poor rankings by simply scheduling more out-of-conference games. In §5.5,
we continue with the graph constructed in §5.4 and demonstrate using synthetic data that
ranking estimates obtained via active sampling are more accurate (in the sense of both the
L2-distance and the Kendall-τ rank distance) than via random sampling.

Outline In §2, we review related work. In §3, we review properties of the eigenvalues of
the graph Laplacian and establish notation used in subsequent sections. In §4 we study
the optimal data collection problem (2) and show the reduction of (2) to a graph synthesis
problem. In §5, we conduct a number of numerical experiments to demonstrate how the
optimal data collection methodology developed in §4 can be employed. Finally, we conclude
in §6 with a discussion of further directions.

2. Related work

Our work is related to several subject areas, which we discuss in turn: active learning
methods for ordinal ranking, statistics and experimental design, sports scheduling, and
graph theory. This work is an extension of the conference proceeding, Osting et al. (2013a).
In particular, the present article includes a more extended survey of related work, provides
a comparison of Erdös-Rényi graphs and those with maximal algebraic connectivity and
a discussion of the implications of this for the optimal data collection problem, a more
complete discussion of the scalarizing criterion for the Fisher information (3), and additional
examples.

Active learning methods for ordinal ranking Ailon et al. (2011) and Ailon (2012)
study the problem of optimally sampling preference labels for the minimum feedback arc-set
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in weighted tournaments (MFAST) also known as Kemeny-Young ranking. In this work,
the dataset considered is ordinal, i.e., only pairwise preference labels are specified, whereas
in the present work, the dataset is cardinal, i.e., the preferences are represented as quanti-
tative (real valued) differences between items. Jamieson and Nowak (2011) and Jamieson
and Nowak (2012) consider the problem of actively learning the optimal permutation for
a collection of alternatives under the assumption that the alternatives have additional ge-
ometric structure, namely a Euclidian embedding in a low dimensional space. Wauthier
et al. (2013) propose ranking methods based on independent random sampling, which have
worse theoretical complexity, but are relatively simple and easily parallelizable.

Statistics and experimental design Excellent surveys of the optimal experiment de-
sign literature can be found in (Haber et al., 2008; Pukelsheim, 2006; Melas, 2006; Fedorov,
1972). Methods of optimal experiment design have been applied to ill-posed inverse prob-
lems, e.g., in geophysical (Haber et al., 2008) or biomedical imaging (Horesh et al., 2011,
ch. 13, p. 273-290), (Chung and Haber, 2012; Quinn and Keough, 2002; DiStefano 3rd,
1976). It is instructive to consider the analogy between these applications and the optimal
data collection problem considered here. In imaging systems, there is a tradeoff between
the amount of collected data and the accuracy of the reconstruction, or equivalently, the
sparsity of the measurement and the uncertainty in the solution to the inverse problem. For
application dependent reasons (e.g., high radiation dose to a patient or the cost of collect-
ing data), it is often desirable to place as few sensors as possible while still maintaining an
acceptable accuracy in the reconstruction. In the current work, the goal is to construct the
best ranking possible from a small number of pairwise comparisons. In both situations, it
is desirable to take “measurements” which are maximally informative.

Methods for scheduling from sports As discussed in the introduction, in the context of
sports ranking, (2) is equivalent to optimal schedule design. There are large variations in the
methods currently used for sports scheduling. It is convenient to distinguish between static
and dynamic scheduling. In static scheduling, the schedule is determined prior to the season,
independent of the performance of teams throughout the season. Examples of leagues
employing static schedules include NCAA football and Major League Baseball (MLB). In
dynamic scheduling, the schedule is determined by past score results. For example, in
a single elimination tournament, a team advances to the next round only if they win in
the current round. Leagues which partially rely on single elimination tournaments include
ATP tennis and FIFA World Cup soccer. Glickman (2005) proposes a dynamic scheduling
method where games are scheduled which maximize the expected gain in information and
thus one can view the resulting schedules as a greedy algorithm to learn as much as possible
about the rankings. This active learning algorithm is similar to several in the machine
learning community, where past observations are used to control the process of gathering
future observations, see, for example, (Krause et al., 2008; Seeger and Nickisch, 2011; Silva
and Carin, 2012). While dynamic schedules utilize the results of previous games and can
thus be more informative than static schedules, they have the disadvantage that they may
not be completely determined prior to the season. The algorithm developed in this paper
is a static scheduling method.

Another type of scheduling in sports focuses on the seeding policy of single-elimination
tournaments with the objective of arranging the teams so that the outcome of the tourna-
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ment agrees with a preexisting ranking (Glickman, 2008; D’Souza, 2010; Scarf and Yusof,
2011) or an arrangement which favors a particular team (Vu et al., 2009). These objectives
depend on a preexisting ranking of the teams, which we do not assume to know in this
paper. Another type of tournament scheme is investigated by Ben-Naim and Hengartner
(2007), where a sequence of rounds of diminishing size are used to determine the best team.

Graph theory In this paper, we reduce the schedule design problem (2) to a graph
synthesis problem. We focus on the optimality condition given in (3a), which reduces to
finding graphs with maximal algebraic connectivity. There is a tremendous amount of
work on the algebraic connectivity of graphs, originating with studies by Miroslav Fiedler
(Fiedler, 1973). Many properties of algebraic connectivity are reviewed in (Mohar, 1991;
Biyikoglu et al., 2007) and we also review some of these results in §3. The problems arising
from the other optimality conditions, (3b) and (3c), are less well studied (Grimmett, 2010;
Ghosh and Boyd, 2006a; Ghosh et al., 2008).

The robustness of a network to node/edge failures is highly dependent on the algebraic
connectivity of the graph. Also, the rate of convergence of a Markov process on a graph to
the uniform distribution is determined by the algebraic connectivity (Boyd et al., 2004; Sun
et al., 2004). In the “chip-firing game” of Björner et al. (1991), the algebraic connectivity
dictates the length of a terminating game. Consequently, algebraic connectivity is a measure
of performance for the convergence rate in sensor networks, data fusion, load balancing, and
consensus problems (Olfati-Saber et al., 2007).

Finally, we mention recent work of Boumal et al. (2012) on a problem of estimating a
set of rotations from a set of noisy measurements. Here, bounds on synchronization are
connected to the algebraic connectivity of a measurement graph, where the edge weights
are proportional to the measurement quality.

3. Eigenvalues of the graph Laplacian and the algebraic connectivity

In this section, we briefly survey relevant results on the eigenvalues of the graph Laplacian
and algebraic connectivity. More extensive treatments are given in (Fiedler, 1973; Biyikoglu
et al., 2007; Mohar, 1991; Chung, 1997). In §3.1, we recall algorithms for computing graphs
with large algebraic connectivity (Ghosh and Boyd, 2006b; Wang and Mieghem, 2008).

Let B ∈ RN×n where N :=
(
n
2

)
be the arc-vertex incidence matrix for the complete

directed graph G = (V,E) on |V | = n nodes,

Bk,j =


1 j = head(k)

−1 j = tail(k)

0 otherwise.

(4)

Here, we have used the terminology that if an arc k = (i, j) is directed from node i to node
j then i is the tail and j is the head of arc k. The arc orientations (heads and tails of arcs)
can be chosen arbitrarily. The matrix B as defined in (4) is also sometimes referred to as
the graph gradient (Hirani et al., 2011; Jiang et al., 2010). Given an edge-weight w ∈ ZN+ ,
the w-weighted graph Laplacian is defined

∆w := BtWB where W = diag(w).
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If we consider a subset of the edges, Ẽ ⊂ E, and let w be the indicator function on Ẽ, then
∆w is referred to as the un-normalized (symmetric) graph Laplacian for (G, Ẽ). One may
interpret the triple (G,E,w) for w ∈ ZN+ as a directed multigraph where wk for k = (i, j)
is the number of arcs connecting vertices i and j. The w-weighted degree vector d ∈ Rn is
defined by di =

∑
j wij . Let M := ‖w‖1 = 1

2‖d‖1 and d+ and d− denote the maximum and
minimum w-weighted degrees in the graph.

Let λi(w) for i = 1, . . . , n denote the eigenvalues of the w-weighted graph Laplacian,
∆w. The eigenvalues are contained in the interval [0, d+]. The first eigenvalue of ∆w, λ1,
is zero with corresponding eigenvector v1 = 1. The second eigenvalue, λ2, is nonzero if and
only if the graph is connected. The second eigenvalue is characterized by

λ2(w) = min
‖v‖=1
〈v,1〉=0

‖Bv‖2,w. (5)

In the case where w is the indicator function for an edge set Ẽ, λ2(w) is referred to as the
algebraic connectivity of the graph G = (V, Ẽ). The eigenvector v2 corresponding to λ2 is
sometimes called the Fiedler vector after Miroslav Fiedler for his contribution to the subject
(Fiedler, 1973). For w ∈ ZN+ , λ2(w) is the algebraic connectivity for the multigraph with
wij edges between nodes i and j.

Let wi ∈ ZN+ for i = 1, 2 be edge weights on G. It follows from (5) that w1 ≤ w2

implies λ2(w1) ≤ λ2(w2). That is, the function λ2(w) is non-decreasing in w. In particular,
if wi ∈ {0, 1}N are the indicator functions for two edge sets Ei, i = 1, 2 and w1 ≤ w2

(component-wise), then E1 ⊆ E2 and the more connected graph has greater algebraic
connectivity.

Let U ⊂ V and cut(U,U c) :=
∑

i∈U,j∈Uc wij measure the set of edges connecting U and
U c := V \ U . Then the algebraic connectivity is bounded by the normalized graph cut,

λ2(w) ≤ min
U⊆V

n|cut(U,U c)|
|U ||U c|

. (6)

In particular, if U = {v} where v ∈ V is the node with smallest degree, i.e., dv = d−, then
dv ≤ 2M

n where M = ‖w‖1 and we obtain

λ2(w) ≤ nd−
n− 1

≤ 2M

n− 1
. (7)

Properties of graphs for which the bound in (7) is tight have been studied (Fallat et al.,
2003).

If w ∈ {0, 1}N is the indicator function for an incomplete edge set Ẽ and G̃ := (V, Ẽ),
then the edge connectivity of a G̃, Ce(G̃), is the minimal number of edges whose removal
would result in a disconnected graph,

Ce(G̃) = min
A⊂V

∑
i∈A,j∈Ac

wij .

The vertex connectivity of G̃, Cv(G̃) is the minimal number of vertices (together with
adjacent edges) whose removal would result in a disconnected graph. In this case, the
algebraic connectivity is bounded above by both the edge and vertex connectivities,

λ2(w) ≤ Cv(G̃) ≤ Ce(G̃),
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(Fiedler, 1973). The algebraic connectivity can also be bounded in terms of Cheeger’s
inequality, Buser’s inequality, and the diameter of the graph (Biyikoglu et al., 2007; Mohar,
1991; Chung, 1997).

There are also a number of results for the perturbation of the eigenvalues of ∆w under
changes to the weights w. Let ∆wv = λv, λ > 0, w0 = mink wk and w′ = w − w0. Then

∆w′v = (λ− w0n)v. (8)

This follows from the fact that BtB = n Id − 1n1tn. Thus, adding weight w0 to w simply
increases all of the eigenvalues of ∆w by w0.

Consider the weight w′ = w + δk where δk is the indicator function for edge k. Then
using Weyl’s theorem (Horn and Johnson, 1990), we obtain

λ2(w′) ≤ λ2(w) + ‖Btdiag(δk)B‖ = λ2(w) + 2. (9)

Consider the weight w′ = w + δk where δk is the indicator function for edge k. Denote
the eigenvalues of the w and w′-weighted graph Laplacians by λj and λ′j respectively. Then
the eigenvalues λ and λ′ interlace (Mohar, 1991), i.e.,

0 = λ1 = λ′1 ≤ λ2 ≤ λ′2 ≤ λ3 ≤ . . . ≤ λn ≤ λ′n. (10)

3.1 Finding graphs with large algebraic connectivity

In several applications, it is useful to compute graphs with large algebraic connectivity, (5).
The problem of finding weights w ∈ RN which maximize λ2(w) is a convex optimization
problem and can be formulated as a semidefinite program (SDP) (Ghosh and Boyd, 2006b).
However, if w ∈ ZN+ , the problem is NP-hard (Mosk-Aoyama, 2008). This is the case arising
in the optimal data collection problem.

The integer constrained problem may be solved by relaxing to the unconstrained problem
and then rounding the solution. This is clearly a lower bound on the optimal solution and,
if the values w are large, a reasonable approximation. Another approach, advocated by
(Ghosh and Boyd, 2006b; Wang and Mieghem, 2008), is to use the greedy algorithm based
on the Fiedler vector described in Algorithm 1. This algorithm adds a specified number of
edges to an input graph to maximize the algebraic connectivity of the resulting augmented
graph. In this work, we refer to graphs produced via this method as nearly-optimal.

4. Optimal scheduling using a least squares ranking

We assume that each alternative j = 1, . . . , n has a ranking (measure of strength) given by
φj . We consider a complete graph with n nodes representing the alternatives. The edges
of the graph are given an arbitrary orientation and enumerated k = 1, . . . ,

(
n
2

)
≡ N . Let

B ∈ RN×n denote the arc-vertex incidence matrix (4) for the complete graph. For each
ordered pair k = (i, j), we assume that the pairwise comparison data collected is of the
form

yk = (Bφ)k + εk (11)

where εk is a random variable with zero mean, i.e., Eε = 0. Let wk ∈ Z+ denote the number
of pairwise comparisons between alternatives i and j. We assume that the variance of εk
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Algorithm 1 A greedy heuristic for finding integer-valued edge weights w for which the
w-weighted graph Laplacian has large second eigenvalue (Ghosh and Boyd, 2006b; Wang
and Mieghem, 2008). See §3.1.

Input: An initial edge weight w0 ∈ ZN+ defined on the complete graph of n nodes and
an integer, ξ.

Output: An edge weight, w � w0, such that ‖w − w0‖1 = ξ, and ∆w has large second
eigenvalue.

Set w = w0 (current edge weight)
for ` = 1 to ξ, do

Compute the second eigenvector, F = arg min
‖v‖=1
〈v,1〉=0

‖Bv‖w

Find the edge (i, j) which maximizes (Fi − Fj)2

Set w = w + δij
end for

is given by σ2/wk for some constant σ. More comparisons between alternatives i and j,
reduce the variance in the observed pairwise comparisons.

Ranking There are several choices for the ranking R(y, w) in (1). The Gauss-Markov
theorem states that the least squares estimator,

φ̂w = arg min
〈φ,1〉=0

‖Bφ− y‖2,w (12a)

= (BtWB)†BtWy, (12b)

is the linear, unbiased (E[φ̂w] = φ) estimator with smallest covariance. In (12b), W :=
diag(w) is the diagonal matrix with entries Wkk = wk. Equation (12a) can be interpreted
as finding a potential function, φ, defined on the vertices, such that the gradient of the
potential function agrees with the pairwise comparisons in the least squares sense. The
least-squares estimate (12) is also sometimes referred to as HodgeRank (Jiang et al., 2010)
and is related to the Massey and Colley methods used in sports rankings (Langville and
Meyer, 2012). The least squares estimator has proven to have relatively good predictive
power when empirically compared against a number of other ranking methods on sports
datasets (Barrow et al., 2013) and is the ranking method considered in the present work.

Proposition 4.1 Consider the data model (11) where ε is a random vector with Eε = 0
and Var(ε) = σ2W−1 where W = diag(w) and w ∈ ZN+ . The Fisher information of the least

squares estimator φ̂w, as defined in (12), is given by

F.I.(φ̂w) = σ−2(BtWB) = σ−2∆w, (13)

where ∆w is the w-weighted graph Laplacian.

Proof Let φ̂w be the least squares estimator (12) for φ in (11). We first compute

φ̂w = (BtWB)†BtWy = (BtWB)†BtW (Bφ+ ε) = φ+ (BtWB)†BtWε.

9



Osting, Brune, and Osher

Thus,

Var(φ̂w) = E
[
(φ̂w − φ)(φ̂w − φ)t

]
= (BtWB)†BtWE

[
εεt
]
WB(BtWB)†.

Assuming that E
[
εεt
]

= σ2W−1, we obtain

Var(φ̂w) = σ2(BtWB)† = σ2∆†w, (14)

which is the Moore-Penrose pseudoinverse of the w-weighted graph Laplacian. Since the
least squares ranking is unbiased, i.e., Eφ̂w = φ, the Fisher information is the pseudoinverse
of the covariance matrix, Var(φ̂w).

Optimal Data Collection The optimal data collection problem (2) is a scalarization of
maximizing F.I.(φ̂w) in the sense of the semi-definite ordering (i.e., A ≥ B if A − B � 0).
Traditional optimality criteria are functions of the eigenvalues of F.I.(φ̂w) such as given in
(3) (Haber et al., 2008; Pukelsheim, 2006; Melas, 2006; Fedorov, 1972).

Proposition 4.2 Consider the data model (11) with ε as in Prop. 4.1 and let φ̂w be the
least squares estimator (12). The three optimality criteria (3) for the bi-level optimization
problem (2) are given by

f
(

F.I.(φ̂w)
)

= λ2(w) E-optimal (15a)

f
(

F.I.(φ̂w)
)

= −
∑
i≥2

λ−1
i (w) A-optimal (15b)

f
(

F.I.(φ̂w)
)

=
∏
i≥2

λi(w) D-optimal, (15c)

where λi(w) for i = 1, . . . , n denote the eigenvalues of the w-weighted graph Laplacian, ∆w.

Proof For a connected graph, the only zero eigenvalue of the graph Laplacian is the first
one. The expressions in (15) then follow directly from F.I.(φ̂w) = ∆w, as shown in Prop.
4.1, and the optimal criteria definitions in (3).

Proposition 4.1 shows that F.I.(φ̂w) doesn’t depend on the scores, y. Consequently, the con-
straint in the optimal data collection problem (2b) decouples. Using the E-optimal criteria
(15a), the bilevel optimization problem (2) reduces to the following eigenvalue optimization
problem

max
w

λ2(w) (16)

such that w ∈ ZN+ , w � w0, ‖w − w0‖1 ≤ ξ.

Equation (16) can be interpreted as the graph synthesis problem of adding ξ edges to the
multigraph representing the dataset to maximize the algebraic connectivity.
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complete
path, Pn cycle, Cn complete, Kn bipartite, Kn,`

diagram 1 2 3 4

1 2

34

1 2

34

1

2

3

4

5

eigenvalues 2− 2 cos(πk/n) 2− 2 cos(2πk/n) 01 , nn−1 01 , n`−1,
k = 0, . . . n− 1 k = 0, . . . n− 1 `n−1, (`+ n)1

alg. conn. (5) 2− 2 cos(π/n) 2− 2 cos(2π/n) n min(n, `)
edge conn. 1 2 n− 1 min(n, `)
diameter n− 1 bn/2c 1 2

Table 1: A comparison of several measures of connectivity for 4 well-known graphs. We
assume n ≥ 3. Subscripts on the eigenvalues denote multiplicity and b·c indicates
the floor function. See §5.1.

Remark 1 The A- and D-optimal conditions given in Proposition 4.2 also have interesting
interpretations in terms of the graph. By Kirchhoff’s matrix-tree theorem, the D-optimal
condition can be interpreted as the number of spanning trees within the graph (Ghosh and
Boyd, 2006a). The A-optimal condition is the total effective resistance of a electric circuit
constructed by identifying each edge of the graph with a resistor of equal resistance (Ghosh
and Boyd, 2006a; Ghosh et al., 2008) and is related to the return time for a reversible
Markov chain (Grimmett, 2010).

We also comment that the T-optimality condition, tr
(

F.I.(φ̂w)
)

, which is another cri-

teria commonly used in optimal design, simplifies in this setting to tr(∆w) = ‖w‖1, which
is simply the total number of pairwise comparisons.

5. Numerical experiments

In this section, we study graphs corresponding to datasets which have informative rankings,
which, by Proposition 4.2, are those with large algebraic connectivity. In §5.1, we consider
structured graphs for which the eigenvalues of the Laplacian can be analytically computed
and small graphs with ≤ 5 edges. In §5.2, we compare the expected algebraic connectivity
of Erdös-Rényi random graphs with graphs obtained using the greedy algorithm described
in §3.1. In §5.3, we consider the informativeness of the ranking for the Yahoo! Movie user
ratings dataset. In §5.4, we discuss the algebraic connectivity for the graph corresponding
to the 2011-12 NCAA Division I football schedule. In §5.5, we continue with the graph
constructed in §5.4 and demonstrate using synthetic data that ranking estimates obtained
via active sampling are more accurate (in an L2 sense) than via random sampling.
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m=3, λ2=0.586 m=3, λ2=1 m=4, λ2=1

m=4, λ2=2 m=5, λ2=2 m=6, λ2=4

m=4, λ2=0.382 m=4, λ2=0.519 m=4, λ2=1

m=5, λ2=0.519 m=5, λ2=0.697 m=5, λ2=0.83

m=5, λ2=1 m=5, λ2=1.38 m=6, λ2=0.83

m=6, λ2=1 m=6, λ2=1 m=6, λ2=1.38

m=6, λ2=2 m=7, λ2=1 m=7, λ2=1.59

m=7, λ2=2 m=7, λ2=2 m=8, λ2=2

m=8, λ2=3 m=9, λ2=3 m=10, λ2=5

Figure 1: The 4- and 5-node connected graphs and their algebraic connectivity, λ2. Graphs
with large algebraic connectivity represent datasets with informative rankings.
See §5.1.
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5.1 Algebraic connectivity for example graphs

In this section, we give results on the algebraic connectivity for graphs with easily com-
putable spectra and graphs with a small number of nodes. In Table 1, we tabulate the
eigenvalues, algebraic connectivity (5), edge connectivity, vertex connectivity, and diameter
for 4 well-known graphs.

The number of distinct n-node, connected, unlabeled graphs for n =1, 2, 3, . . . are 1,
1, 2, 6, 21, 112, 853, 11117, 261080,. . . (Sloane A0013493). In Fig. 1 we plot, for n = 4
and n = 5, each of these graphs together with the algebraic connectivity, λ2. In Fig. 1,
we observe that as the number of edges, m, is increased, the algebraic connectivity, λ2,
generally increases. Furthermore, for a fixed number of edges, m, the algebraic connectivity
can vary significantly. For m = 5, 6, and 7, the value of λ2 varies by a factor ≥ 2. For
m = 5, the graph with smallest λ2 has small edge connectivity (and hence small algebraic
connectivity) and the graph with largest λ2 has nodes with equal degree. These small
graphs beautifully illustrate the bounds given in §3.

In Fig. 2, we illustrate the effect of adding edges on the algebraic connectivity of a graph
by studying (16) where ‖w0‖1 = 6 and ξ = 1. Although the graphs in Fig. 2 are small in
size, it is already nontrivial to determine which edge should be added to maximally increase
the algebraic connectivity. We observe that for graphs with low algebraic connectivity, a
significant gain can be achieved, while the results for graphs with relatively high algebraic
connectivity are modest. In the lowermost panel in Fig. 2, the algebraic connectivity
remains constant as an edge is added. This follows from the fact that the second eigenvalue
for the graph on the left has multiplicity 2 and the interlacing property described in (10).

Further consideration of the algebraic connectivity for certain families of graphs is con-
sidered in Kolokolnikov (2013). Here, it is observed that the greedy algorithm (Algorithm 1)
is unable to discover certain small, structured graphs with maximal algebraic connectivity.

5.2 Algebraic connectivity of Erdös-Rényi random graphs and computed
nearly-optimal graphs

We consider the Erdös-Rényi random graph model G(n, p) containing graphs with n nodes
and edges included with probability p, independent from every other edge. The expected
number of edges for a graph in G(n, p) is p

(
n
2

)
and the threshold for connectedness is

pc = logn
n .

There are several results on the spectrum of the graph Laplacian for Erdös-Rényi graphs,
especially in the limit n ↑ ∞; see, for example, (Juhász, 1991; Chung et al., 2003; Feige
and Ofek, 2005; Coja-Oghlan, 2007; Jamakovic and Mieghem, 2008; Oliveira, 2009; Chung
and Radcliffe, 2011; Kolokolnikov et al., 2013). The algebraic connectivity of Erdös-Rényi,
Watts-Strogatz, and Barabási-Albert random graphs has been studied numerically in (Ja-
makovic and Uhlig, 2007). The algebraic connectivity of a Watts-Strogatz graph is known
to have a phase transition (Olfati-Saber et al., 2007).

We will utilize the following elementary upper bound on the algebraic connectivity,
analogous to (7), derived using a concentration inequality.

3. The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org

13

http://oeis.org


Osting, Brune, and Osher

λ2=0.83 λ2=2

λ2=1 λ2=1.59

λ2=1 λ2=1.59

λ2=1.38 λ2=2

λ2=2 λ2=2

Figure 2: Targeted data collection for small graphs. (left) The five topologically distinct
connected graphs with n = 5 nodes and m = 6 edges. (right) For each edgeset on
the left, we select one additional edge (blue dashes) so that λ2 for the perturbed
graph is maximal. The algebraic connectivity of each graph is indicated. By
Prop. 4.2, a ranking on a dataset represented by a graph on the right is more
informative than one from a graph on the left. See §5.1.

Proposition 5.1 Let ε > 0 and assume n to be even. With probability at least 1 − ε, the
algebraic connectivity, λ2, of an Erdös-Rényi graph G(n, p) satisfies

λ2 ≤ np+ 4n−2
√

2 log(1/ε). (17)

Proof Choose any subset U ⊂ V with |U | = n
2 . Equation (6) implies that λ2 ≤ 4C

n where

C ∼ B(n
2

4 , p). For a > 0, we compute

pr (λ2 ≥ np+ a) ≤ pr (4C/n ≥ np+ a) = pr
(
C − pn2/4 ≥ +an/4

)
≤ exp

(
−a2n4/32

)
where the last inequality is due to Hoeffding. Setting a = 4n−2

√
2 log(1/ε), we find that

pr (λ2 ≥ np+ a) ≤ ε as desired.

For a random graph G(n, p), the number of edges m ∼ B(N, p) where N := n(n − 1)/2.
Thus, E[m] = pN and we may restate (17) as: with probability at least 1− ε,

λ2 ≤
2E[m]

n− 1
+ 4n−2

√
2 log(1/ε). (18)
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Figure 3: Algebraic connectivity, λ2 as a function of m for 50- and 100-node graphs. The
dashed blue line represents the upper bound on λ2 given in (7). The solid black
line represents the nearly-optimal value of λ2. Finally, for p = .4 (blue), .6 (red),
and .8 (green) we give a scatter plot of (m,λ2) for 5,000 randomly generated
Erdös-Rényi graphs. The mean values obtained are indicated by circles. See §5.2.

Indeed, the first term on the right hand side of (18) matches the right hand side of (7).
In Figure 3, we plot, for n = 50 (left) and n = 100 (right) and p = .4 (blue), p = .6

(red), and p = .8 (green) the value of m vs. λ2 for 5,000 randomly generated Erdös-Rényi
graphs. The mean values obtained are indicated by circles. We use the greedy algorithm
described in §3.1 (see Algorithm 1) with initial graph taken to be the path with n vertices,
Pn, to compute nearly-optimal graphs with n-nodes and m-edges. The solid black line in
Figure 3 represents the value of λ2 for these graphs. Finally, the dashed blue line in Figure
3 represents the upper bound on λ2 given in (7) (compare also to (18)).

We observe in Figure 3 that nearly-optimal graphs have values which are indeed close to
the upper bound on the algebraic connectivity, indicating (i) the upper bound is nearly-tight
and (ii) the greedy heuristic (Algorithm 1) produces graphs which are nearly-optimal. We
also observe that the algebraic connectivity of nearly-optimal graphs is significantly better
than the values for an average Erdös-Rényi random graph.

5.3 Informativeness of the ranking for the Yahoo! Movie user ratings dataset

In this section, we apply the methodology formulated in §4, to study the Fisher informa-
tiveness of the Yahoo! Movie user rating dataset. We show that the addition of targeted
edges can significantly improve the informativeness of the movie rating system.

The dataset The Yahoo! Movie user rating dataset consists of a 7, 642 × 11, 915 user-
movie matrix where each of the 211, 197 nonzero entries (0.23% sparsity density) is a 1 to
13 rating (yah).4 Each movie was rated by between 1 and 4,238 users (the average number
of reviews per movie is 17.7). Each user rated between 10 and 1,632 movies (the average

4. 34 entries reviewing Yahoo! movie id 0 were discarded due to absence in movie content description file.
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# times movie reviewed 1 2 3 4 5 6 7 8 9 ≥ 10
occurrences 4,901 1,882 897 548 398 316 237 202 167 2,367

Table 2: Frequency of reviews for items in the Yahoo! Movie user rating dataset. See §5.2.

number of reviews made by each reviewer is 27.6). Of the 70,977,655 (movie) pairs (i, j)
where i > j, there are 5,742,557 for which a user has given a rating to both movies i
and j implying that the pairwise comparisons for the raw dataset are 8.1% complete. The
majority of movies in the dataset received relatively few reviews, as reported in Table 2.
The movies which received less than 10 rankings were discarded from the dataset, leaving
2,367 movies, each of which were reviewed by an average of 79.8 users. We then removed
11 users who did not review any of the remaining movies. The remaining 7,631 reviewers
reviewed between 1 and 1,220 movies (on average they reviewed 24.8 movies).

Construction of pairwise comparison data from movie-user rating data Let Σ
be the set of Yahoo! users, V be the set of all Yahoo! movies and rσi be the rating given to
movie i ∈ V by user σ ∈ Σ. For each unordered movie pair {i, j} ∈ V 2, we define

Σij = {σ ∈ Σ who rated both movies i and j}.

For each movie pair {i, j} ∈ V 2, we define wij to be the number of users who have viewed
both movies i and j, i.e., wij = |Σij |, and yk to be the average difference in movie reviews,
written

yij =
1

|Σij |
∑
σ∈Σij

(rσj − rσi ), where {i, j} ∈ V 2 and i < j. (19)

Note that the expression in parenthesis is anti-symmetric in the indices i and j and lies in
the interval [−12, 12]. The choice i < j corresponds to the choice in arc direction in (4). For
the Yahoo! Movie user rating dataset, we have n := |V | = 2, 367, N :=

(
n
2

)
= 2, 800, 161,

m := ‖w‖0 = 1, 884, 504, and M := ‖w‖1 = 8, 322, 538. Thus, there exists at least one
comparison for m/N = 67% of the movie pairs. The mean w-weighted degree of each node
is given by 2 ·M/n = 3, 516. A log-histogram of the w-weighted degree distribution of the
graph representing the pairwise comparison data is given in Fig. 4 (top left).

The least squares ranking A ranking is obtained by solving the least squares problem,
(1), using Matlab’s lsqr function. The top ten movies found are given in Figure 4. The

relative residual norm of the least squares estimator, φ̂w, is ‖Bφ̂w−y‖w‖y‖w = 0.53. In Fig. 4 (top

right), we plot a histogram of the residual, y−Bφ̂w. For this pairwise comparison dataset,
the normality assumption in Prop. 4.2 is reasonable.

The informativeness of the ranking is λ2(w) = [Var(φ̂w)]−1 = 154.38. This value is small
compared to the upper bound given in (7), λ2(w) ≤ 2M

n−1 = 7, 036. We next demonstrate
that the Fisher information can be significantly improved by the addition of a small number
of targeted pairwise comparisons.
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4.46 It’s a Wonderful Life (1946)
4.45 Singin’ in the Rain (1952)
4.34 Rear Window (1954)
4.11 24: Season 1 (2002)
3.96 The Longest Day (1962)
3.94 The Man Who Shot Liberty Valance (1962)
3.92 Rebecca (1940)
3.87 Friends - The Complete Fourth Season (1997)
3.79 Lady and the Tramp (1955)
3.79 It Happened One Night (1934)

Figure 4: (top left) A log-histogram of the w-weighted degree distribution for the graph
representing the Yahoo! movie pairwise comparison data. (top right) A his-
togram of the residual, y−Bφ̂w, where φ̂w is the least squares ranking. (bottom)
Top 10 movies and ranking, φ̂w. See §5.3.

Targeted data collection We apply the optimal experimental design approach devel-
oped in §4 to improve the Fisher information of the least squares ranking. To approximate
the solution of (16), we use the greedy algorithm described in Algorithm 1. The second
eigenpair of the graph Laplacian is computed using Matlab’s eigs function, initialized us-
ing the eigenvector from the previous iteration. We choose a very modest value of pairwise
comparison edges to add, ξ = .01% ·M = 832 edges. The results are given in Fig. 5. The
addition of the targeted pairwise comparisons leads to an increase in the second eigenvalue
of the w-weighted graph Laplacian by a factor of 2.2. The maximum increase for the ad-
dition of a single pairwise comparison is ≈ 1, less than the upper bound given in (9). We
observe in Fig. 5, that the rate of information increase slows as more pairwise comparisons
are added. For a comparison, we also consider the addition of randomly chosen movie pairs.
For this modest value of additional edges, ξ, the effect of the informativeness of the ranking
is unappreciable.

Finally, we use graph visualization via spectral clustering to illustrate the pairwise com-
parison and targeted data. In Fig. 6(top) we plot the pairwise movie comparisons obtained
from the Yahoo! user-movie database. In Fig. 6(bottom) we plot the proposed pairwise
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additional comparisons

method of original .005% M .01% M
data collection ξ = 0 ξ = 416 ξ = 832

random 154.38 154.38 154.38
optimal 154.38 298.44 332.78

upper bound (7) 7,035 7,035 7,036

Figure 5: (left) The informativeness of the ranking, λ2(w), as a small number (.01% ·M)
of targeted pairwise comparisons (black) and randomly selected pairwise compar-
isons (blue) are added. (right) The value of λ2(w) for this augmented dataset
and the upper bound on λ2 given in (7). The change in informativeness for ran-
domly added data is unappreciable compared to a 2.2 fold increase for targeted
data. See §5.3.

comparisons, targeted to improve the informativeness of the rating system. To enhance the
readability of the graph representation, we plot only 15% randomly selected nodes (356 of
n = 2367) and the interconnecting edges (45, 327 of m = 1, 884, 504). Figure 6(top) was
generated as follows. First normalized spectral clustering (based on k-means) was used to
detect clusters of movies. Next, the Fruchterman-Reingold algorithm was used to generate
reasonable positions for the movie clusters and the Kamada-Kawai algorithm was used to
place movies within the clusters (Traud et al., 2009). The node placement was obtained
using the full dataset. Finally, the weighted graphs were plotted using wgPlot (Wu, 2009).
Figure 6(bottom) was then generated using the same node placements as in Figure 6(top).

A comparison of the top and bottom panels of Fig. 6 shows that the primary improve-
ment to informativeness arises from the addition of edges which connects two relatively
weakly connected components of the graph. With 4 exceptions, each targeted movie pair is
only incremented once; it isn’t generally advantageous to add an edge multiple times.

5.4 2011-12 NCAA Division I football schedule

Recall from §1 that in sports the optimal pairwise data collection problem in equivalent to
designing the schedule. In this section, we study the 2011-12 NCAA Division 1 football
schedule, downloaded from Massey Ratings.5 The NCAA Division 1 Football League is
divided into the Football Bowl Subdivision (FBS) and Football Championship Subdivision
(FCS).6 The FBS is further decomposed into 12 conferences and the FCS into 15. Of the
246 teams in Division 1, 120 belong to FBS and 126 belong to FCS. Lafayette College is
a member of FBS, however every opponent of Lafayette during the 2011-12 season was a
member of the FCS. For our purposes, it is more convenient to reclassify Lafayette as a

5. http://masseyratings.com/scores.php?t=11590&s=107811&all=1&mode=2&format=0

6. These were formally known as Division 1-A and 1-AA respectively.
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1 7

 

 

Figure 6: Yahoo! Movie ratings and targeted data collection. (top) A (15% ran-
domly chosen) subset of the pairwise comparison graph for the Yahoo! user-
movie database. Nodes represent movies, node size reflects weighted degree (i.e.,
number of comparisons with other movies), and node color indicates genre (see
legend). Edges represent weighted pairwise comparisons colored by edge weights
(i.e., number of comparisons). (bottom) Pairwise comparisons targeted for col-
lection to improve the informativeness of the least squares ranking. Targeted
comparisons are colored by weight (multiplicity). See §5.3.
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member of FCS and thus, in what follows, FBS has 119 teams and FCS has 127. There
were m = 1430 games among the Division 1 teams and m = 693 games among the FBS
teams.

For static schedules, an important statistic is the the ratio of the total number of games
played to the total number of teams. For example, in Major League Baseball (MLB), there
are 30 teams, divided into two leagues: the American League (14 teams) and the National
League (16 teams). During the regular season, each team plays approximately 160 games,
primarily against teams within the same division. Thus, within each league, teams play
an average of 160/15 ≈ 10 times. With so many games and equal strength of schedule
among teams, it is intuitive that the scheduling has little effect on the rankings. And, in
fact, MLB simply uses win/loss percentages for ranking purposes. In the NCAA football
considered here however, there are 120 teams in the NCAA Football Bowl Subdivision
(FBS) and each team plays approximately 6 games per year within FBS. Thus each team
only plays roughly 5% of the other teams. There are several rankings for NCAA football
which are generated either mathematically or by expert opinion and then aggregated to
determine official rankings and select teams to compete in the prestigious end-of-season
“bowl games”. The fact that these rankings generally disagree and that none of them is
more reliable than the others suggest that none of them are very informative. It is this
situation, where there are relatively few games compared to the number of teams, that the
schedule has a large effect on the rankings.

Data visualization via spectral clustering We use the data visualization method
described below to demonstrate that NCAA Division 1 teams primarily play against other
teams within their own conference. We then show that this clustering of teams by conference
results in the graph having poor algebraic connectivity.

We first use normalized spectral clustering to detect communities within the teams (Shi
and Malik, 2000). This, in turn, relies on the k-means algorithm where k is the desired
number of communities (27 for Division 1 and 12 for Division 1 FBS). Then, using the
Matlab toolbox described in (Traud et al., 2009), the Fruchterman-Reingold algorithm
finds an optimal placement of the communities and the Kamada-Kawai algorithm is used
for the placement of nodes within each community. The mean within-cluster sum of point-
to-centroid distances for the k-means clustering obtained for the Divsion 1 and Division 1
FBS data is 0.147 and 0.133 respectively.

In Figures 7 and 8, we plot the 2011-12 NCAA Division 1 and Division 1 FBS football
schedules respectively. In 7(top) and 8(top), the vertices represent teams, the edges rep-
resent games, and each vertex (team) is colored by conference membership. In 7(bottom)
and 8(bottom), the vertices represent the spectrally clustered communities and the edges
represent the community interactions. We observe from Figures 7 and 8 that the teams
primarily play within their own conference, which has implications discussed below.

We next compare the value of the algebraic connectivity for these schedules with sched-
ules from Erdös-Rényi random graphs and proposed nearly-optimal schedules.

Comparison of NCAA Division 1, Erdös-Rényi random, and nearly-optimal
schedules In the introduction, we noted that there are several common scalar measures
of Var(φ̂w), three of which are given in (3). In this section, we compare these various
measures for the NCAA Division 1, Erdös-Rényi random, and nearly-optimal schedules.
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Figure 7: 2011-12 NCAA Division 1 (FBS and FCS) football schedule. Graph
representation of schedule via spectral clustering by games, top: vertices represent
teams, edges represent games, coloring indicates conference membership. bottom:
community detection of teams (represented using pie-graphs) reveals that teams
primarily play within their own conference. The dashed lines indicate an edge
cut which is discussed in the text. See §5.4.
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Figure 8: 2011-12 NCAA Division 1 (only FBS) football schedule. Graph repre-
sentation of schedule via spectral clustering by games, top: vertices represent
teams, edges represent games, coloring indicates conference membership. bottom:
community detection of teams (represented using pie-graphs) reveals that teams
primarily play within their own conference. See §5.4.
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More concretely, let w be a given schedule (defining a graph on n vertices) and define
the graph Laplacian: ∆w := Bt[diag(w)]B. Define the following three functions of w:

JE(w) := λ2(w) (20a)

JA(w) :=

[
1

n
tr(∆†w)

]−1

=

 1

n

∑
i≥2

1

λi(w)

−1

(20b)

JD(w) := log[det(∆w)]
1
n =

1

n

∑
i≥2

log[λi(w)] (20c)

To obtain quantities more comparable to those for the E-optimality condition, for JA(w)
we have used the harmonic mean of the eigenvalues rather than the negative of the inverses
as in (15b) and for JD(w), we have taken the logarithm of the determinant in (15c). An
interpretation of the three quantities defined in (20) in terms of the graph is given in Remark
1.

For the Division 1 and Division 1 FBS schedules, we compute the various measures of
the quality of schedule given in (20) and record them in Table 3. We also plot JE(w) given
in (20a) in Fig. 9 by a red diamond. We next discuss schedules for which we compare the
Division 1 and Division 1 FBS schedules in Table 3 and Fig. 9.

The expected number of edges for a G(n, p) Erdös-Rényi random graph is pN where
N :=

(
n
2

)
. To compare to the football schedules, we take p = m/N and consider the family

of random graphs, G(n,m/N). For n = 119 and m = 693, we choose p = m/N ≈ 0.0987
which is approximately 2.5 times the threshold for connectivity, pc = log(n)/n ≈ 0.0402.
For n = 246 and m = 1430, we choose p = m/N ≈ 0.0475 which is approximately 2.1
times the threshold for connectivity, pc = log(n)/n ≈ 0.0224. In Table 3, we tabulate the
expected values of the three quantities given in (20) for G(n,m/N) graphs, obtained by
averaging over a sample size of 1000. Similar to §5.2, in Fig. 9, we give a scatter plot of
(m,λ2) for G(n,m/N) graphs and indicate the mean values with a blue circle.

As in §5.2 and §5.3, we again use the greedy algorithm described in §3.1 (see Algorithm
1) to compute graphs with n nodes and m edges which nearly-maximize JE = λ2. We
then evaluate all three quantities given in (20) for these graphs and tabulate these values
in Table 3. The solid black line in Fig. 9 is the best value of JE = λ2 obtained. Finally,
the dashed blue line in Fig. 9 represents the upper bound on λ2 given in (7).

We observe in Fig. 9 and Table 3 that the schedules which nearly-maximize JE(w) = λ2

have significantly larger values of JE than the NCAA Division 1 and Division 1 FBS sched-
ules. In fact, the NCAA schedules have worse values than schedules associated with Erdös-
Rényi random graphs of the same size. Furthermore, we show in Table 3 that schedules
which maximize JE also have larger values of JA and JD. That is, the schedules which are
good in the sense of E-optimality are also good schedules in the sense of D- and E-optimality
as defined in (3).

The reason for the relatively poor value of JE(w) = λ2 for the NCAA Division 1 and
Division 1 FBS schedules can be understood from Figures 7 and 8. Figures 7 and 8 reveal
that teams primarily play within their own conference. This results in a small edge cut
between a conference (or set of conferences) and its vertex complement, which, by (6),
implies a small algebraic connectivity. For example, the edge cut indicated by the dashed
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Figure 9: A comparison of JE(w) = λ2 defined in (20a) for the Division 1 and Division
1 FBS schedules, Erdös-Rényi random schedules, and schedules which nearly-
maximize λ2. The red diamonds represents the 2011 NCAA Division 1 (right)
and Division 1 FBS (left) football schedule. The solid black lines represent the
nearly-optimal values of λ2 obtained for n = 119 (left) and n = 246 (right).
The dashed blue lines represent the upper bound on λ2 given in (7). The blue
dots represent a scatter plot of (m,λ2) for 1,000 randomly generated Erdös-Rényi
graphs, G(n,m/N). The mean values are indicated by blue circles. See §5.4.

line in Fig. 7 (entire NCAA Division 1 schedule) results in an upper bound on the algebraic
connectivity of 1.297. The edge cut obtained by considering the set consisting of teams
in the SWAC conference yields an upper bound equal to 1.043. Both of these bounds are
already less than the expected value of λ2 for Erdös-Rényi random graphs of comparable
size (compare with the top part of the first column in Table 3). To summarize, the NCAA
primarily schedules games among teams within the same conferences and this reduces the
informativeness of the rankings.

The schedule design methodology advocated in Eq. (16) is flexible in the following two
senses: (i) The optimal schedules contain symmetry with respect to permutations in the
seeding of the teams. This problem has been studied previously for tournaments; see the
discussion in §2. (ii) The optimal schedule is not time dependent and thus the scheduling of
future games does not depend on past game performances, i.e., the schedule is completely
known before the season begins and the games may be played in any order. These properties
can be exploited in the further design of the schedule.

5.5 Synthetic data experiment on the 2011-2012 NCAA Division 1 FBS graph

To further illustrate and test our proposed active learning method, we again consider the
graph generated in §5.4 from the 2011-12 NCAA Division I Football Bowl Subdivision
(FBS) schedule with n = 119 nodes and m = 693 edges, as shown in Figure 8. We take as
ground truth rating, φ, a normally distributed vector with mean zero and variance, σ2 = 1.
The ground truth rating, φ, is used to generate new data according to the normal model
(11) with σ2 = 5. With this data, we solve (12) to obtain a least squares estimate, φ̂w0 .
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JE(w) in (20a) JA(w) in (20b) JD(w) in (20c)

Div. 1 FBS and FCS 0.7015 8.780 2.363
Erdös-Rényi, n = 246 2.892 9.681 2.358
E-optimal design, n = 246 6.630 10.71 2.403

Div. 1 FBS 1.725 9.634 2.372
Erdös-Rényi, n = 119 3.497 9.911 2.361
E-optimal design, n = 119 7.142 10.92 2.402

Table 3: A comparison of the three objective functions defined in (20) for the Division 1
and Division 1 FBS schedules, Erdös-Rényi random schedules, and schedules which
nearly-maximize JE(w) = λ2. Schedules which nearly-maximize JE(w) = λ2 also
have larger values of JA and JD than the comparison schedules. See §5.4
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Figure 10: A comparison of ranking errors and algebraic connectivity, a measure of the
informativeness of the ranking, for two data collection strategies: the proposed
active sampling method (black and green) and random sampling (red and blue).
(left) The L2-error, ‖φ̂ξ−φ‖2 between the estimated and ground truth rankings.
(center) The Kendall-τ rank distance, (21), between the estimated and ground
truth rankings. (right) The algebraic connectivity of the graph representing
the dataset. See §5.5.

We compute ‖φ̂w0 − φ‖2 = 17.31 and K(φw0 , φ) = 0.35. Here, the Kendall-τ rank distance
between two rankings φ1 and φ2 is defined as the fraction of pairwise disagreements between
the rankings,

K(φ1, φ2) :=
#{(i, j) : i > j, φ1(i) < φ1(j), and φ2(i) > φ2(j)}

n(n− 1)/2
. (21)

We then consider enhancing the dataset by adding ξ more pairwise comparisons. Using
the enhanced dataset, we compute an estimate of the ranking, φ̂ξ, and, as φ̂ξ is an unbiased

estimate of φ, expect ‖φ̂ξ − φ‖2 to diminish as ξ → ∞. We choose ξ = 693, so that the
number of pairwise comparisons (games played) is doubled. As in §5.3, we add pairwise
comparisons either by the greedy algorithm (Algorithm 1) or by random selection. As with
the data collected on the initial graph, the new data are collected according to the normal
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model (11) with σ2 = 5. In Fig. 10(left), we plot the number of additional pairwise com-
parisons vs. the L2-error, ‖φ̂ξ−φ‖2, for an ensemble of ranking estimates determined using
the two data collection strategies. The (thin) blue and green lines represent the error for
100 instances of data collection using the random and greedy methods respectively. The
(thick) red and black lines represent the mean and mean plus/minus one standard deviation
for each of the two data collection strategies. For ξ = 693, the mean L2-error for the pro-
posed data collection strategy is 11.38 while the mean error for the random data collection
strategy is 13.32, representing a reduction in error of 34% and 23% respectively. In Fig.
10(center), we plot the number of additional pairwise comparisons vs. the Kendall-τ rank
distance, K(φ, φξ), for these two data collection strategies. For ξ = 693, the mean distance
for the proposed data collection strategy is .27 while the mean error for the random data
collection strategy is 0.30, representing a reduction in distance of 22% and 14% respectively.
In Fig. 10(right), we plot the algebraic connectivity, a measure of the informativeness of
the ranking, vs. the number of additional pairwise comparisons. The black (red) line is
the algebraic connectivity for the graph representing the dataset where edges are added
using the greedy algorithm (random sampling). Supported by Propositions 4.1 and 4.2, the
dataset represented by a graph with larger algebraic connectivity is more informative and
thus produces a ranking estimate with greater fidelity to the ground truth estimate.

6. Discussion and future directions

We have applied methods from optimal experiment design to provide a new framework for
data collection for more informative statistical rankings. At the heart of this framework is
a bi-level optimization problem (2) where the inner problem is to determine the unbiased
ranking for a given schedule and the outer problem is to identify data which maximizes
the Fisher information of the ranking. For the least-squares estimate, the outer problem
decouples from the inner problem and reduces to an eigenvalue optimization problem. For
the E-optimality criterion for the Fisher information, this is the problem of finding an edge
weight w ∈ ZN+ , such that the w-weighted graph Laplaican has large second eigenvalue (16).
This can be interpreted as finding a multigraph with large algebraic connectivity, a problem
which has been well-studied in graph theory. In the case of NCAA Division 1 football, we
demonstrated in §5.4 and Table 3 that the nearly-optimal data collection strategy in the
sense of E-optimality is also a good startegy in the sense of D- and A-optimality; the
choice of scalar function f : Sn+ → R as defined in (2) does not strongly effect the optimal
data collection strategy (see Remark 1 for a further discussion of these optimality criteria).
Furthermore, in §5.5, we demonstrate using a synthetically constructed dataset on this
graph that the ranking estimate obtained via active sampling has greater fidelity to ground
truth than the ranking estimate obtained via random sampling.

There are several applications in, e.g., social networking, game theory, and e-commerce,
where improved data collection could potentially benefit ranking. In particular, for the Ya-
hoo! Movie user ratings dataset (considered in §5.3), we have shown that the informativeness
of ranking can be increased by a factor of 2.2 if just .01% of additional optimally-targeted
pairwise comparisons are added to the dataset. In contrast, if the same amount of ran-
dom data is added, there is an unappreciable effect on the informativeness of the ranking.
For this application, the data collection problem could be more carefully modeled. Here,
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the pairwise comparison data is constructed from user rating data and thus any targeted
pairwise comparison addition must be solicited from a user. Since the number of pairwise
comparisons for which a particular reviewer adds when a new movie is reviewed is equal
to the number of previous reviews that user has contributed, it may make sense to solicit
additional reviews from users with many previous reviews. That is, the propagation of
information from the user reviews to the pairwise comparison data in (19) should also be
considered.

We have focused on optimal data collection for improved rankings, neglecting several im-
portant factors including the cost of data collection and potential constraints on what data
may be collected. There are two simple extensions to our method which may be employed
to accommodate these additional factors. The cost of data collection could be incorporated
by either adding a penalization term in (16) or by incorporating additional weights into the
norm used to compute λ2 in (16). Data collection constraints may be handled by explicitly
forbidding certain edge weights to be incremented in the greedy Algorithm 1 for targeting
data collection.

The least-squares ranking estimate (1) is referred to as HodgeRank by some authors
Jiang et al. (2010); Xu et al. (2011), since the Hodge decomposition implies that the residual
in (1), r = Bφ − y, can be further decomposed into two orthogonal components: (1) a
divergence-free component which consists of 3-cycles and (2) a harmonic component which
consists of longer cycles Jiang et al. (2010); Hirani et al. (2011). In fact, Jiang et al. (2010)
argues that a dataset which has a large harmonic component is inherently inconsistent
and does not have a reasonable ranking. The harmonic component lies in the kernel of
the graph Helmholtzian with dimension given by the first Betti number of the associated
simplical complex. Optimal reduction of the first Betti number may provide an alternative
approach to improving the informativeness of the least squares ranking.

Recently, Masuda et al. (2013) developed an algorithm for removing nodes from a graph
to increase the algebraic connectivity. This algorithm could be used to prune the alternatives
in a dataset to increase the informativeness of a ranking.

Finally, we are interested in extending this work to nonlinear ranking methods, including
robust estimators (Osting et al., 2013b), random walker methods (Callaghan et al., 2007),
Perron-Frobenius eigenvalue methods (Keener, 1993; Langville and Meyer, 2012), and Elo
methods (Elo, 1978; Glickman, 1995; Langville and Meyer, 2012).
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