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Abstract Recovering a low-rank matrix from some of its linear measurements
is a popular problem in many areas of science and engineering. One special case
of it is the matrix completion problem, where we need to reconstruct a low-
rank matrix from incomplete samples of its entries. A lot of efficient algorithms
have been proposed to solve this problem and they perform well when Gaussian
noise with a small variance is added to the given data. But they can not deal
with the sparse random-valued noise in the measurements. In this paper, we
propose a robust method for recovering the low-rank matrix with adaptive
outlier pursuit when part of the measurements are damaged by outliers. This
method will detect the positions where the data is completely ruined and
recover the matrix using correct measurements. Numerical experiments show
the accuracy of noise detection and high performance of matrix completion for
our algorithms compared with other algorithms.
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1 Introduction

Nowadays, a lot of real world models can be categorized as matrix completion
(MC) problems, such as video denoising [17], data mining and pattern recog-
nitions [12], model reduction [13], low-dimensional embedding [21] etc. The
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general form of the MC problem is:

minimize rank(X), s.t. X;; = M, ; V(i,j) € 02, (1.1)
XERT"'X”'
where we are given some entries of a matrix X with index set {2 and we want
to recover it with its rank as low as possible. rank(X) is defined as the number
of nonzero singular values of X. However, solving (1.1) is often numerically
expensive. Hence people tend to consider its relaxation:
minimize ||X||*, s.t. Xi,j = Mi,j V(Z,j) € 0. (12)
XeRmxn
Here || X« stands for the nuclear norm of X, which is the L; norm of the
singular values o;(X), L.e. | X ||, = >_7_, 0:(X) where r = rank(X). It has been
shown in [7,8,24] that, under certain reasonable conditions, (1.2) and (1.1)
share the same solution. [24] also did further study about the recovery for
general linear operator A: R™*™ — RP.
minimize || X||«, s.t. AX) =y. (1.3)
XGRWLX’VL
Different types of algorithms have been proposed to solve (1.2), such as
linearized Bregman method [4], fixed point and Bregman iterative methods [22]
and accelerated proximal gradient algorithm [25]. [25] solved an unconstrained
version of (1.2):

L 1
minimize || X ||« + = ||Po(X) — Po(M)|/%. (1.4)
XeRmXn 2
Here 1 is a properly tuned parameter. Py, stands for the projection onto the

subspace of matrices with nonzeros restricted to the index subset 2, and |- || 7,
the Frobenius norm, is defined as

AllF = (1.5)

for any matrix A = (Ai j)mxn. Most of the existing MC algorithms require
singular value decomposition (SVD) in each iteration, which is the main time
cost in these algorithms. In order to get rid of SVD and accelerate the algo-
rithm, the authors in [28] proposed a new method LMaFit (low-rank matrix
fitting) which solves a slightly modified version of (1.2):

.. . 2 o o ..
minimize {UW — Z||% s.t. Zi; = M, j, V(i,7) € £2. (1.6)

Here U € R™* W € RF¥*" and Z € R™*", where k is a predicted rank
bound. With an appropriate k, it could give us the same result as (1.2). U, W,
Z can be updated in an alternating fashion. Following the idea of nonlinear
successive over relaxation (SOR) technique, [28] used weighted average be-
tween this update and the previous iterate and achieved a faster convergence.
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Recently, people have optimized this model and derived other efficient algo-
rithms, such as RTRMC (Riemannian trust-region for matrix completion) [3].
Other approaches include [19,15,5]. We refer the readers to these references
for more details.

In practice, there will always be noise in the measurements during data
acquisition, therefore, a robust method for solving MC problem is strongly
needed. Almost all the existing algorithms can deal with additive Gaussian
noise with a relatively small variance, but they can not perform stably when
the given data is corrupted by outliers [20], another type of noise which of-
ten appears in application. For example, the problem of anticipating people’s
preference is gaining more and more attention nowadays. We are often asked
to rate various kinds of products, such as movies, books, games, or even jokes.
This problem is to use incomplete rankings provided by users on some of the
products to predict their preference on other unrated products. It is typically
treated as a low-rank MC problem. However, as the data collection process
often lacks control and sometimes a few people may not be willing to provide
their true opinions, the acquired data may contain some outliers. Therefore,
applying the regular MC algorithm on this corrupted data may not lead to
satisfactory result.

In order to deal with this case, we propose a method using adaptive outlier
pursuit (AOP) which adaptively detects the damaged data location with high
accuracy. Without the effect of wrong measurements, the reconstruction per-
formance can be improved a lot. This AOP technique has been applied to image
denoising in [29] and robust 1-bit compressive sensing in [30] and performed
remarkably well. Combining this technique with the existing MC algorithm,
our method is able to reconstruct the exact matrix even from sparsely cor-
rupted entries. Here we also want to mention that besides AOP, people have
proposed several methods to deal with outliers in the given data, such as [0,
11,16].

This paper is organized as follows. We will describe our algorithm together
with other popular methods for robust matrix completion in section 2. Sec-
tion 3 focuses on the connection between our problem and another robust
low-rank matrix approximation model. We also provide extensive study in
section 4 on the case when we only have limited information about the noise.
The performance of the algorithms is shown in section 5. We will end this work
by a short conclusion.

2 Algorithm description

From now on, let us assume that the rank r is given in advance, i.e. the
rank estimate k is set to be r. According to massive experiments, the model
(1.6) proves to be a quite efficient way to deal with MC problems when some
information about the rank is known in advance. One drawback about this
formulation is that the solution (U, W) is not unique. As a matter of fact, for



4 Ming Yan et al.

any r X r invertible matrix A, (UA, A=1W) is another pair of solution. Many
people have devoted to improve this model, such as [9,10,18,19,23,2,26].

The author in [3] combined the ideas in these work and proposed the
following model and the associated algorithm RTRMC:

> cij((Uw)i,j—Mi,j)%% > Ow)i. (21)

(i,5)€? (i,7) 82

. 1
minimize -
UeG(m,r),WeRr*n 2

Here r is the given rank, U € R"*" is any matrix such that its column
space U belongs to the Grassmann manifold G(m,r). The confidence index
C;; > 0 is introduced for each observation, and A is a weighted parameter.
A Riemannian trust-region method, GenRTR [1] was used to solve the above
optimization problem on the Grassmannian. According to the numerical ex-
periments, RTRMC outperforms other state-of-the-art algorithms on a wide
range of problem instances. It is especially efficient for rectangular matrices
and achieves a much smaller relative error.

However, its performance will be ruined when sparse random-valued noise
is introduced to the measurements. In order to obtain better result, adaptively
finding the error locations and reconstructing the matrix can be combined
together as in [29,30]. Here we will plant this idea into the existing model.

We define K as the number of error terms in the given data and derive the
following revised model:

minimize % Z Cz]Azﬁj((UW)Lj - Miyj)Q + /\?2 Z (UW)?ﬁj

Uu,w,A (i,J)En G, )¢§ (22)
s.t. Z (1 — Aiyj) <K, Aiﬁj € {0, 1}
(i,5)€NR

Here A € R"™*™ is a binary matrix denoting the “correct” data:
_[1, if (4,5) € 2, M;; is “correct”,
Aij = {0, otherwise. (2:3)

and 2 is a subspace of {2 such that A; ; = 1 for all the indices in 2. In this
work, we only consider the case with sparsely corrupted measurements, and
the other measurements are assumed to be correct. The parameter A is set to
be 107%, i.e., the term 37, .. 5(UW)Z; can be neglected. All the entries of
the confidence matrix C are chosen to be 1. Hence the model can be simplified
into:
minimize >, A;;(UW);; — M; ;)?,
u,w,A (i,§)ER " " "
s.t. Z (1 — Aiﬁj) <K, Aiyj S {0, 1}
(i,5)€2

(2.4)

In order to solve this non-convex problem, we use alternating minimization
method, which splits the energy minimization over A and U, W into two steps:
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— Fix A and update U, W. We need to solve the following sub-problem:

s M2 2.
m1r£{1’r‘1;1vlze Z~((UW)Z,] i) (2.5)
(1,7)€0R

This can be solved with RTRMC.
— Fix U, W and update A. This time we are solving:

minimize Y, A ;(UW);; — M; )3,
A (1,1) €02 (2.6)
st Y, (1—-4;) <K, A;; €{0,1}. .
(1,7)€02

This problem is to choose | 2| — K elements with least sum from {(UW); ;—
M; )%, (i,j) € 2}. Here |£2| stands for the number of elements in set (2.
Defining 7 as the value of the K*" largest term in that set, A can then be
calculated by

S 1, if (’L,j) € 1, ((UW)Z',]‘ — Mi7j)2 <T,
(A)ij = {0, otherwise. (27)

If the K*" and (K + 1)** larges terms have the same value, then we can
choose any A such that -, yco(1 — 4i;) = K and

min_((UW);; — M;;)* > max (UW)i; — M, ;)% (2.8)

(4,9)¢ 2 (i,5)€?
In each iteration, we use A to identify the location of outliers based on
the newly constructed U and W. This outlier detection technique, defined as

adaptive outlier pursuit (AOP), was firstly used in [29,30]. Our algorithm is
as follows:

Algorithm 1 RTRMC with AOP

Input: 2, Po(M), Miter >0, r >0, K >0, C, A.
Initialization: k =0, A; ; =1 for (i,5) € £2 and 0 otherwise, Q=0
while k£ < Miter do ~
Replace 2 in (2.1) with 2 and update U* and W* with RTRMC.
Update AF with (2.7).
Update 2 to be the indices in £ where Aﬁj =1.

If this new {2 is the same as the old !~2, break.
k=k+1.

end while

return UKWk,

This algorithm, together with other two methods, SpaRCS (sparse and
low-rank decomposition via compressive sensing) [27] and GRASTA (Grass-
mannian robust adaptive subspace tracking algorithm) [14], will be studied
and compared with extensive numerical experiments. SpaRCS is a recently
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proposed algorithm which aims at recovering low rank and sparse matrices
from compressive measurements with the following model:

minLirréize ly — AL+ S)||2, s.t. rank(L) <r,|S]jo < K. (2.9)

Here ||S|o stands for the number of nonzero entries of the matrix S. In our
test this linear transformation A(L + S) is defined as the vector formed by
the entries of (L 4+ S) in £2. This model can be applied to solve MC problem
with sparsely corrupted entries. We can form the vector y with the given noisy
data. S can be treated as the matrix recording outliers, and L is the low-rank
matrix we want to recover. GRASTA, a robust subspace tracking algorithm,
is designed to tackle the following model:

minimize [Po(9)|1, st. Po(UW +S) =Po(M), U € G(m,r). (2.10)
It alternates between estimating the subspace { with Grassmannian and find-
ing the optimal W, S with augmented Lagrangian function. According to
the numerical experiments in that paper, it can efficiently recover a low-rank
matrix from partial measurements, even if the partially observed entries are
corrupted by gross outliers.

3 Connection between (2.4) and (2.9)

In this section, we will show the connection between our problem and (2.9)
with specially defined A(-), i.e.

mgnigize |Po(M —L—58)|p, s.t. rank(L) <7, ||S]o < K. (3.1)
L7 € mXn

We can change || - || r in the above problem to || - ||% while still getting the same
solution. Basically, for (3.1) we are given partial entries of a matrix (M; ; with
(i,4) € £2) and we want to represent this M by the sum of a low-rank matrix
L and a sparse matrix S.

If a matrix pair (L,S) satisfies the constraints of problem (3.1), we can
define

o l,if(i,j>€.9, Siﬁj:(),
Aig = {O, otherwise. (32)

Hence for any (i,7) € 2, we have M; ; = L; ; + S, if A;; = 0, since we
can simply set S; ; = M; ; — L; ; for fixed L without violating the constraint
on S. If Ai,j = 1, we have Si,j = 0, thus Mi,j - (Li,j + Si,j) = Mi,j - Li,j-
Therefore, (3.1) is equivalent to

minimize Z Ai,j (Mi,j — Li,j>2
LS4 (e (3.3)
s.t. rank(L) < r, ||S]lo < K, A satisfies (3.2).
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From the relation of A and S in (3.2) and the constraint ||.S||o < K, we know
the constraints for S and A in the above equation can be replaced by the
constraint on A in (2.4). On the other hand, we know any matrix L with size
m x n and rank(L) < r can be written as the product of two matrices U
and W, where U € R™*" and W € R"*". The global optimal solution of one
problem is equivalent to the global optimal solution of the other problem. Since
these two problems are non-convex problems, a local optimal solution of one
problem may not be equivalent to a local optimal solution of the other problem.
However, the problem of minimizing the function of L only by eliminating S
and A for both problems are the same.

4 The K study

In practice, the exact number of corrupted entries K may be unknown. If K
is underestimated, some damaged entries will still be used to solve the matrix
completion problem, which will induce error for the reconstructed matrix. On
the other hand, if K is overestimated, too many entries are removed and the
reconstructed matrix may not be unique if the “new” sampling set is not large
enough. We first focus on the case when K is overestimated.

When K is overestimated, we can always find more than one solution of
problem (2.4) with the objective function value being zero. If K is overesti-
mated by a small number, the product of U and W will be the same for all
the solutions and we are able to recover the original low-rank matrix. When
the difference is greater than a certain number, UW may not be unique. The
following theorem provides a sufficient condition for the non-uniqueness of the
matrix UW.

Theorem 1 Suppose we are given p entries of an m x n matrix M, where the
locations of these data are chosen randomly. We know in advance that K of the
given entries are corrupted. Define the difference between our overestimated K
value and the real K value as AK . If AK satisfies AK > (p—K)/ max(m,n)—
r > 0, then the reconstructed matriz will be non-unique.

The above theorem provides a necessary condition for K estimate in order
to have uniqueness of the problem. In practice, what we care about is how
much we can overestimate K without sacrificing the accuracy of our algorithm.
Since K is closely related to the location of the known data, how the given
entries are distributed over the matrix will be important for our study. In
the following theorem, we assume that whether the value at each entry is
given or not is independent and identically distributed. Let us define k] as the
number of given entries in the i*"* row and kj as the number of given entries
in the jth column. knyin denotes the minimum of all the k] and k:jC Through
extensive numerical tests, we notice that the distribution of ky;, is similar to
the conditional distribution of &y, given the total number of known entries.
For simplicity we use the former one to replace the conditional distribution
and arrive at the following theorem.
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Theorem 2 Suppose that the probability of each entry being given is ¢ =
(p— K)/(mn), and whether the entry is known or not is independent of other
entries. For any small number Py € (0,1), let us define

K; = min <nq — \/Tn log(1 — (1 — Py/2)t/m™),

mg - ¢ —log(1 (1~ PO/Q)I/")> (4.1)

K3 = min <nq — \/f2nqlog(1 — (1= PRy/2)L/m),

mq —\/~2mqlog(1 — (1 - po/z)l/n)) . (4.2)

Then with at most Py probability there exists one row or column in this matrix
with at most max(Ky, Ka) given entries.

The proof of the above two theorems can be found in the appendix. As
we know, the uniqueness of MC problem with outliers depends on a lot of
subtle factors. Here we want to derive an empirical upper bound for AK such
that when AK is bounded by this value, with high probability our algorithm
can recover the exact matrix. Considering the revised sampling set (the set
with (p — K) entries), in order to study the relationship between this upper
bound and the number of given entries in each row and column, we design
the following experiment. We first fix the matrix size 512 x 512. For each rank
r, the sample ratio sr, defined as p/(mn), is chosen as the smallest number
which could guarantee the exact matrix recovery when the real K value is
used as input. For more details about the sr value, we refer the readers to
the phase transition charts in Section 5. Labeling the minimum of all the %]
and kj from the revised sampling set as kmin, we randomly choose 10 positive
integers bounded above by (kmin — 7) and treat them as AK. For each input
(K+AK), the error of the recovered matrix M, is calculated with the following
expression:

Err = max |M; ; — (M) ;|- (4.3)
2,7

If the error is less than 10~%, we say the recovery is successful. Otherwise, we
label it as a failure. The results displayed in Table 1 come from the average of
20 different tests for each setting.

Through massive experiments, we can see that if AK is smaller than (kpin—
r), our algorithm can find the correct matrix with extremely high probability.
Hence we come up with the following conclusion: for any small number Py, we
can find two values K; and K according to Theorem 2 such that with at most
P, probability there exists one row or column with at most max (K, K3) given
entries. Then, if AK is less than (max(K7, K2) — r), with high probability our
algorithm will return the exact matrix with this overestimated K input.
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rank & sample rate | avg K/p | avg kmin | Success percentage
0.01 50.75 100%
0.03 49.15 100%
rank=5, sr=0.15 0.05 49.00 100%
0.07 47.05 100%
0.09 45.35 100%
0.01 72.25 100%
0.03 70.70 100%
rank=10, sr=0.20 0.05 68.40 100%
0.07 67.65 100%
0.09 66.30 100%
0.01 95.25 100%
0.03 93.20 100%
rank=15, sr=0.25 0.05 92.75 100%
0.07 89.25 100%
0.09 85.40 100%
0.01 119.55 100%
0.03 116.70 100%
rank=20, sr=0.30 0.05 114.50 100%
0.07 111.30 100%
0.09 107.25 100%
0.01 143.30 100%
0.03 139.20 100%
rank=25, sr=0.35 0.05 136.15 100%
0.07 134.10 100%
0.09 129.30 100%

Table 1: The K study. For each matrix 10 different K inputs are chosen and
20 trials are conducted for each matrix setting.

In application, when K is overestimated, according to the above conclusion
we just need to construct a strategy to update it such that AK can be bounded
by (kmin—7). Let us define K as the estimated K value. One intuitive idea is to
check the value of the K" largest term in set So = {(UW ), ;— M, )2, (i,j) €
2} in each iteration. If this value is less than the tolerance Ko, it is possible
that some of the deleted data are not outliers, and we can update K to be the
number of terms in this set which are greater than K;,;. When our algorithm
reaches a certain stage, we can calculate the minimum number of entries in one
row or column from the sampling set with (p — K') elements (label as kyin). If
it is less than r, we update K=K —I—Emin —r. Here we just choose the smallest
decrease in K. In fact, we may pick a larger decrease in order to reduce the
number of outer iterations. On the other hand, when K is underestimated,
we need to increase its value in order to remove all the outliers. As we know,
when there are outliers in the given data, it is quite possible that we are not
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able to find a low-rank matrix with entries equalling the given data at these
locations. Based on the fast convergence of our algorithm, if at certain iteration
the difference between the entries of the recovered matrix at those (p — K)
locations and the associated input data are greater than tolerance €, we can
update K to be p1 K with p; > 1. p; should be chosen properly. When it is
too small, we need a lot of steps to make K larger than the exact K, however,
when p; is too large, K may go far above the exact K, and more iterations are
required to decrease its value. Therefore, we arrive at the following algorithm.

Algorithm 2 RTRMC-AOP with K update

Input: 2, Po(M), InnerMiter, OuterMiter > 0, r > 0, K >0, C, A\, K¢o1, p1, € -
Initialization: k,l = 0, A; ; = 1 for (4, j) € £ and 0 otherwise, 2 = £2.
while [ < OuterMiter do
while k£ < InnerMiter do
Replace 2 in (2.1) with £ and update UF and W* with RTRMC.
Find the K*" largest term in set So.
If it is less than K,;, update K to be the number of elements in S that are
greater than Ky,;.
Update AF with (2.7).
Update 2 to be the indices in £2 where Aﬁj =1.

If this new {2 is the same as the old !~2, break.
k=k+1.
end while ~
Calculate kpj, with the updated K value.
If’]fimin<7"7 K=K+ kmpin — 7.
If kmin > r and the function value of (2.5) is less than ¢, break.

If kmin > 7 and the function value is greater than e, K = p1 K.
k=0,l=1+1.

end while _

return UFWF, K.

5 Numerical results

In this section we use some numerical experiments to demonstrate the effec-
tiveness of our algorithm (AOP for short). AOP, together with SpaRCS and
GRASTA are studied and compared.

In each experiment, the original matrix M is generated by the product of
U e R™7" and W € R"™"™, whose entries follow independent and identically
distributed (i.i.d.) Gaussian distribution with variance 1. We denote the largest
and smallest value of M as my and mg. p entries are chosen randomly from
M and their locations are recorded in 2. We then pick K locations randomly
from {2 and replace the values at these locations by a random number from
[mg, mr]. The corrupted p entries and (2 are used as input in our code.

In the first experiment, we investigated the empirical performance of Al-
gorithm 1 by testing it under different circumstances. Here the size of the
matrix is chosen to be m = n = 512 and different values of r, p and K are
considered. For each small rectangle in Figure 1, we fix the value of r, p and
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K, and applied AOP to recover the low-rank matrix. If the relative error, i.e.
| M, —M]||r/| M| F, is smaller than 10~3, we denote the test as “successful”. 20
different tests are conducted for each setting and the probability of successful
recovery are recorded. Here red indicates recovery success and blue indicates
failure. As expected, the performance gets worse when we increase r or K or
decrease p.

r=10 r=15

E 20
jt 15 04 15
s 08 10

‘ 5 ‘ 5

o o

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
p/(M*N) p/(M*N)

(a) r=5 (b) r=10 (c) r=15

r=25
20 o 20
15 04 15
0.3
10 S 10
02
5 5
0.1
0 0.2 0.4 0.6 0.8 1 0
PIMN)

(d) r=20 (e) r=25

Fig. 1: Phase transitions for a recovery problem of size 512 x 512. Aggregate
results are shown over 20 Monte-Carlo runs at each specification of r, K and
p- Red indicates recovery success and blue indicates failure.

In the following two tests, the results of SpaRCS and GRASTA are also
shown in the figures. Let us assume the K value is known in advance, i.e. Al-
gorithm 1 is used in the comparison. We will compare these three items (since
GRASTA solves a different problem, only the relative error is compared):

1) distance between Pg(M,) and P5(M), i.e. ||P5(M;) — P5(M)||F;

2) relative error;

3) the probability of correct detections of corrupted data in the noisy mea-
surements.

In our second experiment, we set m = n = 500, r = 10, and examine the
performance of these algorithms on data with different noise levels. Here the
noise level is defined as K/p. 21 noise levels are chosen by 5 -i - 1072 with i
ranging from 0 to 20. p is calculated by 6r(m + n — r). 20 trials are performed
for each noise level and the mean of the above three items are recorded in
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Fig. 2: Algorithm comparison on corrupted data with different noise levels.
(a) Distance between Pg(M,.) and Pg(M) vs noise level, (b) Relative error vs
noise level, (c¢) Error location detection vs noise level. AOP proves to be more
robust to contaminated data compared with others.

Figure 2. The plots demonstrate that in these comparisons AOP outperforms
the other two greatly for all noise levels. According to the relative error plot,
the result from our method is always around 10~!% while the result gained by
the other two algorithms is bounded below by 10~*. Compared with SpaRCS,
GRASTA is slightly more stable when the given data is ruined by gross outliers.
In plot (c), we record the probabilities of correct error locations detection.
From the graph we can see that AOP algorithms can find all the positions
of corrupted data with probability 1, while in comparison the performance of
SpaRCS detection is not very satisfying.

0.25 10° 1, 660
AOP —

02} | RS — Y
° \ e | Boss
8 | T £
S 5 10 8 /
3015 2 g
3 \ 5 /
g \ e 5 09
3 \ : 2 /
§ 0\ 2 o 5 e
9 10 3 |
© \ % gossr |

0.05| 5 |

-6-A0P
- 7smnc;
0 10 20 30 4 10 0 10 20 30 40 0 0 10 20 30 40
rank rank rank

(a) Distance between clean (b) Relative error (¢) Error detection
data

Fig. 3: Algorithm comparison on corrupted data with different rank. (a) Dis-
tance between Pg(M,) and Ps(M) vs rank, (b) Relative error vs rank, (c)
Error location detection vs rank. AOP yields a remarkable improvement in
reducing the relative error and finding the correct error locations compared
with others.
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Next we fix m = n = 500 and the noise level 5% and change r between 2
and 40. p is still calculated by 6r(m + n — r). The results in Figure 3 come
from the average of 20 tests. We can see that the distance between Pg(M,.)
and Pg(M) and the relative error tend to decrease as the rank of M increases.
Although all the algorithms show the same trend, AOP series always return a
much better result with relative error staying around 10!, and it detects the
true error locations with probability 1 in all the tests. The relative error from
GRASTA is bounded below by 107° and when the rank is extremely low, the
relative error could be as high as 1072

In the previous experiments, we assume the exact K value is always given.
Now let us study the case when the input K is just an estimate of the actual
number of errors. This time we fix m = n = 512, and examine the performance
of Algorithm 2 under different settings. The relative error, Err defined by (4.3)
and the updated K value will be displayed here. In Figure (a)-(c), we set = 10
and pick 5 different noise levels between 0.01 and 0.09. For each setting, we
calculate kpin, and choose 21 different AK between —5knin and 15kyi,. Then
each (K + AK) is used as the input K value. In Figure (d)-(f), we fix the
noise level to be 0.05 and vary r from 5 to 25. Still, 21 different AK values are
selected. All the p values in these tests are chosen the same as Table 1. The
following results come from the average of 20 different trials. We can see that in
all the cases our AOP with K update algorithm can detect the correct number
of outliers with high probability even when the input K differs a lot from its
real value. The relative error plot and Err plot suggest that this method always
recovers the matrices with extremely high accuracy.

6 Conclusion

In this paper, we propose a method for exact low-rank matrix completion from
sparsely corrupted data via adaptive outlier pursuit. By iteratively detecting
the damaged measurements and recovering the matrix from “correct” mea-
surements, this method can obtain better results in both finding the noisy
measurements and recovering the exact matrix when random-valued noise is
introduced in the measurements. Our algorithm is implemented and compared
with SpaRCS and GRASTA in the numerical experiments. It has better per-
formance in many aspects compared to the other two, especially in detecting
all the outlier locations. When the exact value of the number of outliers is
not provided, the AOP with K update algorithm can always detect the cor-
rect number of outliers and recover the exact matrix in all the cases with high
probability. Our next step is to study the case when the given data is corrupted
by Gaussian noise as well as sparse random-valued noise.

7 Appendix

This appendix provides the mathematical proofs of the theoretical results in
Section 4.
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Fig. 4: The K study. For (a)-(c) we fix the rank and vary the noise level. (a)
relative error vs different K input. (b) Err vs different K input. (¢) K output
vs different K input. For (d)-(f) we fix the noise level and vary the rank of the
matrix. (d) relative error vs different K input. (e) Err vs different K input.
(f) K output vs different K input.

7.1 Proof of Theorem 1

Proof When we overestimate K, the K outliers will be found to make the
objective function 0. Therefore, we only need to consider the (p — K) correct
entries. In the mean time, some non-outliers (the overestimated AK entries)
are also considered as outliers and will not be used for matrix completion.
As we know, if the number of given entries in one row (or column) is less
than r, the reconstructed matrix is not unique. Since AK of the (p — K)
known entries will not be used in reconstructing the matrix, when AK is large
enough to make the number of known entries in one row (or column) less
than 7, we will have more than one solution. It is easily seen that the smallest
number of known entries in one row (or column) of the matrix is less than or
equal to [(p — K)/m| (or [(p — K)/n]), here |x] is the largest integer that
does not exceed x. Without loss of generality, let us assume column j has the
smallest number of known entries. It is obvious that this number is bounded
by min(|(p — K)/m], |[(p — K)/n|). To make the number of known entries in
this column no less than 7, the smallest number of entries to be deleted should
not exceed min(|(p — K)/m|, [(p — K)/n]) —r + 1. Thus if AK is greater
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than min(|(p— K)/m]|, [(p — K)/n]) —r, the reconstructed matrix will not be
unique.

7.2 Proof of Theorem 2

Proof Since the probability that a certain location is chosen is fixed and equals
g = (p— K)/(mn). In addition, whether one entry is chosen or not is indepen-
dent of other entries. The number of known entries in each row (or column)
of this matrix follows binomial distribution. For each row, the cumulative dis-
tribution can be expressed as

o) oo\ |
Flama) = Px <o) =3 ()= o (7.1)

2
=0

where X is the number of known entries in this row.
From the Hoeffding’s inequality, we have

pxkﬂuq)gexp<2£ﬁ2glﬁi>, (7.2)

for any integer k < ngq. Since the distribution of the number of known entries
in each row is independent, we can find the upper bound for the probability
that there exists one row with at most k£ given entries:

— k)2 m
P(mln(k/’;‘akjga : ak:n) S k) S 1- (1 — exp (_QM)) = Pl-
n

Here kI stands for the number of given entries in the i*" row. Similarly the

upper bound for the probability that there exists one column with at most &
given entries can be expressed as follows:

(mg — k)*

P(min(k§, kS, -+ ki) <k)<1-— (1 — exp(—2
m

On:f@ (7.4)

where £f is defined as the number of given entries in the 4" column. Combing
these two together, we have

P(min(k, kS, -k kT kS, -+ ko) < k) < P+ P» < 2max(Py, P), (7.5)

» Vmy

which means the probability that there exists one row or column with at most
k given entries can be bounded by 2 max(Py, P»).
Let us first assume P; > P,. Defining

pea(i- (e (2B g
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we then have

exp (2@) —1- (1 - %)Um (7.7)

— k=ng— \/7" log(1 — (1 — Py/2)1/m). (7.8)

When P; < P,, we have

k=mq— \/T’" log(1 — (1 — Py/2)/m). (7.9)

We define K as the minimal of these two values. Hence given Py, the proba-
bility of having one row or column with at most K entries is less than Fp.
Besides the Hoeffding’s inequality, we also have Chernoff’s inequality,

F(k,n,q) <exp (—%M) . (7.10)

In this case

n

M))m (r.11)

Plzl—(l—exp(—2

P2=1—(1—exp(—2 W))n (7.12)
After similar calculation, we have

k= ng — /~2nqlog(1 — (1 - Py/2)/m) (7.13)
for P, > P5, and

k= mq — \/~2mqlog(1 — (1 - Py/2)1/n) (7.14)

when P; < P,. Similarly we define K5 to be the smaller one of these two values,
and the probability of having one row or column with at most K entries is
less than Fy. Combining the results from two inequalities together, we know
that with at most Py probability there exists one row or column with at most
max (K7, K2) given entries.
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