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Abstract. We introduce a multi-level decomposition scheme for solving basis

pursuit problems in a Fourier or Hadamard basis. The iterates generated by
this scheme are equivalent to the coordinate-descent (CD) method for basis

pursuit. However, unlike standard CD methods, the new algorithm computes

each iterate using only O(n logn) operations. The decomposition method is
numerically compared to two other common algorithms for basis pursuit. For

the problems considered here, runtimes for the CD algorithm are approxi-

mately 5-10 times faster than conventional methods.
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1. Introduction

In this manuscript, we consider a novel method for solving problems of the form

(1) argmin
u∈CN

N−1∑
j=0

φ(uj) +
1

2
‖RTu− s‖2,

where T is a fast transform of the Fourier or Hadamard type, φ : C→ R̄ = R∪{∞}
is closed, proper, and convex, s ∈ CN , and R is a diagonal N × N matrix with
nonnegative real entries.
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A prominent special case of (14) is the `1 regularized problem

(2) argmin
u∈CN

|u|+ 1

2
‖RFNu− s‖2,

where FN is the N -point discrete Fourier transform defined as

(3) [FNu]k :=

N−1∑
j=0

e−2πijk/Nuj .

In Section 2.1, we will list several applications which lead to problems of the form
(1). These include compressed sensing, spectral estimation and deblurring problems,
among others. These problems are traditionally solved using techniques of the
gradient-descent type, which involve repeated application of the sample matrix RT
and its conjugate. These operations are computed efficiently in O(N logN) time
using an algorithm such as the Fast Fourier Transform (FFT).

Coordinate descent is another method for solving problems of the form (1). Such
methods minimize a function over each coordinate in turn. Coordinate descent
is very effective for problems involving dense matrices, but is not practical for
problems of the Fourier or Hadamard type – because it cannot directly utilize fast
transforms, it requires O(N2) operations for each coordinate sweep. Sardy et al.
[40, 50] proposed a block-level decomposition which optimizes over whole subsets
of coordinates at once using a block transform such as the FFT. But, as we will
demonstrate, that method does not extend to the general framework of (1).

In this manuscript, we present a new coordinate descent based method for solving
(1). We perform an efficient coordinate descent sweep in “bit-reversed” order for the
Fourier transform and in the standard order for the Hadamard transform. Unlike
traditional coordinate descent, each sweep takes only O(N logN) operations, and
does not require any explicit orthogonal transforms.

The organization of this paper is as follows: We first review some common tech-
niques for solving regression problems of the form (1). We also review prior work
on coordinate descent for basis pursuit problems, and discuss the limitations of
this method for (1). We then show how the Cooley-Tukey and Sylvester decompo-
sitions lead to efficient multilevel schemes for problems involving the Fourier and
Hadamard transforms. Finally, we present numerical results demonstrating the
efficiency of our method for these problems.

1.1. Notation and Definitions. We first define a few bits of notation. To avoid
cumbersome summations, we shall denote the discrete 2-norm and 1-norm as fol-
lows:

‖u‖ =
√
u∗u =

√√√√ n∑
i=1

|ui|2, |u| =
n∑
i=1

|ui|.

Suppose that W is a real diagonal N×N matrix with nonnegative entries. Then
we define the weighted seminorm ‖ · ‖W by

(4) ‖u‖2W = u∗Wu.

In general, ‖ · ‖W is not a norm unless each Wi,i > 0. Additionally, recall that the
Moore-Penrose pseudoinverse W+ satisfies WW+W = W . Since W is diagonal,
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the pseudoinverse can be written explicitly as

(5) W+
i,i =

{
1/Wi,i if Wi,i 6= 0,

0 otherwise.

As a consequence,

(6) [WW+]i,i =

{
1 if Wi,i 6= 0,

0 otherwise.

2. Background

2.1. Applications. We begin by listing several applications for which our method
can be used. They each lead to a minimization problem which involves an or-
thogonal transform in some way. We will demonstrate how those problems can
be rewritten in the form (1). Note in particular for the Fourier transform that

a change of variables vj = u(N−j)(modN) yields FN (u) = F∗N (v), and thus the
equivalent problem

(7) argmin
v∈CN

N−1∑
j=0

φ(vj) +
1

2
‖RF∗Nv − s‖2,

which is more appropriate for some applications.
A prominent example is that of compressed sensing (CS), where we wish to

reconstruct u from a small subset of its Fourier coefficients [7, 8, 9, 14, 39, 47].
We choose Φ(u) =

∑
i φ(ui) to be some regularizer which promotes sparsity of the

solution, such as the scaled complex `1 norm φ(ui) = λ|ui|. If the kth Fourier
coefficient is known, we let sk be that coefficient and set Rk,k = 1. If the kth
mode is unknown, we set sk = Rk,k = 0. Problems of this form also arise in
analog-to-digital conversion [48, 25] and statistical regression [44].

A related problem arises from the basis pursuit denoising method [11]. Suppose
that an observed signal f ∈ CN is known to be a linear sum of a small number of
sinusoids. Such signals can arise in many fields, including speech processing, radar
and sonar systems, astronomy, and seismology [42]. We let M be a positive integer,
and consider a “dictionary” of complex exponentials gk ∈ CN :

[gk]j = e2πijk/(MN), 0 ≤ k < MN, 0 ≤ j < N.(8)

When M = 1, this dictionary is just the standard Fourier basis. When M > 1,
however, the dictionary contains extra sinusoids at the fractional frequencies k/M =
m1 +m2/M , and is thus over-complete. We aim to find a linear combination of a
small number of gk which closely matches the observed signal.

The ‘basis pursuit’ scheme solves

(9) argmin
u∈CMN

λ|u|+ 1

2
‖Au− f‖2,

where the columns of A are the elements of our dictionary. In particular,

[Au]k =

N−1∑
j=0

e2πijk/(MN)uj , k = 0, . . . , N − 1.(10)
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Thus (9) is equivalent to the problem

(11) argmin
u∈CMN

λ|u|+ 1

2
‖RF∗MNu− s‖2,

where s ∈ CMN and R is an MN ×MN diagonal matrix with Ri,i = 1, si = fi
when i < N , and Ri,i = 0, si = 0 otherwise.

Another class of problems that can be represented in the form (1) are sparse
deconvolution problems, which have the form

(12) argmin
u∈CN

λ|u|+ 1

2
‖Ku− s‖2

where K is a convolution matrix. These problems arise, for example, in heat-source
identification, seismology, and medical imaging applications [29, 33, 34, 35, 43, 20,
17]. Often K = F∗NRFN for some diagonal matrix R. Then, because of the unitary
nature of the Fourier transform,

‖Ku− s‖2 = ‖F∗NRFNu− s‖2 = N ‖RFNu− 1
NFNs‖

2

where the rightmost form of this energy is the same as that appearing in (1). Thus
problems of the form (12) can also be written in the form (1).

Stern et al. [41] have applied a similar approach to the computation of spectra
from NMR data. Spectrometer measurements suffer from a decay w; that is, if the
physical signal produced time samples fj , they would be measured as sj = wjfj .
The raw observed signal s has the blurred spectrum F(s) = F(w) ∗ F(f). To
“deconvolve” the spectrum, we can instead solve

(13) argmin
u∈CN

λ|u|+ 1

2
‖WRF∗MNu− s‖2.

where W is a diagonal matrix representing the decay factor, and R is as in (11).
All of the above examples have used the `1 norm as a regularizer. An alternate

technique for enforcing sparsity is non-negative least squares, which forces the recov-
ered signal to take on only positive values. Non-negative least squares corresponds
to problems of the form (1) where we choose

φ+(uj) =

{
0 if uj ∈ R and uj ≥ 0,

∞ otherwise.

The use of non-negative least squares for compressed sensing, and the uniqueness
of solutions to this problem, in studied in [6, 15].

2.2. Iterative Methods for Sparse Signal Recovery. In this section we review
commonly used methods for finding sparse solutions to systems of equations. These
algorithms apply to problems of the form

(14) min
u∈CN

Φ(u) +
1

2
‖Au− s‖2

where A : CN → CM is an arbitrary linear operator and Φ : CN → R̄ is closed,
proper and convex.
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FBS. A very common approach to solving problems of the form (14) is to use a
gradient-descent-based method such as forward-backward splitting. Algorithms of
this form were originally proposed for differentiable problems by Lions and Mercier
[28] and Passty [37], and later studied extensively by others [10, 32, 51]. Rigorous
results for `1-regularized problems were first proposed by Hale, Yin, and Zheng in
[23].

Forward-Backward splitting is a two stage algorithm that operates on some initial
guess uk. During the first stage, we obtain ūk using a gradient descent step on the
differentiable term in (14).

ūk = uk − tAT (Auk − s).

During the second stage, we update the value of ūk by solving the “proximal”
problem

uk+1 = argmin
u∈CN

Φ(u) +
1

2t
‖u− ūk‖

We can write this equation as uk+1 = ProxtΦ(ūk), where we define

(15) ProxΦ(u) = argmin
v∈CN

Φ(v) +
1

2
‖v − u‖2.

The map ProxΦ is uniquely defined for all closed, proper, convex Φ; see for example
[32].

The overall algorithm can be written

Algorithm 1 Forward-Backward Splitting (FBS)

1: Initialize: u0 ∈ CN , t < 2/ρ(ATA)
2: for k = 0, 1, 2, · · · do
3: ūk = uk − tAT (Auk − s)
4: uk+1 = ProxtΦ(ūk)
5: end for

For the problems considered here, the minimization in step 4 of the above al-
gorithm has a simple closed form solution. For `1 regularized problems, we have
Φ(u) = λ|u|, and [

Proxtλ|·|(u)
]
j

=
uj
|uj |

max{|uj | − tλ, 0}.(16)

In the case of non-negative least squares, we have

[ProxtΦ+(u)]j = max{uj , 0}.(17)

Note that the FBS algorithm (1) only requires that we be able to evaluate the
linear operator A and its adjoint. In case the operator A involves a Fourier trans-
form, step 3 of the FBS algorithm can be evaluated quickly using the fast Fourier
transform (FFT). This makes FBS advantageous for problems involving the Fourier
transform (and other fast transforms). Another advantage of the FBS method is
its extremely simple implementation.
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FISTA. The Fast Iterative Shrinkage and Thresholding (FISTA) method of Beck
and Teboulle [2] is an accelerated variant of forward-backward splitting. The scheme
can be thought of as a predictor-corrector method. A ‘prediction’ is made by
moving in the direction indicated by the difference between the last two iterates.
This predicted value is then ‘corrected’ by applying the forward-backward iteration.
This is described as algorithm 2 below:

Algorithm 2 FISTA

Require: v1 = u0 ∈ CN , α1 = 1, τ < 1/ρ(ATA)
1: for k = 1, 2, 3, · · · do
2: uk = ProxtΦ(vk − tAT (Avk − s))
3: αk+1 = (1 +

√
1 + 4α2

k)/2

4: vk+1 = uk + αk−1
αk+1

(uk − uk−1)

5: end for

Note that the over-relaxation parameter αk increases with time. By changing
the level of over-relaxation, the authors of [2] show that FISTA achieves the best
possible worst-case convergence rate for splitting problems involving one smooth
term. For this reason, FISTA is generally considered to be a more efficient solver
than simple FBS.

Subspace Optimization / CGIST. While the signals we wish to recovery using prob-
lems of the form (14) often contain many coefficients, the search for these signals
often takes place within very low-dimensional subspaces of CN . This is because
most coefficients in the solution are zero (i.e. solutions are sparse), and only a
small number of entries lie in the active set.

Most first-order schemes (e.g. FBS and FISTA) rely on fixed time steps that
are stable for every possible active set. However, when the active set is small,
the maximum allowable timestep within a low-dimensional subspace is often much
larger than the globally stable timestep. For this reason, an adaptive timestep often
outperforms a fixed timestep by a large margin. Furthermore, by using ‘subspace
optimization,’ which minimizes directly within these low dimensional spaces, it is
possible to moved quickly towards a minimizer even in cases where FBS or FISTA
are slow because of poorly conditioned active sets.

Many of the most modern `1 solvers incorporate adaptive stepsizes and subspace
optimization. The FPC AS and FPC BB solvers [53] rely on a Barzilai-Borwein
timestep [1], and call a dedicated quadratic program solver to perform subspace
minimization. Another approach is the semi-smooth Newton method of Griesse
and Lorenz [22]. This method formulates and directly inverts the reduced Hessian
within the subspace corresponding to the current active set.

One particularly efficient method is Conjugate-Gradient Iterative Shrinkage /
Threshold method (CGIST) [21]. This method exploits the quadratic nature of (14)
to compute the optimal step size at each iteration. The method also incorporates
a simple acceleration step that allows the method to perform conjugate-gradient
acceleration within the active subspace. This acceleration step allows CGIST to
perform subspace optimization without the overhead of making a call to dedicated
quadratic program solver. For this reason, CGIST tends to be faster than many
other accelerated schemes in cases where the active set evolves quickly. The CGIST
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code provided by the authors of [21] is also capable of solving problems involving a
variety of different constraints, including constraints involving the `2 norm.

NESTA. Recently, the code NESTA [3] has become a popular choice for solving
a variety of `1 regularized problems. The code is capable of solving `2 norm con-
strained problems, however the authors also provide the code NESTA UP which
solves problems of the form (14). This method works by regularizing the dual of
(14). The chosen regularization is equivalent to the popular Huber regularization of
`1, which replaces the non-differentiable region of the `1 norm with a smooth qua-
dratic term. The resulting formulation is then minimized using Nesterov’s optimal
first-order method [31]. Rigorous convergence results for this regularized scheme
have been proved by Nesterov [30]. In particular, this scheme achieves the same
worst-case asymptotic error bounds as FISTA.

Coordinate Descent. Forward-Backward Splitting is a gradient descent based mini-
mization technique. For general basis pursuit problems (e.g. problems not involving
the Fourier transform or other fast transforms), faster methods are available. For
unconstrained problems, coordinate descent (CD) is frequently the most efficient
approach. These techniques work by minimizing (14) with respect to each individ-
ual element ui in sequence.

Algorithm 3 Cyclic Coordinate Descent (CD)

1: Initialize: u0 ∈ RN
2: for k = 1, 2, · · · do
3: for i = 1, 2, · · · , N do
4: uki ← argminui∈C Φ(u) + 1

2‖Au− s‖
2

such that u = (uk1 , . . . , u
k
i−1, ui, u

k−1
i+1 , . . . , u

k−1
N )

5: end for
6: end for

Methods of this type were proposed very early by Fu [19], and were later pop-
ularized by Daubechies et al. [13]. Variants of this algorithm have been studied
extensively for various applications including the elastic net [55, 52], non-negative
least squares [5], grouped regression [54], and many other applications [26, 50, 49].
Variants of this algorithm have also been proposed for TV regularized problems
(also called the “fused lasso”) by Tibshirani and others [45, 46, 4, 36]. A detailed
review of many of these techniques can be found in [18].

Not only does CD converge more quickly than FBS, but for dense A the cost of
a CD iteration is lower then the cost of an FBS iteration. These two factors make
CD a superior solver when speed is the primary consideration.

Unfortunately, CD is generally not effective for basis pursuit problems involving
the Fourier or Hadamard transforms (see, for example, [27]). Each execution of line
4 of the above algorithm turns out to require O(N) operations, since it computes
inner products against individual columns of the sample matrix. As a result, each
iteration of CD requires O(N2) computations. In contrast, each iteration of FBS
involves a single application of the matrix A and its transpose, which can generally
be performed in O(N logN) using a fast transform.
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Block Coordinate Descent. Sardy et al. [40, 50] proposed an improvement for CD
which can use fast transforms for certain problems. Consider the basis pursuit prob-
lem (14); suppose that A ∈ CN×(NM) can be written in the block form (A1 · · ·AM )
where each Am is unitary, and furthermore that Φ : CMN → R̄ is separable:
Φ(u1, . . . , uM ) =

∑
m Φm(um). Then (14) can be written in the block form

(18) argmin
uj∈CN

M∑
m=1

Φm(um) +
1

2
‖

M∑
m=1

Amum − s‖2.

BCD proceeds by minimizing over an entire block of coordinates at once, rather
than over each coordinate separately as in Algorithm 3. Minimizing (18) over the
block uj results in:

argmin
uj∈CN

Φj(uj) +
1

2

∥∥∥uj +A∗j

(∑
m6=j

Amum − s
)∥∥∥2

(19)

= ProxΦj

[
A∗j
(
s−

∑
m 6=j

Amum − s
)]
,(20)

which as mentioned before has a unique closed-form solution for many choices of
Φj , including the complex `1 norm. This results in the following algorithm:

Algorithm 4 Block Coordinate Descent (BCD)

1: Initialize: u0
k ∈ CN for k = 1, . . . ,M

2: for k = 1, 2, · · · do
3: for j = 1, 2, · · · ,M do
4: ukj ← ProxΦj

[
A∗j (s−

∑
m<j Amu

k
m −

∑
m>j Amu

k−1
m )

]
5: end for
6: end for

We can make BCD more efficient by observing that line 4 applies M − 1 unitary
block matrices Am to the input variables um, even though only one of them changes
at each step. We can “cache” those values by operating instead on the new variables
vm = Amum. Then the method becomes:

Algorithm 5 Block Coordinate Descent, fast version

1: Initialize: v0
k ∈ CN for k = 1, . . . ,M

2: for k = 1, 2, · · · do
3: for j = 1, 2, · · · ,M do
4: vkj ← Aj ProxΦj

[
A∗j (s−

∑
m<j v

k
m −

∑
m>j v

k−1
m )

]
5: end for
6: end for

Now the update step for each vkj requires only a single application of Aj , A
∗
j

and ProxΦj
. Thus we can expect Algorithm 5 to be faster than Algorithm 4 by

approximately a factor of M .
BCD turns out to apply directly to the basis pursuit problem (9) in the un-

weighted case, i.e., when W = I. Suppose that the columns of A ∈ CN×(MN) make
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up a dictionary of complex exponentials with fractional frequencies:

[A]k,j = 1√
N
e2πijk/(MN) 0 ≤ j ≤ N − 1, 0 ≤ k ≤MN − 1.(21)

We reorder the coordinates of u by letting v0, . . . , vM−1 ∈ CN be defined by [vm]k =
uMk+m. Then

[Au]j = 1√
N

MN−1∑
k=0

e2πijk/(MN)uk(22)

= 1√
N

M−1∑
m=0

N−1∑
k=0

e2πij(Mk+m)/(MN)[vm]k(23)

=

M−1∑
m=0

e2πijm/(MN) 1√
N

N−1∑
k=0

e2πijk/N [vm]k(24)

=

M−1∑
m=0

[Ψm 1√
N
F∗Nvm]j ,(25)

where we let Ψ ∈ CN×N be a diagonal matrix defined by

(26) [Ψ]j,j = e2πij/(MN).

Thus (9) is equivalent to

(27) argmin
v0,...,vM−1∈CN

∑
m

|vm|+
1

2
‖
∑
m

Amvm − s‖2,

where each Am = Ψm 1√
N
F∗N is unitary. As a result, it can be directly solved with

the BCD method.
Unfortunately, the block-unitary assumption does not hold for the more general

problems under discussion. For example, in compressed sensing problems the ob-
served Fourier modes are picked at random and thus do not form unitary blocks.
As another example, consider the NMR problem (13) which involves a nontrivial
weighing factor. Following the above steps in that case will produce the blocks
WΨm 1√

N
F∗N , which in general are not unitary.

2.3. The Cooley-Tukey FFT. One of the most efficient schemes for computing
the DFT is the Cooley-Tukey factorization [12, 16, 38]. Although this type of
procedure can be performed on vectors of arbitrary composite size, we will assume
for simplicity that the signal length is a power of 2. In this case, we get a radix 2
decimation-in-time algorithm in which the Fourier transform of a length N signal is
represented as a linear combination of smaller Fourier transforms of size n = N/2.

The Cooley-Tukey factorization proceeds by splitting the input into even and
odd coefficients. Let us define Evn,Odn : C(2n) → Cn to be the linear operators
which select the even and odd coefficients of their inputs, respectively:

(28) [Evnu]j = u2j , [Odnu]j = u2j+1.

The operator

(
Evn
Odn

)
: C2n → C2n is orthogonal and permutes its input by sepa-

rating the even and odd coefficients. Its inverse is
(
EvTn OdTn

)
, which interleaves
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the first half of its inputs’ coefficients with the second half:

(29)

[(
EvTn OdTn

)(ue
uo

)]
=

{
[ue]j if k = 2j,

[uo]j if k = 2j + 1.

Theorem 1. Suppose that N is even and n = N/2. Let Dn be the diagonal matrix
defined by

(30) [Dn]k,k = e−2πik/N .

Then

(31) FN =

(
In Dn

In −Dn

)(
FnEvn
FnOdn

)
.

Proof. We can write the Fourier transform component-wise as

[Fnu]k =

N−1∑
j=0

e−2πijk/Nuj(32)

=

N−1∑
j=0

e−2πi(2j)k/Nu2j +

N−1∑
j=0

e−2πi(2j+1)k/Nu2j+1(33)

= [FnEvnu]k + e−2piik/N [FnOdnu]k,(34)

from which the result follows. �

Using the Cooley-Tukey decomposition, we have written the Fourier matrix as a
product of a block-diagonal ‘butterfly matrix’ and a set of smaller Fourier matrices.
Because of the block-diagonal structure of the butterfly matrix, multiplication by
this matrix can be performed in O(N) operations. The Fourier transforms of the
smaller matrices are performed by recursively applying the Cooley-Tukey formula.

Algorithm 6 : FFT(u,N) (Cooley-Tukey)

1: if N = 1 then
2: return u
3: else
4: n← N/2
5: ve ← FFT(Evnu, n)
6: vo ← FFT(Odnu, n)

7: return

(
ve +Dnvo
ve −Dnvo

)
8: end if

A simple induction argument shows that the total cost of computing the N -point
FFT using this scheme is O(N logN).

Another way to describe the Cooley-Tukey FFT’s structure is as a bit-reversal
permutation of the inputs. For an input u ∈ CN , the method first considers Evnu
and then Odnu; that is, first those indices whose binary representation ends in 0,
and then those whose representation ends in 1. Proceeding inductively, we conclude
that the method considers indices in an order determined by reversing their binary
representations.

As an illustration, we give pseudo-code for a bit-reversed enumeration procedure:
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Algorithm 7 : bitreversed(k0, ..., kN−1) Bit-reversed enumeration

1: if N = 1 then
2: output k0

3: else
4: bitreversed(Evn(k0, ...kN−1))
5: bitreversed(Odn(k0, ..., kN−1))
6: end if

Calling bitreversed(0, 1, ...N − 1) will output the indices between 0 and N − 1
in bit-reversed order.

2.4. The Fast Hadamard Transform. A Hadamard matrix is an orthogonal
matrix, whose entries are either 1 or −1. While it is conjectured that Hadamard
Matrices exist of every order divisible by 4, constructions for these matrices only
exist in limited cases [24]. The simplest construction occurs for matrices whose
order is a power of 2. In this case, the Sylvester construction builds Hadamard
matrices using the recursive formula

(35) HN =

(
HN/2 HN/2

HN/2 −HN/2

)
where HN denotes the N ×N Hadamard matrix, and H1 = 1.

Like the Fourier Transform, the N -point Hadamard transform HNu can be
performed in O(N logN) operations. This is done by computing the N/2-point
Hadamard transform of the upper and lower halves of the vector u, and then sum-
ming and differencing the results to form the Sylvester composition (35). The
Hadamard transform of each half of u is performed by recursively applying the
decomposition (35).

3. CD Minimization in a Fourier Basis

In this section, we will demonstrate how to perform fast CD minimization for
the general problem (1). We will assume for simplicity that the signal length is a
power of 2. Our method will work by subdividing the original problem into two
smaller subproblems, solving those problems, and then recombining the solutions.
In this sense, the method is a divide-and-conquer algorithm much like the FFT
itself.

Our method will minimize functionals of the form

(36) EN (u) = ΦN (u) +
1

2
‖FNu− s‖2W ,

where, as before,

(37) ΦN (u) =

N−1∑
i=0

φ(ui).

Any problem of our original form (1) may be converted to a problem in form
(36), as follows. Suppose that we have f ∈ CN and R ∈ RN . Let Wi,i = |Ri,i|2,
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and let s = R+f . Then

‖RFNu− f‖2 = ‖RFu−RR+f‖2 +
∑

0≤i<N,
Ri=0

|fi|2(38)

= ‖FNu− s‖2W + C,(39)

where C does not depend on u. As a result, minimization of (36) is equivalent to
the problem (1).

3.1. Bit-reversed Coordinate Descent. For any generic function E : CN → R̄,
we can perform a bit-reversed CD sweep recursively, as follows:

Algorithm 8 : uk+1 ← bitreversedCD(uk, E(·), N)

1: if N = 1 then
2: return argminu∈CE(u)
3: else

4:

(
uke
uko

)
←
(

Evn

Odn

)
uk

5: Define E(ue, uo) = E

((
EvTn OdTn

)(ue
uo

))
6: uk+1

e ← bitreversedCD(uke , E(·, uko), N/2)

7: uk+1
o ← bitreversedCD(uko , E(uk+1

e , ·), N/2)

8: return
(
EvTn OdTn

)(uk+1
e

uk+1
o

)
9: end if

In the base case (line 2), we solve a one-dimensional subproblem. For every other
level, we split the coefficients into even and odd subsets. We first sweep recursively
over the even coefficients while keeping the odd coefficients fixed. Then, we sweep
recursively over the odd coefficients while fixing the even coefficients. Finally, we
merge the resulting even and odd coefficients and return the result.

3.2. Splitting the weighted Fourier objective. We now rewrite the energy EN
in terms of the even- and odd-indexed components of u: ue = Evnu and uo = Odnu.

The regularizer ΦN (u) =
∑N−1
i=0 φ(ui) can be easily decomposed in this way:

(40) EN (u) = EN (ue, uo) = ΦN/2(ue) + ΦN/2(uo) +
1

2
‖FNu− s‖2W .

However, we must also find a way to decouple the even- and odd-indexed com-
ponents of u in the fidelity term ‖FNu − s‖2W . This is provided by the following
theorem.
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Theorem 2. Let W1,W2 ∈ Rn×n be nonnegative diagonal matrices, and let s1, s2 ∈
C. Let

W =

(
W1 0
0 W2

)
,(41)

s =

(
s1

s2

)
,(42)

F (u) = ‖F2nu− s‖2W .(43)

Then F can be rewritten in the following two equivalent forms:

F (ue, uo) = ‖Fnue − se||2W1+W2
+ Ce,(44)

F (ue, uo) = ‖Fnuo − so||2W1+W2
+ Co,(45)

where Ce and Co are constants not depending on ue and uo, respectively, and

se = (W1 +W2)+ [W1s1 +W2s2 + (W2 −W1)DnFnuo] ,(46)

so = (W1 +W2)+D∗n [W1s1 −W2s2 + (W2 −W1)Fnue] .(47)

Proof. We first note that for any a, b ∈ Cn we have

(48) [(W1 +W2)(W1 +W2)+](W1a+W2b) = W1a+W2b.

This follows from (6), since [W1 + W2]i,i = 0 exactly when both [W1]i,i = 0 and
[W2]i,i = 0.

Now, using the Cooley-Tukey decomposition, we can rewrite

F (u) = ‖Fnue +DnFnuo − s1‖2W1
+ ‖Fnue −DnFnuo − s2‖2W2

(49)

= ‖Fnue‖2W1
− 2
〈
Fnue,W1(s1 −DnFnuo)

〉
(50)

+ ‖Fnue||2W2
− 2
〈
Fnue,W2(s2 +DnFnuo)

〉
+ C ′e(51)

= ‖Fnue||2W1+W2
− 2
〈
Fnue, (W1 +W2)se

〉
+ C ′e,(52)

which is equivalent to (44). Note that equation (52) follows from (48).
Similarly,

F (u) = ‖Fnuo +D∗n(Fnue − s1)‖2W1
+ ‖Fnuo −D∗n(Fnue − s2)‖2W2

(53)

= ‖Fnuo‖W1+W2
− 2
〈
Fnuo,W1D

∗
n(s1 −Fnue)

〉
(54)

− 2
〈
Fnuo,W2D

∗
n(−s2 + Fnue)

〉
+ C ′o(55)

= ||Fnuo||W1+W2
− 2
〈
Fnuo, (W1 +W2)so

〉
+ C ′o,(56)

which is equivalent to (45). �

We now describe how the two forms from the previous theorem can be used
to perform coordinate descent. Suppose first that we want to perform coordinate
descent on the even-indexed elements of u, while fixing the odd-indexed elements.
For this step, the energy EN can be written as

Φn(ue) +
1

2
‖Fnue − se‖2W1+W2

,(57)

where we omit terms not depending on ue. Similarly, to perform element-wise min-
imization of the odd-indexed components of u, we need only perform a coordinate
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sweep on the following functional:

Φn(uo) +
1

2
‖Fnuo − so‖2W1+W2

.(58)

The sweep of each small (size n = N/2) problem is performed recursively using
the same decomposition that we used for problems of size N . On each stage of the
recursion, the problem size gets reduced by a factor of 2. The recursion terminates
when the problem size has been reduced to 1, and we must then solve the resulting
problem analytically. The length-1 problem has the form

argmin
u∈Cn

φ(u) +
w

2
‖F1u− s‖2(59)

= Prox(w−1φ)(s),(60)

since F1 = I1. As noted before, (60) is uniquely defined for any proper, lower-
semicontinuous, convex φ, and is easily solvable for many choices of φ. In particular,
for `1 optimization we have

(61) argmin
u∈C

λ|u|+ w

2
|u− s|2 =

s

|s|
max{s− λ/w, 0}.

Remark : Note that our formula (60) requires a nonzero w. Fortunately, it turns
out that w > 0 whenever the original N × N weight matrix WN is nonzero. (If
W = 0, the problem (36) becomes trivial.) To show that w > 0, we first observe

that for any diagonal matrix W = (W1 0
0 W2

), its trace tr(W ) = tr(W1 +W2). Then,
proceeding by induction, we find that that the trace of the weight matrix is the
same in all subproblems. In particular, for the size-1 problem (59), w = tr(WN ).
But since each diagonal entry of WN is nonnegative, tr(WN ) > 0 unless WN = 0.

3.3. Implementation of the Coordinate-Descent method. Following the ar-
guments above, coordinate descent on (1) can thus be achieved by the following
recursive algorithm:

Algorithm 9 : uk+1 ← cdfft(uk,W, s,N) (slow version)

1: if N = 1 then
2: return Prox(W−1φ)(s)
3: else
4: n← N/2

5:

(
uke
uko

)
←
(

Evn

Odn

)
uk,

(
s1

s2

)
← s

6: se ← (W1 +W2)+
[
W1s1 +W2s2 + (W2 −W1)DnFnuko

]
7: uk+1

e ← cdfft(uke ,W1 +W2, se, n)

8: so ← (W1 +W2)+D∗n
[
W1s1 −W2s2 + (W2 −W1)Fnuk+1

e

]
9: uk+1

o ← cdfft(uko ,W1 +W2, so, n)

10: return
(
EvTn OdTn

)(uk+1
e

uk+1
o

)
11: end if

This algorithm is slow, however, because it requires the computation of FFT’s
at each level (in the definitions of se and so). A close analysis of Algorithm 9 shows
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that these FFT’s can be eliminated by operating on the Fourier transform of u
rather than on u itself. This trick is related to the speedup between Algorithm 4
and 5 for the BCD.

We first make the substitution v = FNu. Our goal is to rewrite Algorithm 9
in terms of the variable v so that all computations can be done in the Fourier
domain. We define new variables ve = FnEvnu and vo = FnOdnu. Then by the
Cooley-Tukey decomposition (31), we can transform between v and (ve, vo) with

v =

(
I Dn

I −Dn

)(
ve
vo

)
,(62) (

ve
vo

)
=

1

2

(
I I
D∗n −D∗n

)
v.(63)

Using these identities, we can rewrite Algorithm 9 so that we only operate in the
Fourier domain:

Algorithm 10 : vk+1 ← cdfft(vk,W, s,N)

1: if N = 1 then
2: return Prox(W−1φ)(s)
3: else
4: n← N/2

5:

(
vke
vko

)
← 1

2

(
I I

D∗n −D∗n

)
vk,

(
s1

s2

)
= s

6: se ← (W1 +W2)+
[
W1s1 +W2s2 + (W2 −W1)Dnv

k
o

]
7: vk+1

e ← cdfft(vke ,W1 +W2, se, n)

8: so ← (W1 +W2)+D∗n
[
W1s1 −W2s2 + (W2 −W1)vk+1

e

]
9: vk+1

o ← cdfft(vko ,W1 +W2, so, n)

10: return

(
I Dn

I −Dn

)(
vk+1
e

vk+1
o

)
11: end if

The above algorithm requires no explicit FFT’s, and runs in O(N logN) opera-
tions. Almost all of the computation takes place in lines 6 and 8, where we build
the vectors se and so. Furthermore, those formulas individually represent only a
small amount of computation. Each of se and so are formed using a simple linear
combination of 3 vectors, and the coefficients of this linear combination may be
precomputed only once.

4. Block Decomposition in a Hadamard Basis

In this section we consider block decompositions for problems of the form

(64) argmin
u∈CN

N−1∑
j=0

φ(uj) +
1

2
‖RHNu− s‖2.

Note that the Sylvester decomposition for Hadamard matrices (35) is structurally
almost identical to the Cooley Tukey decomposition for Fourier Matrices (31). For
this reason, Hadamard matrices admit a block decomposition very similar to that
for the Fourier basis. This decomposition is elaborated in the theorem below:
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Theorem 3. Let W1,W2 ∈ Rn×n be nonnegative diagonal matrices, and let s1, s2 ∈
C. Let

W =

(
W1 0
0 W2

)
,

s =

(
s1

s2

)
, u =

(
u1

u2

)
F (u) = ‖H2nu− s‖2W .

Then F can be rewritten in the following two equivalent forms:

F (u1, u2) = ‖Hu1 − ŝ1||2W1+W2
+ C1,(65)

F (u1, u2) = ‖Hu2 − ŝ2||2W1+W2
+ C2,(66)

where C1 and C2 are constants not depending on u1 and u1, respectively, and

ŝ1 = (W1 +W2)+ [W1s1 +W2s2 + (W2 −W1)Hnu2] ,(67)

ŝ2 = (W1 +W2)+ [W1s1 −W2s2 + (W2 −W1)Hnu1] .(68)

Proof. This proof proceeds similarly to that of theorem 2. We first note that for
any a, b ∈ Cn we have

(69) (W1 +W2)(W1 +W2)+(W1a+W2b) = W1a+W2b.

Now, using the Sylvester decomposition, we can rewrite

F (u) = ‖Hnu1 +Hnu2 − s1‖2W1
+ ‖Hnu1 −Hnu2 − s2‖2W2

(70)

= ‖Hnu1‖2W1
− 2
〈
Hnu1,W1(s1 −Hnu2)

〉
(71)

+ ‖Hnu1||2W2
− 2
〈
Hnu1,W2(s2 +Hnu2)

〉
+ C ′1(72)

= ‖Hnu1||2W1+W2
− 2
〈
Hnu1, (W1 +W2)ŝ1

〉
+ C ′1,(73)

which is equivalent to (65). Note that equation (73) follows from (69).
Similarly,

F (u) = ‖Hnu2 + (Hnu1 − s1)‖2W1
+ ‖Hnu2 − (Hnu1 − s2)‖2W2

(74)

= ‖Hnu2‖W1+W2 − 2
〈
Hnu2,W1(s1 −Hnu1)

〉
(75)

− 2
〈
Hnu2,W2(−s2 +Hnu1)

〉
+ C ′2(76)

= ||Hnu2||W1+W2 − 2
〈
Hnu2, (W1 +W2)ŝ2

〉
+ C ′2,(77)

which is equivalent to (66). �

Using this block decomposition, one may immediately apply the recursive ap-
proach of section 3.3 and arrive at an algorithm nearly identical to algorithm 9.
However, as discussed above, this approach is slow because each recursive sub-step
would require a call to the fast Hadamard transform. This problem can be solved
by operating on the Hadamard transform of u, rather than u itself.

Following the approach of section 3.3, we make the substitution v = Hnu. We
decompose v into its upper and lower halves

v =

(
v1

v2

)
.
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The following trivial identities follow immediately from the Sylvester factorization
(35):

v̂1 := Hnu1 =
1

2
(v1 + v2)

v̂2 := Hnu2 =
1

2
(v1 − v2)

v =

(
v̂1 + v̂2

v̂1 − v̂2

)
Using these identities, we can derive the Hadamard analog of algorithm 10:

Algorithm 11 : cdhadamard(v,W, s,N)

1: if N = 1 then
2: return Prox(W−1φ)(s)
3: end if
4: n = N/2
5: v̂1 = 1

2 (v1 + v2)

6: v̂2 = 1
2 (v1 − v2)

7: ŝ1 = (W1 +W2)+ [W1s1 +W2s2 + (W2 −W1)v̂2]
8: Recursive call: v̂1 = cdhadamard(v̂1,W1 +W2, ŝ1, n)
9: ŝ2 = (W1 +W2)+ [W1s1 −W2s2 + (W2 −W1)v̂1]

10: Recursive call: v̂2 = cdhadamard(v̂2,W1 +W2, ŝ2, n)

11: v =

(
v̂1 + v̂2

v̂1 − v̂2

)
12: return v

The above algorithm requires no explicit Hadamard transforms, and runs in
O(N logN) operations. Almost all of the computation takes place in steps 7 and
9, where we build the vectors ŝ1 and ŝ2, each of which is formed using a simple
linear combination of 3 vectors, and the coefficients of this linear combination may
be precomputed.

Note that algorithm 11 returns the vector v = HNu, rather then the vector u
itself. The above algorithm is iterated until convergence, and then the solution is
recovered by computing

u∗ = H−1
N v∗ =

1

N
HNv

∗.

5. Numerical Experiments

To demonstrate the performance of the CD algorithm, we compare it to FBS,
FISTA, CGIST, and NESTA. We use two types of test problems: compressed sens-
ing problems, and deconvolution-type problems.

The first set of problems are conventional compressed sensing problems. We wish
to recover a K-sparse signal of length N from M measurements in an orthogonal
basis. For each trial, a sparse signal of length N is generated by randomly choosing
K non-zero elements of unit intensity. Signals are recovered using an `1-regularized
problem of the form (14), with λ = 5N/M for the Fourier basis, and λ = 5/M for the
Hadamard basis. Note the difference in scaling here is because the Fourier transform
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Figure 1. Sample convergence curves for (left) sparse reconstruc-
tion of a signal from 180 of 512 Fourier modes, and (right) decon-
volution of a 5-sparse signal that has been blurred with a Gaussian
of radius 5.

is unitary, while the Hadamard transform has norm
√
N. The measurements are

contaminated with random Gaussian noise before signal recovery.
The second test problem we consider is a sparse deconvolution problem. In this

case, the vector u∗ represents the summation of K delta-function “sources” with
unknown locations. The locations of these sources is chosen at random on each
trial. The observed data, s, represents the summation of these delta functions after
blurring with a Gaussian kernel. The goal of this problem is to ‘reverse the heat
equation,’ and find the location of the unknown sources. The vector R is computed
using the formula R = FN (gσ) where g represents a discrete Gaussian kernel with
variance σ2 pixels. When a Fourier basis is used, the matrix RFN represents the
blurring operator. This deconvolution problem is regularized with an `1 penalty to
ensure sparse results. The regularization parameter was chosen to be λ = 5/σblur.

Efficiency results averaged over 100 trials are reported in Table 1 and 2. For
each problem instance and algorithm, we report both runtime (in milliseconds) and
the number of Fourier/Hadamard transforms needed. For purposes of counting fast
transforms, each iteration of the CD method is counted as one transform. Each
of the FBS, FISTA, CGIST, and CD methods were run until the current iterate
satisfied the condition ‖uk − u∗‖/K < 10−3.

Unlike the other algorithms, NESTA UP solves a regularized version of (14),
rather than the original non-differentiable problem. Consequently, we found that
we could not identify a choice of parameters for NESTA UP that reliably achieved
the desired level of precision. For this reason, NESTA UP was run with its default
parameter settings, and the final value of the regularization parameter was 10−3.
With these parameter settings, NESTA UP generated somewhat less accurate re-
sults than the other methods; the average 2-norm error of the final NESTA solution
for the first Hadamard problem in table 2 was ‖uk − u∗‖ < 0.0248. This code did
not converge reliably for deconvolution problems, and so results for this algorithm
are only recorded for compressed sensing.
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Table 1. Fourier Compressed Sensing Results. For each algo-
rithm we report runtime (ms) / transform count averaged over 100
random trials.

N M K σnoise FBS FISTA CGIST NESTA CD
512 90 10 1e-3 8.58/90 17.3/171 6.07/36.9 49.2/305 0.745/7.9
512 180 10 1e-3 3.58/30.4 7.63/73.8 5.24/27.3 42.6/238 0.522/5.3
512 90 20 1e-3 24.1/270 34.1/361 15.3/99 68.2/440 1.85/22
512 180 20 1e-3 4.44/43.8 10.0/103 6.00/33.9 40.6/248 0.731/7.7
512 90 10 1e-2 9.91/107 18.3/183 6.61/40.5 53.3/337 0.845/8.43
512 180 10 1e-2 3.20/30.2 7.27/73.4 4.90/27.1 40.4/237 0.516/5.12
512 90 20 1e-2 24.2/267 33.5/353 14.2/95.7 66.0/432 1.84/21.7
512 180 20 1e-2 4.39/43.7 10.1/102 5.86/33.9 40.5/248 0.738/7.56
2048 110 10 1e-3 67.3/344 103/503 18.0/56.6 128.2/460 3.67/8.94
2048 220 10 1e-3 24.9/122 48.4/232 11.9/35.6 96.2/339 2.41/5.82
2048 110 20 1e-3 233/1236 219/1096 59.1/183 185/682 12.3/30.9
2048 220 20 1e-3 35.7/177 67.1/330 14.3/42.9 107/383 3.47/8.76
2048 110 10 1e-2 75.1/390 103/512 18.1/57.3 118/427 3.96/9.88
2048 220 10 1e-2 25.2/123 49.0/234 12.0/35.9 99.8/351 2.42/5.76
2048 110 20 1e-2 289/1548 263/1324 80.0/248 180/663 14.7/38.0
2048 220 20 1e-2 36.7/183 68.2/331 14.4/43.6 106/376 3.62/9.06

Table 2. Hadamard Compressed Sensing Results. For each algo-
rithm we report runtime (ms) / transform count averaged over 100
random trials.

N M K σnoise FBS FISTA CGIST NESTA CD
512 90 10 1e-3 9.15/150 13.3/209 7.08/51.2 47.3/371 0.471/12.4
512 180 10 1e-3 2.23/32.5 4.83/76.8 4.07/24.4 33.5/240 0.237/5.63
512 90 20 1e-3 75.4/1339 64.6/1076 23.3/169 74.3/594 3.51/107
512 180 20 1e-3 4.04/53.5 8.22/115 5.89/34.7 41.9/270 0.447/9.05
512 90 10 1e-2 8.78/126 10.3/144 7.14/47.1 56.5/375 0.503/10.7
512 180 10 1e-2 2.26/26 4.26/53.0 3.92/22.4 39.2/242 0.242/4.75
512 90 20 1e-2 64.8/1099 43.9/680 22.0/157 82.6/621 3.17/90.7
512 180 20 1e-2 3.53/44.5 6.46/84.5 5.35/32.3 43.4/272 0.397/7.85
2048 110 10 1e-3 70.3/656 67.4/600 15.4/80.6 101/584 2.41/16.5
2048 220 10 1e-3 15.4/137 28.5/240 8.76/40.7 64.1/357 1.08/6.6
2048 110 20 1e-3 850/8139 589/5284 84.3/374 136/794 27.5/198
2048 220 20 1e-3 29.7/263 44.3/380 12.3/58.9 79.0/441 1.94/12.8
2048 110 10 1e-2 62.1/538 48.1/391 15.5/75.7 108/575 2.31/14.3
2048 220 10 1e-2 13.2/108 21.1/166 8.89/39.2 72.3/361 1.06/5.59
2048 110 20 1e-2 698/6445 343/2951 73.0/327 140/791 23.0/160
2048 220 20 1e-2 24.9/220 31.8/271 11.3/55.8 79.5/443 1.72/11.3

From the results in Tables 1 and 2, it is clear that the primary advantage of the
coordinate descent (CD) method is speed. For the compressed sensing problems,
it was observed that the CD method was approximately one order of magnitude
faster than the second fastest method. For small, well-conditioned problems both
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Table 3. Fourier Deconvolution Results. For each algorithm we
report runtime (ms) / transform count averaged over 100 random
trials.

N σblur FBS FISTA CGIST CD
128 2 33.9/714 8.81/137 13.6/129 2.21/127
128 5 1863/39902 117/1990 148/1381 85/5173
128 10 39114/717164 1443/24945 748/7205 1108/66207
128 20 51843/999998 21250/388882 1406/14783 9270/584209
512 2 22.6/307 8.23/90.5 12.3/86.8 3.86/48.5
512 5 527/6777 49.2/523 96.3/611 55.5/644
512 10 15738/201612 410/4925 397/2720 1718/22328
512 20 62425/803883 3617/43781 1226/8626 7091/90727
2048 2 35.6/193 17.3/82.1 25.8/82.4 10.5/28.1
2048 5 1144/6521 92/462 160/511 296/808
2048 10 10724/62242 298/1517 482/1512 1980/5428
2048 20 71404/417653 1236/6387 1197/3768 6781/18827

CGIST and FBS were competitive for second fastest method. However, for less
well conditioned problems (i.e. problems with relatively small M) or larger test
problems CGIST was reliably the second fastest method. Interestingly, for the
compressed problems, FISTA is not always faster than FBS. The advantages of
FISTA seem to become more apparent on larger problems, and problems with low
M/N ratio.

Another significant advantage of the CD method is that, unlike the FBS algo-
rithm, it does not require the user to choose a time step and it has no stability
restriction.

One notable disadvantage of the CD scheme is that its implementation is rel-
atively complex when compared to FBS or FISTA. The FBS-based methods are
extremely easy to implement in many languages (for example, Matlab, C or C++)
using well-optimized implementations of the fast Fourier transform such as FFTW.
In contrast, our CD methods cannot directly use such components. In order to com-
pete with such efficient codes, the decomposition schemes must be implemented in
a language such as C or C++ which enables fast low-level array access.

6. Conclusion

We introduce a multi-level decomposition scheme for solving basis pursuit prob-
lems in a Fourier and Hadamard basis. The iterates generated by this scheme are
equivalent to the coordinate-descent (CD) method for basis pursuit. Using four dif-
ferent test problems, the CD algorithm is compared to 4 other common algorithms
for sparse signal recovery. For most of the problems considered here, runtimes for
the CD algorithm are faster than conventional methods.
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