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Abstract—In this paper, we propose a new global optimization-
based approach to contour evolution, with or without the novel
variational shape constraint that imposes a generic star shape
using a continuous max-flow framework. In theory, the proposed
continuous max-flow model provides a dual perspective to the
reduced continuous min-cut formulation of the contour evolution
at each discrete time frame, which proves the global optimality of
the discrete time contour propagation. The variational analysis
of the flow conservation condition of the continuous max-flow
model shows that the proposed approach does provide a fully
time implicit solver to the contour convection PDE, which allows
a large time-step size to significantly speed up the contour
evolution. For the contour evolution with a star shape prior,
a novel variational representation of the star shape is integrated
to the continuous max-flow-based scheme by introducing an
additional spatial flow. In numerics, the proposed continuous
max-flow formulations lead to efficient duality-based algorithms
using modern convex optimization theories. Our approach is
implemented in a GPU, which significantly improves computing
efficiency. We show the high performance of our approach in
terms of speed and reliability to both poor initialization and large
evolution step-size, using numerous experiments on synthetic,
real-world and 2D/3D medical images.

Index Terms—Image segmentation, active contour, level set,
convex optimization, primal-dual optimization

I. INTRODUCTION

ANY applications of image processing and computer

vision can be modeled and solved by the evolution
of contours, where the given 2-D curve or 3-D surface C !
gradually propagates to objects of interest in images subject
to a priori image information and optimization criteria. One
of the well-known techniques is the edge-based active contour
introduced by Kass, Witkin and Terzopoulos [1]. Following
[1], Kichenassamy et al. [2] and Casselles et al. [3] proposed
to evolve the contour C by gradually minimizing a geometrical
function, i.e. the edge weighted length

min / g(s)ds (1)
¢ Jac

where ¢(s) is given by some image indicator function. Many
practical experiments show the effectiveness of such theory
of gradually evolving the contour to the objects’ boundary.
However, only limited local image edge information is consid-
ered in such contour propagation process, where the evolving
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contour can be easily trapped in an undesirable minimum
due to false local edge information, image noise or texture.
Moreover, the performance of the computational result is
highly sensitive to the choice of the initial contour: a poor
initialization results in an unsatisfactory result.

On the other hand, the region-based active contours [4], [5],
[6] incorporate image information associated to the regions
inside and outside of the evolving contour, especially some
energies using the global statistical image features [5], [7], [8]
or shapes [9], [10], [11]. These methods are robust to image
noise and intensity inhomogeneities, therefore overcome the
major drawbacks of the standard edge-based active contour
approaches. The level set method introduced by Osher &
Sethian [12] provides an efficient way to embed region-based
information into the contour propagation process with the
ability to change topology of the contour. We refer the readers
o [13], [6] for a wide spectrum of publications about level
set methods. However, the level set-based methods rely on a
local optimization scheme by explicitly solving the associated
convection PDE for which the CFL condition restricts the
discrete propagation time step-size [6]. Moreover, the standard
level set motion driven by the mean-curvature requires an ac-
curate approximation to the non-smooth high-order derivatives
[4], [14], which results in a highly complicated numerical
implementation and, in turn, constrains the step-size of each
iteration to be small enough to achieve numerical stability of
convergence. In general, such relatively small time step-size
limits efficiency of the level set methods.

A. Motivations

Some interesting global optimization approaches to contour
evolution were proposed, which are different from the local
optimization based active contour schemes in both theory and
algorithmic implementation.

Boykov et al. [15] proposed the distance map w.r.t. the
current contour as the cost functions of propagating the
contour inside or outside of the current contour and formulate
the discrete time contour evolution as a classical min-cut
problem. The global optimality of the computed min-cut
solution implies that the new contour position is globally
optimal. In fact, the same theory was first introduced and
studied by [16], [17] in early 90s, which proved that, given
the outer force f and mean-curvature x, the mean-curvature
flow problem:

atC = —H—f—f (2)

can be approximated iteratively by the time-discrete solution
Ci — Ciip, a8 h — 0, and Cpyj, minimizes the following
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energy [17]:
1
min ds +/ fdist(:(:,Ct)dm—/fda:. 3)
¢ Jac AN c

It should be noted that Chambolle [18] also studied the
mean-curvature driven motion (2) of contours with f(z) =0
and used the distance function as the displacement reference
at each discrete time evolution. Chambolle [18] showed that
at each discrete time frame, the next contour position Cip,
can be obtained by the zero level set of the total-variation
regularized signed distance w.r.t. C;, such that for any pixel x
at the computed boundary of C;p, whose projection on the
boundary of C; is x;, one has

r =z — hi(z)n(z,), 4)

where n(z;) is the unit outward normal to C; at x;. (4) exactly
corresponds to the equation of mean-curvature motions (2)
when A — 0. Bresson & Chan [19] extended the theoretical
work of [18] to the case of geodesic contour evolution along
with region-based forces. Chambolle & Darbon [20] followed
the same theory proposed in [18] and developed an efficient
graph cut-based numerical solver.

Motivated by the works of [16], [17], [15], [18], we propose
a global optimization-based approach using a continuous max-
flow framework to efficiently evolve a contour to its globally
optimal position at each discrete time frame. More precisely,
given the current contour C; at time ¢, we propagate C; to
its new position C;, at the next time frame ¢ + h where the
new contour C,, optimizes the following energy globally and
exactly:

rcnelg {/c+ ct(z)dx + /_ c_(x)dac} + /acg(s)ds )

where £ is some constraint set related to the prior information
on contours, e.g. the star shape constraint discussed in this
paper; CT and C~ are the two distinct regions associated
to deformations: region expansion and region shrinkage (see
Sec. II for details). We demonstrate that (5) can be equiva-
lently reformulated as a spatially continuous min-cut problem
[21]; then solved globally and exactly by means of convex
relaxation, for which efficient numerical solvers exist [22],
[23], [24]. In this paper, we focus on the continuous max-flow
based approach proposed by Yuan et al. [24], and develop new
results in both theory and algorithm together with its novel
integration of the star shape prior.

B. Contributions

We summarize our main contributions along with major
differences from previous works as follows:

We develop a new global optimization-based approach to
the contour evolution, with or without a novel variational
shape constraint to the star shape discussed in Sec. III-A,
using the proposed continuous max-flow framework. More
precisely, we formulate evolving the given contour at each
discrete time frame by achieving the minimum cost of region
changes, which can be identically modeled as a spatially
continuous min-cut problem with or without the proposed
variational star shape constraint. To this end, we introduce

the continuous max-flow model which provides an elegant
dual perspective to the convex relaxed continuous min-cut
formulation and proves the global optimality of the computed
continuous min-cut solution by means of convex relaxation,
i.e. the contour can be moved to its globally optimal position
at each discrete time. The optimality analysis of the flow
conservation condition of the continuous max-flow model, i.e.
flow-in is pixel-wise balanced by flow-out, proves that the
proposed continuous max-flow based approach does provide
a fully time implicit solver to the contour convection PDE,
which allows a large time-step size to significantly speed up
the contour evolution. The revealed connection between the
time implicit contour propagation PDE and the classical flow
conservation constraint is new in theory. For the evolution of
the star shaped contours, a novel variational representation of
the star shape is introduced, which can be integrated to the
continuous max-flow based approach to contour propagation
by simply introducing an additional spatial flow. Likewise,
the global optimality of such star shaped contour evolution at
each discrete time frame can also be demonstrated under the
proposed continuous max-flow perspective.

In numerics, the introduced continuous max-flow models
can be directly applied to derive efficient duality-based algo-
rithms using modern convex optimization theories, where the
nonlinear total-variation function and the star shape constraint
in the continuous min-cut problems are properly encoded
by the projections to simple convex sets respectively. Such
continuous max-flow based algorithms can easily be imple-
mented in a modern parallel computing platform, e.g. a GPU
etc, which greatly speeds up the algorithms and achieves a
high computing performance in practice. We show the per-
formance of the proposed global optimization-based contour
evolution approaches, in terms of efficiency and reliability to
both poor initialization and large evolution step-size through
numerous experiments on synthetic images, real-world images,
and 2D/3D medical images.

In contrast to the conventional local optimization-based
contour evolution schemes, our proposed global optimization-
based approach has the following advantages: it evolves the
contour in a fully time implicit way and allows large evo-
lution step-size, which significantly reduce the total number
of discrete time propagation steps and speeds up the con-
tour evolution; only the first-order derivatives appear in the
global optimization-based contour evolution procedure at each
discrete time step, which greatly simplifies the numerical
implementation; in addition, its inherent flow-maximization
style enables the integration of prior information, e.g. the
variational shape descriptor (star shape) in this paper.

Comparing to the graph cut-based contour evolution method
proposed in [15], we formulate and solve the contour evolution
in the spatially continuous setting by the proposed continuous
max-flow based approach. Our method avoids metrication arti-
facts that are present in graph cut-based approaches [25], [26],
see Fig. 3(c) in Sec. V-A, and can obtain a sub-pixel accuracy
of the contour position. In particular, a variational analysis
of the global optimality to the proposed continuous max-flow
model shows the close connection between the fully time
implicit scheme to contour convection and the classical flow
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conservation condition. According to the authors’ knowledge,
this is not available by the theory of graph cuts. The continuous
max-flow algorithms implemented in a GPU achieves a better
numerical performance in terms of efficiency and memory
load, which is demonstrated by the experiment, shown in
in Sec. V-A, of the 3D surface motion driven by its mean-
curvature.

Finally, we address the differences of our approach from
other interesting works proposed by [18] and [19], where
[18] formulates mean-curvature driven evolution using the
zero level set of the total-variation regularized signed distance
function, and [19] extends it to region-based geodesic contour
evolution. Our proposed continuous max-flow-based approach
is distinct from such works in both theory and numerics;
essentially, our approach is based on a flow-maximization
framework which allows coupling of the generic shape con-
straint to the contour evolution such as the star shape prior
studied in this paper. According to our understanding, this is
not achievable by the methods proposed in [18] and [19].

II. GLOBAL OPTIMALITY OF CONTOUR EVOLUTION: A
CONTINUOUS MAX-FLOW PERSPECTIVE

Fig. 1. 1(a): Contour evolution; 1(b): spatially continuous flow-maximization
configuration; 1(c): contour movement; from z; to z, the distance is ¢(x).

In this section, we first introduce the variational principle
of achieving the minimum cost of label/region changes to
the discrete time evolution of contours, which can be formu-
lated as the min-cut problem with the spatially continuous
setting, i.e. the continuous min-cut problem. With helps of
the introduced continuous max-flow model, we demonstrate
the proposed continuous min-cut model of contour evolution
can be solved globally and exactly by means of convex
relaxation, i.e. at each discrete time frame, the current contour
can be moved to its globally optimal position. Moreover,
through the variational analysis of the continuous max-flow
model, the classical flow conservation condition implies that
the computed global optimum of the formulated continuous
min-cut problem does provide a fully time implicit evolution
scheme to the contour convection PDE.

A. Global Optimization Based Contour Evolution

1) Variational Model: For the given contour C; at time ¢
and the new contour C;,;, at the next time frame ¢ + h, let
ut(x) € {0, 1} be the labeling function of the enclosed region
of C; such that

wi(z) = { é

where x is inside C;
otherwise

; (6)

and us4p(x) € {0, 1} is the labeling function of Cyyp, at t+h.

Inspired by the work [17], we define the cost functions
¢t(x) and ¢~ (x) w.rt two distinct regions C* and C~, see
Fig. 1, where:

1) C* indicates the region expansion w.r.t. C;: for Vo € CT,

it is initially outside C; at time ¢, and "jumps’ to be inside

Ciyn at t+ h; for such a ’jump’, it pays the cost ¢t (x).

2) C~ indicates the region shrinkage w.r.t. C;: for Vo € C,

it is initially inside C; at ¢, and ‘jumps’ to be outside

Ctyp at t+ h; for such a “jump’, it pays the cost ¢~ (x).

We propose to propagate the contour C; to its new position
C¢yp, with the minimum total cost of such ’jumps’ or region
changes; which amounts to minimizing the following energy:

min/ c+(x)dx+/ c‘(m)dw—i—/ g(s)ds, (7)
¢ Jer - ac

where g(s) = g(|VI(s)|), Vs € OC, is defined by the image
edge indicator function’ and encodes the energy of weighted
length (geodesic active contour) [3].

Clearly, when c¢*(x) and ¢~ (x) are set to be the distance
between x to the current contour C:, i.e. dist(x,C:), and
g(x) = 1 for Vo € Q, the proposed variational model (7)
coincides with the mean-curvature driven contour evolution
equation (3) with vanishing outer force f(x) = 0, proposed in
[16], [17], [15]. In general, the cost functions ¢ (z) and ¢~ (z)
are data-associated, depending on the specified application: for
example, ¢ (z) and ¢~ (z) can be defined through the first-
order variation of the distribution matching function, e.g. the
Bhattacharyya distance (see Sec. V for more details).

2) Spatially Continuous Min-Cut Model: Now we show (7)
can be equally formulated as a spatially continuous min-cut

problem. To achieve this, we define the cost functions D1 (z)
and Ds(z):

| ¢ (z), wherez €,
Dy(x) = { 0, otherwise ®)
and
[ ¢"(x), wherex ¢ Cs
Dy(z) = { 0, otherwise ©)

which can be interpreted by the energies w.r.t. label assign-
ments such that:

« For any pixel z at time ¢+ h, to assign the label 0 to z, it
either pays the cost ¢~ (x) for x € C; whose initial label
is 1 and changes to be 0 at ¢t + h, or pays 0 for z ¢ C;
whose initial label is 0 and does not change at ¢+ h. This
exactly gives the function D1 (x).

o For any pixel x at time ¢+ h, to assign the label 1 to z, it
either pays the cost ¢ (x) for x ¢ C, whose initial label
is 0 and changes to be 1 at t + h, or pays 0 for € C;
whose initial label is 1 and does not change at ¢+ h. This
exactly gives the function Dy(z).

2In this paper, we consider

g(IVI(2)]) = 1 + 2 exp(—y3 [VI(z)])

where 12,3 > 0.
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In other words, for the pixels which stay with their original
labels, no cost is paid; costs only occur to the pixels which
change their status.

By such label assignment costs D;(z) and Dy(x), the
proposed optimization model (7) to contour evolution can be
equally reformulated as the continuous min-cut problem:

min

l—u,D , D Vu| dz, (10
u(z)€{0,1} < u 1>+<U 2>+‘/Qg(x)| u| i ( )

where the last weighted total-variation function formulates the
weighted length term in (7) [27], [28].

3) Convex Relaxation and Continuous Max-Flow Model:
Now we study the convex relaxation model to (10), i.e.

min

(1 —w,D1) + (u,D2) + /g(m) |Vu| de (11)
u(z)€[0,1] Q

where the binary constraint u(z) € {0, 1} in (10) is relaxed to
u(zx) € [0, 1] such that (11) is reduced to a convex optimization
problem. We call (11) the convex relaxed min-cut model.

[21], [29] proved that, for g(x) = « is constant, the convex
relaxed min-cut model (11) solves the binary constrained
continuous min-cut problem (10) globally and exactly. In this
work, we study the exactness of the general case of (11), for
which g(x) is not constant, through its dual formulation, i.e.
the continuous max-flow model.

To motivate the continuous max-flow model proposed in
[30], we first introduce the spatially continuous flow configu-
ration (see Fig. 1(b) for illustration): two extra nodes s and t
are added as the source and sink terminals; we link s to each
pixel © € Q) and link x to t, see Fig. 1(b); we also define the
source flow ps(x) which is directed from s to x, the sink flow
pt(x) which directed from Yz € Q to t; moreover, there is
the spatial flow p(x) around .

With such flow settings, the continuous max-flow model is
proposed by maximizing the total flow from the source s:

ps dx
pa:pep Jq,

max

12)

subject to the constraints on flow capacity and conservation:

ps(z) < Di(x), pe(x) < Da(x), VoeQ; (13)
Ip(z)| < g(x), VreQ; (14)
divp(z) — ps(z) + pe(x) = 0, VeeQ. (15)

As shown in [30] and [24], through simple variational
analysis, we can prove

Proposition 1: The continuous max-flow model (12) is dual
to the convex relaxed min-cut formulation (11).

Proof: By introducing the multiplier function u(x) to the
linear equality of the flow conservation condition (15), we
have the equivalent primal-dual formulation to the continuous
max-flow model (12):

min max / ps(x) dx + (u,divp — ps + pt) (16)
U Ps:Pt:P JO
subject to the flow capacity conditions (13) and (14).
Rearranging (16) gives
min max (1 —wu,ps) + (u, pt) + (u, div p) (17)

U Ps,Pt,P

subject to the flow capacity constraints (13) and (14).

By [31], we see that the min and max operations can be
interchanged; hence we can first maximize (17) over the flow
variables p,, p, and p. Following the variational analysis in
[30] and [24], the maximization of (17) over p(x) < Di(x)
and p;(x) < Dso(x) essentially gives rise to

u(x) € [0,1], Vx € Q,

the maximization over the spatial flow p(x) follows

(u,divp) = /Qg(x)\Vu| dx .

max
[p(z)|<g(z)

By the above formulations, the maximization of (17) over
ps(x), pe(x) and p(z) amounts to the convex relaxed min-cut
problem (11). Therefore, Prop. 1 is proved. [ ]

4) Globally Optimal Contour Evolution: The dual-
ity/equivalence between the continuous max-flow model (12)
and the convex relaxed min-cut model (11) proposed in Prop.
1 implies that we can solve (11) by tackling the associated
maximum flow model (12), which actually lays down the basis
of the introduced efficient algorithms in Sec. IV.

Moreover, with helps of (12), we can also prove the exact-
ness of the convex relaxed min-cut model (11) such that:

Proposition 2: Let u*(x) be one global optimum of (11),
its thresholding u‘(z) € {0, 1}:

ul(z) = { 0

for any ¢ € [0,1), solves the original binary-constrained
continuous min-cut problem (10) globally and exactly, i.e. the
function u‘(x) € {0,1} indicates the threshholded level set
S¢ which provides the global optimum contour to (7).

Proof: Let (p%,p;,p*) and u* be the optimal primal-
dual pair of the equivalent primal-dual model (16). Therefore,
(p%, pr,p*) optimizes the continuous max-flow problem (12)
and u*(x) optimizes its dual problem (11); both problems have
the same energy by [31], such that the minimum energy of (11)

equals to
/ psde.
Q

For the max-flow problem (12), the flow conservation
condition (15) is satisfied, i.e.

(divp*—pi—i—pf)(x) =0, VzeQ.

when u*(x) > £

when u*(x) <€ (18)

(19)

For any given ¢ € [0,1), let S* be the thresholded level set
of u*(x) and u’(x) € {0,1} be its indicator function by (54).

For any pixel z € Q\S*, i.e. where u*(z) < £ < 1, it is
easy to see, by the variation of wu, that to reach the maximum
of (17) over u*(z), we have

pi(x) = Di(z), Vxe Q\Sz; (20)
and, for any pixel = € S%, i.e. u*(x) > £ > 0, we have
pi(z) = Dy(z), VaeS*. (1)

Hence, by the flow conservation condition (19), we have

pi(x) = (divp* + Dg) (x), VzeSt. (22)
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The proof of Prop. 1 shows that the energy of the max-
flow model (12) is equivalent to the energy of the primal-dual
model (17), in turn, the energy of the convex relaxed min-cut
(11). Therefore, by (20) and (22), the total energy of (10) for
each level set S¢, is

/ prdx :/ Dlder/ (D2+divp*) dx
Q Q\S5¢ st

:/ Dy dx + D, der/ g(s)ds
Q\S¢ s5¢ ast

where we observe
divp*dx = / g(s)ds.
S¢ a8t

Therefore, we have
/ pidz = (1—u’,Dy)+ (u’,Ds) +/ g(z) |Vu'| do
Q Q

where the max-flow energy at the left-hand also gives the
minimum energy of (11). In other words, the binary function
uf(z) € {0,1}, which is the indicator function of the region
S¢, solves the nonconvex min-cut problem (10) globally, i.e.
S* provides a global optimum to (7)! Hence Prop. 2 is proved.

|

B. Fully Time Implicit Contour Evolution

Observe (19)-(21) given in the proof of Prop. 2, we have
Proposition 3: For the global optimum w*(x) of (11) and
any £ € [0,1), let u*(z) € {0,1}

u(z) = { o

be the indicator function of the thresholded level set S¢ C Q;
then at each pixel z € 85%, we have

when u*(x) > ¢

when u*(z) < /¢ 23)

uﬁ
o(2)s4() + Vg(z) - (é—uq) ~Di(a) 4+ Do) = 0 (24)
where —y
K (z) = div (W) .

Proof: Through the facts (19)-(21), for each pixel = at
the boundary 95, we have

divp*(z) — Di(x) + Da(z) = 0.

Actually, divp*(xz) is the first-order variation of the
functional [ g(z)|Vu| dz and p* maximizes the functional
[ p(z)Vudz over |p(z)| < g(x) which implies at each pixel
r € 0S°

By Vut
pi(r) = g(x)|VuZ|
Then
ul
div p*(z) = g(x)x*(z) + Vg(2) ( v 7 )
[Vu'|
where Vi
’ié(‘r) =div (‘vuq)

Therefore, Prop. 3 is proved. ]

Through Prop. 3, at each globally optimal position, each
pixel at the contour satisfies (24) which provides the dynamics
of contour evolution during each discrete time frame. In the
following section, we apply (24) to analyze the movement of
contours at each discrete time frame and, by (24), we show
the computed globally optimal contour C from u‘(z) € {0,1}
actually provides a fully time implicit evolution scheme. As
shown in the proof, it is interesting to see that (24) is directly
related to the flow conservation condition (15) of the proposed
continuous max-flow model (12)!

Now we apply (24) to analyze some typical types of contour
evolutions in image processing.

1) Mean-Curvature Driven Contour Evolution: For the
current contour C; at time ¢, let g(x) = 1, both ¢ (z) and
¢ (x) be linear to the distance from z to its boundary 9C;,
ie.

¢ (z) = ct(z) = dist(x,0C;) /h (25)
where h is the discrete time gap.
By (8) and (9), we set
| dist(x,0C;)/h, where z € C,
Dy(x) = { 0, otherwise (26)
and
| dist(x,0C)/h, where x ¢ C,
Dy(z) = { 0, otherwise @7

Then in view of Prop. 2 and Prop. 3, we have the following
corollary

Corollary 4: Given g(x) = 1 and the region-deformation
cost functions ¢ (z) and ¢~ (x) as (25), for each discrete time
frame from ¢ to t + h, the current contour C; can evolve to
its globally optimal position C;y,. Moreover, at each pixel
x € OCyyp, its motion satisfies:

hr(x)+ ¢(x) =0 (28)
where ¢(z) is the signed distance function such that
| —dist(x,0C;), where z €,
@) = { dist(x,0C;),  otherwise 29

The proof of the first part is obtained from Prop. 2. The mean-
curvature motion equation (28) can be proved using (24) with
g(x) =1 and (26)-(27).

The signed distance function ¢(z) (29) measures how far the
given pixel z; € OC; moves to its new position at © € 9Cy4p,
along its outward normal n(z;), see Fig. 1(c). Then it follows
from (28) that

x =z — he(z)n(z) .
By this fact, we see that the computed new contour Cyp, is not

only globally optimal, but also providing a fully time implicit
scheme to the mean-curvature contour motion.
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2) Geodesic Contour Evolution: For the geodesic contour
evolution, where g(z) is given by some image edge indicator
function, let the region deformation cost functions ¢*(z) and
¢~ (x) be given by the associated distance function (25) which
defines the min-cut costs Di(x) and Dy(z), see (26)-(27).

Then we have

Corollary 5: Given the image edge indicator function g(x)
and the region-deformation cost functions ¢t (z) and ¢~ (z) as
(25), for each discrete time frame from ¢ to ¢ + h, the current
contour C; can evolve to its globally optimal position Cyp,.
Moreover, at each pixel © € 9C;p, its motion satisfies:

h (9()r(2) + Vgla) - (o)) +6(x) = 0

Va (30)

where ¢(z) is the signed distance (29) and % is the outward
normal vector at x.

The proof of Cor. 5 directly follows from Prop. 2 and Prop.
3.

As the analysis in Sec.II-B1, (30) provides the implicit time-
discrete geodesic motion equation such that for the given pixel
x € OCy, it moves to its new position at z € JC.yj, from the
time instance ¢ to t + h along its outward normal n(z;) and

v = 0 = 1 (g(on(o) + V(o) - () ).

3) Active Contour with Region-Based Force: In practice,
the contour is driven by some region-based information be-
sides the curvature function. For example, Chan and Vese [4]
proposed the difference between the intensity models of inside
and outside regions, i.e.

f@) = 7((in = 1)) = (ot = 1(2))?)

where 11;,, and fi,,+ provide the mean intensity values of inside
and outside of the current contour C; and 7 > 0 is the weight
parameter.

For the contour evolution with such a region based force
f(x), given the image edge indicator function g(x), let the
region deformation cost functions ¢*(x) and ¢~ (x) be

ct(z) = (dist(z,0C;) + f(x))/h

€1V

(32)

and

¢ (z) = (dist(z,8C;) — f(z))/h

where £ is the discrete time gap. Correspondingly, ¢*(z) and
¢~ (z) define the min-cut costs Dq(x) and Ds(x) through (8)
and (9).

Then we have

Corollary 6: Given the image edge indicator function g(x)
and the region-based force f(x), we define the region-
deformation cost functions ¢ (x) and ¢~ () by (32)-(33). For
each discrete time frame from ¢ to ¢ + h, the current contour
C; can evolve to its globally optimal position C; . Moreover,
at each pixel x € 0Cy4p, its motion satisfies:

 (s@hn(o) + V(o) - () = £@) + 0(e) = 0 (34)

(33)

where ¢(z) is the signed distance (29) and % is the outward
normal vector at z.

The proof of Cor. 6 directly follows from Prop. 2 and Prop.
3.

As the analysis in Sec.II-B1, (34) provides the implicit time-
discrete geodesic motion equation with the region force f(x),
such that for the given pixel x; € OC;, it moves to its new
position at x € JCyyp, from the time instance ¢ to ¢ + h along
its outward normal n(x;) and

v = o= (h(a@r(e) + Vo) - (o)) - F(e) m).

III. CONTOUR EVOLUTION WITH PRIOR CONSTRAINTS

351818 G20718 42413 73417

7368 33142 1991411 1215203

\
a118 a158 8343 8782 A

(a) (b)

Fig. 2. 2(a) shows some examples of star shape, which are generated by the
superformula [32]: http://en.wikipedia.org/wiki/Superformula. 2(b) illustrates
the definition of the star shape prior.

In this section, we describe the contour evolution with
the shape prior constraint, more specifically, the generic star-
shape prior. We first formulate the star-shape prior by a novel
variational constraint and introduce it to the continuous min-
cut model discussed in Sec. II. Likewise, we introduce the new
continuous max-flow model which is dual to the corresponding
convex relaxation min-cut problem. In this regard, the star
shape constraint in the continuous min-cut formulation is
integrated to the proposed continuous max-flow model by
introducing an extra spatial flow. We prove the proposed
optimization model of star shaped contour evolution can be
solved globally and exactly by convex relaxation, i.e. at each
discrete time frame, the current contour can be moved to its
globally optimal position. Moreover, the flow conservation
condition to the new continuous max-flow model reveals that
the global optimum of the continuous min-cut with star shape
prior provides a fully time implicit solver to the star shaped
contour convection PDE.

A. Star Shape Prior

The star shape was first proposed by [33], which is defined
with respect to a center point o (see Fig. 2(b)): An object has
a star shape if for any point x inside the object, all points on
the straight line between the center o and x also lie inside the
object; in other words, the object boundary can only pass any
radial line starting from the origin o one single time. In fact,
the star shape is a generic shape prior that properly models
a wide spectrum of shapes, while effectively rules out all the
inconsistent segments. Some examples of the star shapes are
illustrated by Fig. 2(a) which are generated by the so-called
superformula [32].
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Veksler [33] proposed the star shape prior for segmentation
using graph cuts. In this work, we propose a new variational
formulation of the star-shape prior: for the center point o,
let d,(x) be the distance map with respect to o and e(z) =
Vdo(x); we, therefore, define the star shape prior as follows:

Vu(z) - e(x) > 0, Va € Q. (35)

There is a similar definition of the star shape prior proposed
by Strekalovskiy & Cremers [34]. We claim ours is different
from theirs since the distance map is not constrained with
respect to any single center point, which can also be defined
w.r.t. any special marked area to achieve a even more generic
shape prior.

In essence, the star shape prior (35) models a customized
subset of the simply connected regions, where the holes and
disjoint regions are exactly ruled out. For example, for each
of the two regions: the hole and disjoint area (illustrated by
Fig. 2(b)), there always exist some points which violate (35);
see the red point = where the angle of the two vectors Vu(z)
and e(x) is obtuse, hence Vu(x) - e(z) < 0; the same for the
red point y, where Vu(y) - e(y) < 0.

B. Global Optimization to Star Shaped Contour Evolution

Now we consider the contour evolution subject to the star-
shape prior: let £ be the set of all the contours with a star
shape; like in Sec. II-Al, we define the costs ¢ (z) and
¢ (z) w.rt. region expansions and shrinkages; to this end,
we propose to propagate the contour C; to its new position
Ciy+p, with the minimum total cost of region changes, while
the contour still keeps a star shape. Observe (7), this amounts
to

min / ct(z)dr + / ¢ (z)dx + / g(s)ds. (36)
ceL Je+ - ac

Likewise, with helps of the label assignment costs (8)-(9),
the variational model (36) to the star-shaped contour evolution

can be equally reformulated as

(1 —u,Dq) + (u, D3) +/ g(x) |Vul| dz. (37)
Q

min
u(xz)€{0,1}

subject to the star shape constraint
Vu(z)-e(x) >0, Vo e . (38)

The optimization problem (37) gives rise to the continuous
min-cut model constrained by a star shape prior (38).

In this section, we show the binary constrained combinato-
rial optimization problem (37), subject to the shape constraint
(38), can be solved globally and exactly by means of convex
relaxation.

We first formulate the associated convex relaxation model
of (37) along with the star shape constraint as follows:

min  (1—u,D1) + (u,Ds) + /g(x)|Vu| dr (39)
u(x)€(0,1] Q
subject to

Vu(z)-e(x) >0, Vo e Q,

where the binary constraint u(z) € {0,1} in (37) is replaced
by the convex set u(x) € [0,1] such that (39) gives a convex
optimization problem subject to a variational linear constraint.

1) Continuous Max-Flow Model: To study the convex
relaxation model (39), we introduce a new continuous max-
flow formulation and show its duality to (39).

With this respect, we apply a similar flow configuration as
in Sec. I1-A3 [30], [24]; and we add an extra spatial flow ¢(x),
besides the spatial flow p(x), around each pixel z € 2 such
that:

q(z) = Mz)e(z),

The direction of such a spatial flow ¢(z) is along the same
direction of the given reference vector e(x) at each pixel .

In consequence, we have 4 flows passing each pixel x €
ps(z), pi(x), p(z) and q(z) = A(x)e(x). Similar to the flow
constraints (13)-(15) of the continuous max-flow model (12),
we propose the flow capacity constraints and conservation
condition to such flows, and, therefore, introduce the new
continuous max-flow formulation as follows:

where A(z) > 0. (40)

max / ps(x) dx 41)
Ps:Pt,P,A JQ
subject to
Ip(z)| < g(z), Mz)>0, VeeQ; (42
ps(x) < Cs(x), pi(x) < Ci(x), VoeQ;  (43)
(div(p+Ae)—ps+pt)(a:) —0, VoeQ. (44

For the continuous max-flow model (41), (42) and (43) are
the constraints on flow capacities; (44) is the flow conservation
condition at each pixel z € (2, where the extra spatial flow
q(z) = Mx)e(x), AM(z) > 0, provides an expanding flow
field w.r.t. the origin point o, and it applies to make the
segmentation result fitting the star-shape prior.

(44) is different to the conventional flow conservation con-
dition in (15), which can be formulated as

divp —ps +p € —div § (45)
where S be the convex set such that
S = {s(z) = Mz)e(x), AM(z) >0, Vz € Q}. (46)

In fact, (45) is a relaxation to the classical flow conservation
constraint (15) which requires all the passing flows are exactly
balanced at each pixel.

Through similar analysis given in the proof of Prop. 1, we
can prove

Proposition 7: The continuous max-flow model (41) is dual
to the convex relaxation problem (39).

Proof: Introduce the multiplier function u(z) to the linear

equality of the flow conservation condition (44), we thus have
the equivalent primal-dual formulation to (41):

min max
U Ps,Pt,DyA

/ ps(x) dz+(u,div (p + Ae) — ps + pr) (47)
Q
subject to the flow capacity conditions (42) and (43).

The optimization of (47) is equivalent to

min max

lin max (1 —wu,ps) + (u,p) + (u,divp) + (u,div(re))

(48)
subject to (42) and (43). We see that the min and max
operations of (48) can be interchanged (see [31]); hence we
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can first maximize (48) over the flow variables pg, ps, p and .
Following a similar analysis in [30] and [24], the maximization
over ps and p; essentially gives rise to

u(z) € [0,1], Vz € Q,

the maximization over the spatial flow p follows

(u,divp) = /Qg(x)\Vu\ dx .

max
[p(z)|<g(x)

Given the assumption Ju = 0 at the boundary, we have
(u,div(re)) = — (A, Vu -e);

then the maximization of the last term in (48) over the spatial
variable A(x) > 0 is

Vu(z)-e(x) >0, Vre.

Therefore, Prop. 7 is proved. ]

2) Globally Optimal Star-Shaped Contour Evolution: The
duality or equivalence between the continuous max-flow model
(41) and the convex relaxation model (39) indicates that we
can solve (39) by computing the associated maximum flow
(41). With helps of the proposed continuous max-flow model
(41), we can further prove

Proposition 8: Let u*(x) be one global optimum of (39),
its thresholding u*(z) € {0, 1}:

¢~ | 1, whenu*(z)>/¢
ui(w) = { 0, whenu*(z)<{

for any ¢ € [0,1), solves the original binary-constrained
continuous min-cut problem (37) globally and exactly.

Proof: Let (p%, pf,p*, \*) and u* be the optimal primal-
dual pair of the equivalent primal-dual model (47), which
means that (p%,py,p*, A*) optimizes the max-flow problem
(41) and u*(x) optimizes its dual problem (39); both problems
have the same energy (see [31]) such that the minimum energy
of (39) equals to the maximum total flow

/p:dz.
Q

For the max-flow problem (41), the flow conservation
condition (44) is satisfied, i.e.

(div(p*—&-A*e) —pﬁ—&-pf)(m) =0,

Let S* be any level set of u* thresholded by ¢ € (0, 1] and
uf(z) € {0,1} be its indicator function.

For any pixel z € Q\S’, i.e. where u*(x) < ¢ < 1, it is
easy to see that through the variation of u(x), we have

(49)

Vee . (50)

pi(x) = Di(x), Vxe Q\SZ; 51
and, for any pixel = € S, i.e. u*(z) > £ > 0, we have
pi(x) = Da(x), Vzes. (52)

By (50), we have
pi(z) = (div (p* + Xe) + .DQ)(.T) , YzesSt. (53)

The proof of Prop. 7 indicates that the energy of the max-
flow model (41) is equivalent to the energy of the primal-dual

model (48) and also the energy of (39). Therefore, by (51)
and (53), the total energy of (37) for each level set St is

/ P dx z/ Dldx—|—/ (D2+div(p*+)\*e)) dx
Q Q\S* st

:/ D, dx + ngx—|—/ g(s)ds
Q\S¢ s¢ a5t

- Ae(s)ds
a5t

where

e(s) = Vul(z) -e(z) >0, z€ds*

and by simple variational analysis, we also have

/ Ae(s)ds = 0.
a5t

Therefore, we have

/ prdr = / D, dx + Dy dx + / g(s) dsdx
Q Q\S¢ St 98¢

which is also the minimum energy of (39), i.e. the convex
relaxation of the binary constrained optimization problem (37).
In other words, the binary function ‘() € {0,1}, which is
the indicator function of S?, solves the nonconvex star-shape
constrained min-cut problem (37) globally. Prop. 8 is proved.

|

C. Discrete Time Evolution of Star-Shaped Contours

Observe (50)-(52) in the proof of Prop. 8, we have
Proposition 9: For the global optimum u*(z) of (11) and
any £ € [0,1), let uf(z) € {0,1}

u(z) = { 0

be the indicator function of the thresholded level set S¢ C Q;
then at each pixel = € 95*, we have

when u*(z) > ¢

when u*(x) < ¢ 54

¢
(91" + Vg (%) ~ D+ Dy o) (@) =0 (59)
where
l
W (2) = div (%) () = div(y (@)e(z)

Its proof is similar as the one given in Prop. 3.

In contrast to the motion equation (24) at each discrete time
frame, the star shape prior introduces an additional ’speed’
term v* to the contour evolution equation (55), which makes
the next contour C;;, be consistent to the shape constraint. vt
is also called the star-shape speed in this paper. Now we apply
(24) to analyze the movement of contours at each discrete time
frame.

By Prop. 8, we observe that (37) can be solved exactly
and globally, which means the contour with the star shape
constraint can evolve to its globally optimal position at each
time frame. Moreover, through Prop. 9, each pixel at the
globally optimal contour satisfies (55). To this end, (55)
provides the dynamics of contour evolution at each discrete
time. Similar to Cor. 4-6, we can apply (55) to analyze the
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evolution of contours with the additional star-shape speed
which forces the consistency to the star shape prior.

For the mean curvature driven contour evolution proposed
in Sec. II-B1, we have

Corollary 10: Given g(x) = 1 and the region-deformation
cost functions ¢t () and ¢~ (z) as (25), for each discrete time
frame from ¢ to t + h, the current contour C; can evolve to
its globally optimal position C;, while both contours C and
Ci41, are consistent to the star shape. Moreover, at each pixel
x € OCy¢yp, its motion satisfies:

he(z)+ ¢(x) +v(x) =0

where ¢(x) is the signed distance (29) and v(z) the optimal
star-shape speed.

For the geodesic contour evolution proposed in Sec. I1I-B2,
we have

Corollary 11: Given the image edge indicator function g(x)
and the region-deformation cost functions ¢t (z) and ¢~ (z) as
(25), for each discrete time frame from ¢ to ¢ + h, the current
contour C; can evolve to its globally optimal position C;p,
while both contours C and C; j, are consistent to the star shape.
Moreover, at each pixel x € JC;p,, its motion satisfies:

Vu

h(9(@)n(z) + Vg(a) - (W)> 4 (x) Folz) =0 (57)

where ¢(x) is the signed distance (29), %
normal vector at x and v(x) the optimal star-shape speed.

For the region-based contour evolution proposed in Sec.
1I-B3, we have

Corollary 12: Given the image edge indicator function
g(x) and the region-based force f(z), we define the region-
deformation cost functions ¢*(x) and ¢~ (z) by (32)-(33). For
each discrete time frame from ¢ to ¢ + h, the current contour
C; can evolve to its globally optimal position C.,, while both
contours C and C;, are consistent to the star shape. Moreover,
at each pixel x € 0Cy4p, its motion satisfies:

(56)

is the outward

Vu
(n (95 +Vg- ol —fHo+0)@) =0 (58)
where ¢(x) is the signed distance function (29), % is the

outward normal vector at = and v(z) the optimal star-shape
speed.

In view of the signed distance function ¢(x), (56)-(58)
provide the time implicit implementation of the respective
contour evolution, together with the star-shape speed.

IV. CONTINUOUS MAX-FLOW BASED ALGORITHMS

In Sec. II-A3 and Sec. III-B, we observe that the proposed
continuous max-flow models (12) and (41) provide a powerful
tool to analyze the respective continuous min-cut models (10)
and (37). In addition to this, another advantage to utilize the
proposed continuous max-flow models is that they result in
numerically simple and efficient algorithms using modern con-
vex optimization theories, see [35] and [36]. In the following
subsections, we will notice that, in the continuous max-flow-
based algorithms, the nonlinear total-variation function and the
associated star shape constraint are encoded by projections to

some simple convex sets. Moreover, the continuous max-flow
based algorithms can be easily implemented in the parallel
computing system, e.g. a GPU, which significantly speeds up
numerical computation.

A. Continuous Max-Flow Algorithm to Contour Evolution

Through Prop. 1 and Prop. 2, for the contour evolution
without shape prior (7), the continuous min-cut problem (10)
can be globally and exactly solved by its corresponding con-
tinuous max-flow model (12). The corresponding continuous
max-flow-based algorithm can be found in [24], which is based
on the classical augmented Lagrangian method [37], [35].
Here, we list the main steps of the continuous max-flow based
algorithm:

Let R(ps,p:,p) be the flow residue function given by

R(ps,pt,p) = divp —ps +p (59)

L(ps,pt, p,u) be the Lagrangian function of the continuous
max-flow problem (12):

L(ps,pe,p,u) = /st(w) dx + (u, R(ps, pt, p))

and L.(ps,pt,p,u) be the augmented Lagrangian function
such that:

c 2
Lc(ps7pt7p7u) = L(psuptvpvu) - 5 ||R(p57pt7p)|| ’

where ¢ > 0 is constant.

At each k-th iteration, the continuous max-flow based
algorithm consists of projection-descent steps of flows ps, p;
and p such that

. u}C
P =Proji, o)) <o) (pk +HaV (Rt - 7)> ;

uk
pi+t =min (Dy(), (RO0,pf,p1) = =) (@) 5

k
. U
pf“ = min (Dg(x), (? — R(pfj“, O,pkH)) (x)) :
together with a simple update in the labeling function

T =k — e RET Pt R (60)

where a > 0 is the projection step-size chosen by [38].

B. Continuous Max-Flow Algorithm to Star-Shaped Contour
Evolution

For the contour evolution with the star-shape prior (36), the
continuous min-cut problem (37) can be globally and exactly
solved by its corresponding continuous max-flow model (41),
through Prop. 7 and Prop. 8. The continuous max-flow al-
gorithm to the star-shaped contour evolution proposed in the
following part is slightly different from the continuous max-
flow-based algorithm shown in Sec. IV-A, where an extra flow
adjustment step for A(z) is considered at each iteration.

Let R(ps,pt, p, A) be the flow residue function such that

R(psaptapv )‘) = le (p+>\6) — Ps +pta (61)
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L(ps, pt, p, A, u) be the Lagrangian function of the continuous
max-flow problem (41):

L(ps7ptap7>\au) = /st(lL')dl’+<U,R(ps,pt7p,)\)>,

and L.(ps,pt, p, A, u) be the augmented Lagrangian function:

C
Lc(ps,pt,p,)\,u) = L(psaptapa)‘au)_i HR(pmptvpa )‘)”2 )

where ¢ > 0 is constant.
At each k-th iteration, our algorithm consists of projection-
descent steps in flows ps, p;, p and A such that

. Uk
pk+l :PI‘OJ“)(I)‘SQ(-L) (pk + Oév(R(pE)pf?pk7 )\k) - ?)) ’
. g Uk
pE =min (Di (), (RO, pf, 9100 = 2) (@)

R+l _ - “7’6_ k+1 k+1 yk )
prtt =min ( Dy(x), ( c R(pd™,0,p M) () ) 5

ML = max (O, () + ﬁk(x)) ;
together with a simple update in the labeling function w

ut =t — e R(p{Tp M (62)
where o > 0 is the projection step-size chosen by [38] and
B(z) is related to |e(x)|” as discussed in the following part.

1) Optimization of A(z): To see the optimization over \ at
each k-th iteration, let

k

u .
FF = e (dlvplCJrl fprrl erf'H) .

Then the optimization over A at each k-th iteration reduces to
the following constrained minimization problem

min [|div(re) - FHII° (63)

To optimize (63), we first apply the gradient descent step

ANH2(g)e(z) = Mo (2)e(z) + 0 V(div(NFe) — FF)(x)
where 6 > 0 is the step-size.

We product both sides of the above equation by the vector
e(x), then divide by |e(z)|*; which results

N2 () = N (2) + ¥ (a)
where

0V (div(Afe) — F*)(z) - e(x)
le(a)|” '

MNe+1 () is computed by the projection of \¥+1/2 to \(z) >
0 such that

B (z) =

AL = max (0,)\1+2(x)> .

V. EXPERIMENTS

In this section, we illustrate the numerical performance of
the proposed continuous max-flow-based contour evolution ap-
proach, together with comparisons to graph-cuts and level-sets.
Experiments are conducted to the image segmentation tasks
on synthetic images, real-world images and 2D/3D medical
images. Moreover, we demonstrate the effectiveness of the
star-shape prior to image segmentation. In all the experiments,
we implement the proposed continuous max-flow algorithms
in a parallel computing platform, i.e. NVidia CUDA GPU
(NVIDIA Corp., Santa Clara, CA); the user interface and the
computation of other image processing are implemented on
Matlab (Natick, MA). All computations are performed on a
Windows desktop with Intel QuadCore CPU (2.83 GHz) and
NVIDIA GTX 580 GPU (NVIDIA Corp., Santa Clara, CA).

The convergence of algorithms is evaluated by the absolute
mean of the labeling functions ©**1(x) and u*(z) for the two
sequential contours, such that

err. = HUk—H(x) _ Uk(x)H&
[ ’
where the ¢, norm is defined as |-/, = [, || dz.

In view of the proposed continuous max-flow algorithms
(see also (60) and (62)), such error evaluation boils down to
the measurement of either the average absolute flow residue
or the average absolute duality gap which is meaningful in the
optimization theory, i.e.

okl _ okl k+1
c ||d1Vp Ps +pt H@l
1]
for the continuous max-flow algorithm without shape con-
straints, and

err. —

v (44 X416) = g1l
1]

for the continuous max-flow algorithm with the star-shape
prior.

err. = ¢

A. Validation and Comparisons
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Fig. 3. Experiment of mean-curvature driven 3D surface evolution (volume
size: 150 x 150 x 150 voxels). (a) The radius plot of the 3D ball evolution
driven by its mean-curvature flow, which is computed by the proposed
continuous max-flow algorithm; its function is theoretically r(t) = v/C — 2t.
(b) The computed 3D ball at one discrete time frame, which fits a perfect 3D
ball shape. This is in contrast to (c), the computation result by graph cut
[15] with a 3D 26-connected graph. The computation time of the continuous
max-flow algorithm for each discrete time evolution is around 1 sec., which
is faster than the graph cut method (120 sec.).

1) Synthetic Experiment: Evolution by Mean-Curvature
Flow: Fig. 3 shows the experiment of evolving a 3D ball
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by the mean-curvature flow (3D volume: 150 x 150 x 150
voxels), where the cost functions are set as (26) and (27). The
radius of the initial ball is 56. For each discrete time-frame,
the proposed continuous max-flow algorithm takes approx. 1
sec. to converge with a high-accuracy of err. < 107°. Fig.
3(a) shows the radius plot of the computed 3D ball sequence
using the continuous max-flow algorithm, whose shape fits the
theoretical result r(t) = +/C' — 2t. Fig. 3(b) demonstrates the
3D ball at one time instance during its evolution. We repeat the
experiment of the mean-curvature driven motion of a 3D ball
using graph-cut [15]3, where a 26-connected graph is used. It
takes around 120 sec. for each discrete time evolution, which
is slower than the continuous max-flow based algorithm. The
memory usage for such a 26-connected 3D graph cut is about
4.2G bytes, higher than the memory load of the implemented
continuous max-flow algorithm (less than 0.2G bytes). In addi-
tion, Fig. 3(c) shows one computed result during its evolution,
for which the metrication effects are visible comparing to
the perfect 3D ball computed by the continuous max-flow
algorithm. For the graph-cut method, more neighbours can be
used to reduce such visible metrication artifacts shown in Fig.
3(c). But it is expected that higher memory load and longer
computation could be taken.

(a) Initialization (c) Tter. #2, h = 102

(b) Iter. #2, h = 500

= o

(e) Iter. #22, h = 500

(d) Iter. #2, h = 10° (f) Iter. #8, h = 103
Fig. 4. Experiments of contour evolution with various large time step sizes.
The contour evolves with the region-based force f(x) as in (31), for the given
gray-scale image (860 X 645 pixels). The two mean values f;y, and oyt are
updated after each discrete time evolution. The contour starts with the same
initialization (see Fig. 4(a)), but different discrete time gaps h = 500, 103
and 10°. Fig. 4(b) - Fig. 4(d) show the contours after 2 outer iterations, with
the time gap h = 500, 103 and 10° respectively. Clearly, the larger discrete
time gap leads to the bigger change of the contour during each outer iteration.
For the smallest time step h = 500, the contour evolution stops at the final
result (see Fig. 4(e)) after 22 outer iterations . For h = 103, the contour
evolution stops at its result (see Fig. 4(f)) after 8 evolution steps.

2) Reliability to Large Discrete Time-Step: As discussed in
Sec. II-B3, the optimum computed by the continuous max-flow
algorithm globally and exactly solves the contour evolution
with the region force. In fact, it provides a time-implicit solver,
through Cor. 6, such that larger discrete time-step is allowed.

In this experiment, the contour evolves with the region-
based force f(z) defined as in (31); it starts with the same
initialization, as shown in Fig. 4(a), but different discrete time

3The graph cut experiment is based on the code downloaded from the
website: http://vision.csd.uwo.ca/code/maxflow-v3.01.zip.

gaps h = 500, 10% and 10° are applied. After each discrete
time evolution, i.e. each outer iteration, the two mean values
Win and o, are updated. Fig. 4(b) - Fig. 4(d) show the
contours after 2 outer iterations, with the time gap A = 500,
103 and 10° respectively. Actually, for the extremely large time
gap h = 10°, the contour evolution stops at the reasonable
result after only 2 outer iterations. Clearly, larger discrete
time gap leads to bigger changes of the contour during each
outer iteration, hence faster convergence to the final result. For
h = 500, the contour evolution stops at the final result (see
Fig. 4(e)) after 22 outer iterations . For h = 103, the contour
evolution stops at its result (see Fig. 4(f)) after 8 evolution
steps. This experiment shows the continuous max-flow based
algorithm is reliable to the chosen discrete time gap h of the
contour evolution, even with a very large value of h.

e

(a) Init. 1

(b) Init. 2 (c) Init. 3

S

(d) Result for init. 1 (e) Result for init. 2 (f) Result for init. 3

Fig. 5. Experiments of contour evolution with various initialization condi-
tions. The data cost functions for the continuous min-cut problem are defined
as in Sec. II-B3, for the given gray-scale image (860 x 645 pixels). Three
different initializations, see Fig. 5(a) - Fig. 5(c), are applied in the experiments.
A relatively large time step h = 10° is used. All the experiments stop at
nearly the same meaningful positions, see Fig. 5(d) - Fig. 5(f), even if the
initial contour, e.g. Fig. 5(a) - Fig. 5(b), is far from the final result. The
initial contour shown in Fig. 5(a) takes 3 outer iterations to stop at its final
contour shown in Fig. 5(d); the initial contour shown in Fig. 5(b) takes 2 outer
iterations to stop at its final contour shown in Fig. 5(e); the initial contour
shown in Fig. 5(c) takes 2 outer iterations to stop at its final contour shown
in Fig. 5(f).

3) Reliability to Initialization: Now we show the proposed
continuous max-flow-based contour evolution approach is reli-
able to poor initializations. Similar to the previous experiment,
we evolve the contour with a region-based force f(x) given
by (31). The data cost functions for the continuous min-cut
problem are defined as in Sec. II-B3, where the proposed
continuous max-flow algorithm is employed to compute the
global optimum at each contour evolution iteration. Three
different initial contours are applied in the experiments, see
Fig. 5(a) - Fig. 5(c), and a relatively large time step h = 10°
is applied. The contours finally stop at nearly the same mean-
ingful positions, as shown in Fig. 5(d) - Fig. 5(f). Although
the initial contour is far from the final results as shown in Fig.
5(a) and Fig. 5(b), the proposed approach can still stop at its
final reasonable position.

The initial contour shown in Fig. 5(a) takes 3 outer iterations
to stop at its final contour shown in Fig. 5(d); the initial
contour shown in Fig. 5(b) takes 2 outer iterations to stop at
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its final contour shown in Fig. 5(e); the initial contour shown
in Fig. 5(c) takes 2 outer iterations to stop at its final contour
shown in Fig. 5(f).

(c) Iter. # 500

els

(e) Iter. # 1000 (f) Tter. # 1000

(g) Iter. # 1 (h) Tter. # 1500 (i) Iter. # 1500

S

(j) Iter. # 2 (k) Iter. # 1740 (1) Iter. # 1800
Proposed algorithm NBLS SPLS
Algorithm  Implementation Total time No. of

(sec) iterations
GPU 1.0 for max-flow and
Proposed Matlab 1.4 for cost computation 2
algorithm CPU 11.1 for max-flow and
Matlab 1.4 for cost computation
NBLS Matlab 73.0 1740
SPLS Matlab 331.0 1800
Fig. 6. Comparison of the proposed continuous max-flow-based contour

evolution approach to the classical level-set methods: the narrow band level-
set method (NBLS) [4] and the sparse field level-let method (SPLS) [39].
All the methods start with the same initialization contour (see Fig. 6(d)).
The proposed approach converges to the final result after 2 outer iterations
within 2.4 sec. (1.0 sec. for the continuous max-flow solver and 1.4 sec. for
computing the cost); in contrast, the two level set methods take more than 1700
iterations for convergence (time costs are shown in the bottom table). Clearly,
the proposed continuous max-flow-based approach significantly improves the
contour evolution in terms of computation time and the total number of
iterations. Moreover, for the proposed method, the contour finally evolves
to a better result (see Fig. 6(j)) comparing to the result of NBLS (see Fig.
6(k)) and SPLS (see Fig. 6(1)), where the inside circle of the small box is
clearly cropped by the proposed method but not by NBLS and SPLS.

4) Comparisons to Level Set Methods: We compare the
proposed continuous max-flow-based contour evolution ap-
proach to the classical level-set method, where two level set
implementations: the narrow band level set method (NBLS) [4]
and the sparse field level-set method (SPLS) [39], are used for
comparisons. All the methods start with the same initialization
contour (see Fig. 6(d)). The proposed continuous max-flow-
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based method converges to the final result within 2.4 sec. in
total after just 2 outer iterations: 1.0 sec. for the continuous
max-flow solver and 1.4 sec. for computing the cost; in
contrast, the two level set methods take more than 1700 outer
iterations for convergence. The computation results shown in
the bottom table of Fig. 6 demonstrate the proposed continuous
max-flow-based approach significantly improves the efficiency
of contour evolution in terms of computation time and the total
number of iterations.

Moreover, for the proposed approach, the contour finally
evolves to a better result (see Fig. 6(j)) comparing to the
result of NBLS (see Fig. 6(k)) and SPLS (see Fig. 6(1)): the
inside circle of the small box is successfully segmented by the
proposed global optimization-based method but not by NBLS
and SPLS, and also some visible artifacts appear in the final
results of NBLS and SPLS.

B. Applications to Image Segmentation

(d) Sample seeds (f) Tter. # 2

(e) Initial position

Fig. 7. Experiments of gray-scale image segmentation. 1st Row: For the
image with 321 x 481 pixels, the initial contour just starts at the green region
shown in Fig. 7(a). After 13 outer iterations, the contour stops at its final result
shown by Fig. 7(c) (around 12.7 sec. in total: 1.7 sec. for the continuous
max-flow solver and 11 sec. for computing the costs). 2nd Row: For the
segmentation of the zebra image with 250 X 167 pixels. The initial contour is
given in Fig. 7(e). After 2 outer iterations, the contour stops at its final result
shown by Fig. 7(f) (around 0.65 sec. in total: 0.05 sec. for the continuous
max-flow solver and 0.6 sec. for computing the costs).

1) Image Segmentation by Histogram Matching: The in-
tensity or color histogram of the specified image objects
provides a global and robust clues to segment meaningful
objects in images. Let z € Z be the photometric values, ¢;,(z)
and ¢,y:(2) be the probability density functions (PDFs) of
the foreground and background regions, i.e. the two regions
inside and outside the segmentation contour, which can be
obtained through the sampled seeds. We segment the image
by finding the regions C;,, or C,y:, Whose PDFs best match
the given PDFs ¢;,,(2) and qout(2) respectively. Let p;, (u, 2)
and poq:(u, z) be the estimated PDFs of the inside and outside
regions C;,, or Coyt , where u(x) gives the labeling function
of C;,. The PDFs p;(u, z), i = in, out, can be estimated by
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the Parzen method [40] such that
 Jo K(z—I(2))udx
o Judx ’

pi(u, z) i = in,out,
where K(-) is the Gaussian kernel function K(z)
\/2;7 exp(—22/20?).

In these experiments, a Bhattacharyya distance [8] is em-
ployed for matching PDFs of the two regions inside and
outside of the segmentation contour, which amounts to the
Bhattacharyya-based histogram-matching energy formulated
as follows

zEZ

_ Z \/pout(l —u, Z) QOut(Z) .

z2€Z

(64)
The energy function (64) is highly non-linear and non-convex,
which can not be directly optimized in a single step. Similar to
the common level-set method, we gradually evolve a contour
C to its best position such that its labeling function u(x)
minimizes (64). To this end, we compute the region-based
force f(z) by means of the first-order variation* of the energy
function (64) and define the corresponding cost functions
as (32) and (33). In this section, we conduct segmentation
experiments on both gray-scale images and color images.

Fig. 7 shows the experiments of gray-scale image segmen-
tation, where the intensity PDFs are matched. The prior PDFs
of the inside and outside regions are computed using the
user-input seeds, shown in Fig. 7(a) and Fig. 7(d): green for
foreground and red for background. For the first experiment,
illustrated by the images of the first row of Fig. 7, the initial
contour is given by the foreground seeds, i.e. the green region.
The contour stops at its final result (see Fig. 7(d)) after 13
discrete time evolutions (around 12.7 sec. in total: 1.7 sec. for
the continuous max-flow solver and 11 sec. for computing the
costs). The second experiment starts its initial contour (see
Fig. 7(d)) and stops at its final contour (see Fig. 7(f)) after
2 outer iterations (around 0.65 sec. in total: 0.05 sec. for the
continuous max-flow solver and 0.6 sec. for computing the
costs).

Fig. 8 shows the experiments of color image segmentation,
where PDFs of color distribution are matched. Similar to the
experiments of gray-scale image segmentation, the prior PDFs
of the inside and outside regions are computed using the user-
input seeds: green for foreground and red for background (see
the images at the left side columns of Fig. 8). Here the color
PDFs are generated with 128 bins for each color channel.
For the challenging experiments shown in Fig. 8(d), Fig. 8(f)
and Fig. 8(h), where the PDFs of foreground and background
are highly overlapped with each other, the proposed global
optimization based contour evolution method finds quite rea-
sonable results. Its numerical efficiency can be demonstrated
in the table of Fig. 8.

pin(uy Z) %n(z)

2) Non-Parametric Texture Image Segmentation: Fig. 9
demonstrates the experiment of the non-parametric texture
image segmentation by the global optimization based contour
evolution, where the Bhattacharyya distance is directly used to

4Computation details can be found in [8].

(b) Iter. # 10 (c) Iter. # 20

(a) initial position

Fig. 9. Experiment of non-parametric texture image segmentation: for the
gray-scale zebra image with 481 x 321 pixels, PDFs are evaluated over the
texture feature proposed by Houhou et al [41]. The contour starts at the
position shown in Fig. 9(a) and stops at the final result shown in Fig. 9(c)
after 20 outer iterations ( 6 sec. in total: 1 sec. for the continuous max-flow
solver and 5 sec. for computing the costs).

measure the inside and outside texture PDFs [8]. The texture
PDFs are generated to the texture feature proposed by Houhou
et al [41]. The contour starts at the position shown in Fig. 9(a)
and stops at the final result shown in Fig. 9(c) after 20 outer
iterations ( 6 sec. in total: 1 sec. for the continuous max-flow
solver and 5 sec. for computing the costs).

C. Medical Imaging Applications

(a) initial position

(b) Iter. # 2

SN

(d) initial position (f) Iter. # 10

(g) initial position (h) Iter. # 2 (i) Iter. # 5

Fig. 10. Experiments of 2D medical image segmentation: 1st Row: 2D liver
CT image segmentation (512 X 512 pixels); left image shows the sampled
seeds and the initial contour starts at the foreground sampled region (green);
the final contour stops after 5 outer iterations and is shown in the right image (
4.9 sec. in total: 1.5 sec. for the continuous max-flow solver and 3.4 sec. for the
cost computation). 2nd Row: 2D Prostate US image segmentation (800 x 523
pixels); left image shows the sampled seeds and the initial contour starts at
the foreground sampled region (green); the final contour stops after 10 outer
iterations and is shown in the right image ( 7.8 sec. in total: 2.7 sec. for the
continuous max-flow solver and 5.1 sec. for the cost computation). 3rd Row:
2D Prostate MR image segmentation (262 x 216 pixels); left image shows
the sampled seeds and the initial contour starts at the foreground sampled
region (green); the final contour stops after 5 outer iterations and is shown in
the right image ( 1.6 sec. in total: 0.3 sec. for the continuous max-flow solver
and 1.3 sec. for the cost computation).

1) 2D Medical Image Segmentation: We conduct three
experiments of 2D medical image segmentation. The results
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() (h)
Image set  Image size Total time for Time for Time for cost Number of
(pixels) computation (sec.) max-flow (sec.) computation (sec.)  outer iterations
(a) 321 x 481 4.5 1.2 3.3 12
(b) 321 x 481 3.4 14 3.0 10
(c) 450 x 600 2.7 0.9 1.8 4
(d) 321 x 481 0.6 0.2 0.4 1
(e) 600 x 450 7.3 32 4.1 9
(f) 513 x 371 1.7 0.7 1.1 3
(2) 600 x 450 4.0 1.7 2.3 5
(h) 481 x 321 0.5 0.2 0.3 1

Fig. 8. Experiments of color image segmentation: for each experiment, the sampled seeds are shown in the left picture (green: foreground, red: background);
the initial contour is shown in the middle picture; the final contour is illustrated in the right picture. The table shows the details of image size, computation

time and total number of outer iterations for all the experiments.

are shown in Fig. 10: 2D liver computed tomography (CT)
segmentation (Ist row), 2D end-fire transrectal prostate ultra-
sound (US) segmentation (2nd row), 2D T2-weighted prostate
magnetic resonance (MR) segmentation (3nd row). Like the
experiments for grayscale image segmentation in Sec. V-B,
matching the intensity distributions of foreground and back-
ground is used to drive the contour evolution. Both US and MR
image segmentation are challenging: the US image often has
weak boundaries of the objects and the intensity distributions
of the MR image objects are typically inhomogeneous. As
illustrated by these experiment results, the proposed global

optimization-based contour evolution algorithm can locate the
object’s boundaries efficiently and successfully, even when the
image quality is poor.

In general, for the 2D liver CT image segmentation (1st
row of Fig. 10): left image shows the sampled seeds where
the foreground sampled region (green) is used as the initial
contour; the final contour stops (shown in the right image) after
5 outer iterations ( 4.9 sec. in total: 1.5 sec. for the continuous
max-flow solver and 3.4 sec. for the cost computation). For the
2D Prostate US image segmentation (2nd row of Fig. 10): left
image shows the sampled seeds where the foreground sampled
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region (green) is used as the initial contour; the final contour
(shown in the right image) stops after 10 outer iterations (7.8
sec. in total: 2.7 sec. for the continuous max-flow solver and
5.1 sec. for the cost computation). For the 2D Prostate MR
image segmentation (3rd row of Fig. 10); left image shows the
sampled seeds and the initial contour starts at the foreground
sampled region (green); the final contour (shown in the right
image) stops after 5 outer iterations ( 1.6 sec. in total: 0.3 sec.
for the continuous max-flow solver and 1.3 sec. for the cost
computation).

() (b) (©

Fig. 11. Experiment of 3D carotid MR image segmentation (size: 161 X
144 x 111 voxels): (a) 3D initial contour obtained by region growing; (b)
3rd outer iteration (final result); (c) the result for one 2-D slice. The approach
takes 34 sec. in total: 8 sec. for the continuous max-flow solver and 26 sec.
for the cost computation.

2) 3D Carotid MRI Segmentation: Fig. 11 shows the seg-
mentation of the 3D carotid artery from a T1-weighted 3D
carotid MR image. The initial guess for the 3D segmentation
is first computed using the region growing algorithm which
is initialized by a single sample seed. The algorithm locates
the final contour by 3 outer iterations (34 sec. in total: 8 sec.
for the continuous max-flow solver and 26 sec. for the cost
computation by Matlab). In comparison to previous methods
[42], much fewer sampled seeds are necessary to input by the
user, and the proposed approach can also find the correct 3D
carotid artery boundary much faster.

D. Experiments with Star Shape Prior

1) Real-world Image Segmentation: The star shape prior
implicitly prefers an object with a topologically simple bound-
ary. This is not only helpful for the real-world image seg-
mentation, but also for most medical imaging objects, such
as the prostate etc. In most cases, the star shaper prior helps
the initial contour locate the final boundary with much fewer
outer iterations comparing to the approach without star shape
prior. Fig. 12 shows the experiments of real-world image
segmentation with the star shape prior, which illustrate the
effectiveness of the star shape prior. In all experiments, only
one outer iteration is needed to stop the contour at its final
position. The details of computation time are listed below
Fig. 12. Moreover, with the star shape prior, accurate image
segmentation can be computed with fewer user inputs.

2) Medical Image Segmentation: Fig. 13 shows two ex-
periments of medical image segmentation with the star shape
constraint: the 2D brachial artery ultrasound (US) image
segmentation and the 2D prostate US image segmentation.

(d) Iter. # 1 (e) Iter. # 1 (f) Iter. # 1

Fig. 12. Experiments of real-world image segmentation with the star shape
prior. 1st Column: the original image (481 x 321 pixels) and sampled seeds
are shown in the upper image; the computed contour after 1 outer iteration
and the center of star shape are shown in the bottom image (2 sec. in total: 0.9
sec. for the continuous max-flow solver and 1.1 sec. for the cost computation).
2nd Column: the original image (481 X 321 pixels) and sampled seeds are
shown in the upper image; the computed contour after 1 outer iteration and
the center of star-shape are shown in the bottom image (1.9 sec. in total: 0.7
sec. for the continuous max-flow solver and 1.2 sec. for the cost computation).
3rd Column: the original image (513 X 371 pixels) and sampled seeds are
shown in the upper image; the computed contour after 1 outer iteration and
the center of star-shape are shown in the bottom image (2.3 sec. in total: 0.8
sec. for the continuous max-flow solver and 1.5 sec. for the cost computation).

e - ,ﬁ# = |
(b) Without star shape

o

(a) Initial position

(c) With star shape

(d) Initial position (e) Without star shape

(f) With star shape

Fig. 13. Experiments of medical image segmentation with star shape prior.
1st Row: 2D brachial artery ultrasound (US) image segmentation (808 x 408
pixels); the sampled seeds are shown in the left side image and the initial
contour starts at the foreground sampled region (green); the middle image
shows the final contour computed without the star shape prior; the right side
image shows the final contour (after 2 outer iterations) computed with the star
shape prior; the total computation time for the star-shaped contour evolution
is 4.7 sec. in total: 3.6 sec. for the continuous max-flow solver and 1.1 sec.
for the cost computation. 2nd Row: 2D prostate (US) image segmentation
(617 x 380 pixels); the sampled seeds is shown in the left side image and
the initial contour starts at the foreground sampled region (green); the middle
image shows the final contour computed without the star shape prior; the right
side image shows the final contour (after 3 outer iterations) computed with
the star shape prior; the total computation time for the star-shaped contour
evolution is 3.6 sec. in total: 2.6 sec. for the continuous max-flow solver and
1.0 sec. for the cost computation.

The segmentation of US images is challenging due to the
fact that there often exist weak image boundaries and image
speckles, which bias image segmentation algorithms to the
wrong position. Fig. 13(b)and Fig. 13(e) show the computation
result without the star shape prior, which are clearly not the
correct locations of respective organs. Fig. 13(c)and Fig. 13(f)
show the computed final contour in the presence of the star
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shape prior. In these experiments, the star shape constraint
improves the segmentation results by accurately locating the
object boundaries.

VI. CONCLUSION

In this work, we described a global optimization-based
approach to the contour evolution, with or without a generic
varational shape prior, using the proposed continuous max-
flow framework. It provides an efficient and reliable way to
gradually propagate a contour to objects of interest in images,
where we show that the contour can be evolved to its globally
optimal position at each discret time frame by casting it as
a spatially continuous min-cut problem. The proposed con-
tinuous max-flow model provides an elegant dual perspective
to the reduced continuous min-cut formulation of the contour
evolution at each discrete time frame. It can be used to prove
a global optimality of the discrete time contour propagation
with or without the star shape prior. The variational analysis of
the classical pixel-wise flow conservation constraint, i.e. the
flow-in is balanced by flow-out, shows the global optimum
of the proposed approach does provide a fully time implicit
solver to the contour convection PDE, where a large time-step
size is allowed to significantly speed up the contour evolution.
We also integrate a novel variational representation of the star
shape to the continuous max-flow-based scheme by simply
introducing an additional spatial flow, which is applied to study
the star-shaped contour evolution.

The proposed continuous max-flow models directly lead to
new efficient duality-based algorithms through modern convex
optimization theories, which can be easily implemented in a
GPU and significantly speed up the computation. Experiment
results on synthetic images, real-world images, and 2D/3D
medical images show the high-performance of the proposed
continuous max-flow-based contour evolution approaches in
terms of efficiency and reliability to both poor initialization
and large evolution step-size.
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