
A SPLITTING METHOD FOR ORTHOGONALITY CONSTRAINED PROBLEMS

RONGJIE LAI∗ AND STANLEY OSHER†

Abstract. Orthogonality constrained problems are widely used in science and engineering. However, it is challenging

to solve these problems efficiently due to the non-convex constraints. In this paper, a splitting method based on Bregman

iteration is represented to tackle the optimization problems with orthogonality constraints. With the proposed method, the

constrained problems can be iteratively solved by computing the corresponding unconstrained problems and orthogonality

constrained quadratic problems with analytic solutions. As applications, we demonstrate the robustness of our method in

several problems including direction fields correction, noisy color image restoration and global conformal mapping for genus-

0 surfaces construction. Numerical comparisons with existing methods are also conducted to illustrate the efficiency of our

algorithms.
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1. Introduction. Orthogonality constrained optimizations are widely considered in many problems

such as conformal geometry [1, 2, 3], p-harmonic flow [4, 5, 6, 7, 8, 9, 10, 11, 12, 13], 1-bit compressive

sensing [14, 15, 16], linear and nonlinear eigenvalue problem [17, 18], as well as combinatorial optimization [19,

20]. Mathematically, the orthogonality constrained problems can be formulated as the spherical constrained

version:

min
X=(x1,··· ,xm)∈Rn×m

J (X), s.t. ‖xi‖22 = 1, i = 1, · · · ,m (1.1)

or the matrix orthogonality constrained version:

min
X∈Rn×m

J (X), s.t. XTQX = I (1.2)

where J is convex, ‖xi‖2 is the l2 norm of the i−th column vector of X, Q is a symmetric positive definite

matrix and I is the m×m identity matrix.

It is challenging to solve the orthogonality constrained problems (1.1) and (1.2) efficiently due to the

nonlinear and nonconvex constraints, which may lead to many different local minimizers as solutions. It-

erative approaches are commonly used to solve optimization problems. However, it is not straightforward

to generate a sequence of points preserving the nonlinear constraints and decreasing the cost functional

J . To avoid directly handling the nonlinear constraints, various methods are introduced to tackle the or-

thogonality constrained problems by solving a sequence of unconstrained problems to approach the feasible

condition. Penalty methods [21, 22] are proposed to approximate the optimization problems (1.1) and (1.2)

by unconstrained problems (1.3) and (1.4) respectively, as ε→ 0.

min
X=(x1,··· ,xm)∈Rn×m

J (X) +
1

ε

m∑
i=1

(‖xi‖22 − 1)2 (1.3)

min
X∈Rn×m

J (X) +
1

ε
‖XTQX − I‖2F (1.4)

However, penalty methods usually suffer from slow convergence since it has to solve a sequence of problems
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as ε goes to zero. Another approach comes from the standard augmented Lagrangian method [23, 24], which

tackles the constrained problems (1.1), (1.2) by solving the following unconstrained problems (1.5), (1.6)

and iteratively updating the Lagrangian multipliers, respectively.

min
X=(x1,··· ,xm)∈Rn×m

J (X) +
r

2

m∑
i=1

(‖xi‖22 − 1)2 +

m∑
i=1

λi(‖xi‖22 − 1); λi ← λi + r(‖xi‖22 − 1) (1.5)

min
X∈Rn×m

J (X) +
r

2
‖XTQX − I‖2F + Tr(ΛT (XTQX − I)); Λ← Λ + r(XTQX − I) (1.6)

Because of the complicated form of the augmented Lagrangian terms, the subproblems usually cannot be

solved analytically. Additional inner iterations need to be introduced to solve subproblems, which slow down

the computation. More recently, constraint preserving algorithms are proposed based on the study of the

Stiefel manifold structures of the orthogonality constraint [17, 25, 26, 27]. To the best of our knowledge, the

state-of-the-art method of the constraint preserving algorithms is proposed in [13, 28], where a curvilinear

search approach is introduced based on the Cayley transformation combined with chosen of Barzilai-Borwein

step size. The sophisticated techniques in feasible approaches are mathematically elegant but depend on the

manifold structure of the Stiefel manifold. It is not straightforward to have similar algorithms if additional

constraints are imposed.

In this paper, we introduce a new approach, which is called the method of splitting orthogonality con-

straints (SOC), to solve the orthogonality constrained problems. The idea is motivated from our recent

paper [29], where an efficient algorithm is proposed to solve moving interface problems using the level set

method with constraint ‖∇φ‖2 = 1 for a distance preserving property. This idea can also be traced back to

the earlier work of Glowinksi et. al. in solving variational problems from nonlinear elasticity [30, 24]. We fur-

ther observe that the orthogonality constrained problems can be iteratively approximated by non-constrained

problems and quadratic problems with the orthogonality constraints using Bregman iteration [31, 32]. In

many applications, the obtained non-constrained problems can be solved efficiently. More importantly, the

quadratic problems with orthogonality constraints can be solved analytically. This SOC method overcomes

the limitations of penalty methods and the standard augmented Lagrangian methods. It also successfully

avoids handling the complicated manifold structure of the constraints as the feasible approaches need to do.

Although we currently have no proof of convergence for this method, our numerical experiments strongly

validate its value and provide evidence of its correctness. This will motivate future theoretical analysis.

According to our experience, the SOC method has the following advantages. First, the orthogonality con-

straints can be analytically solved using the SOC method, thus the algorithm is simple and easy to code

compared with the sophisticated optimization techniques introduced in [28]. Second, the idea of SOC can be

easily adapted to other problems as long as the corresponding quadratic problem can be efficiently solved.

Last but not least, given the error forgetting of Bregman iteration for l1 related problems [33], our SOC

algorithms also benefit from this nice property and can efficiently solve l1 related problems according to our

numerical experiments.

The rest of this paper is organized as follows. In section 2, after a brief review of Bregman iteration,

we first introduce the idea of the SOC method for spherical constrained problems. We then generalize it

to matrix orthogonality constrained problems and spherical and linear equality constrained problems. In

section 3, the SOC method is applied to design algorithms for three applications, finding global conformal

mapping, correcting direction fields and restoring noisy color images. We also conduct numerical comparison

with existing methods to demonstrate the efficiency of the proposed algorithms. Finally, conclusions and
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future work are discussed in section 4.

2. The Method of Splitting Orthogonality Constraints (SOC). In this section, we propose the

method of splitting orthogonality constraints (SOC) to tackle optimization problems with orthogonality con-

straints. Using the combination of variable splitting and Bregman iteration [31, 32], the SOC method solves

the orthogonality constrained problems by iteratively optimizing unconstrained problems and quadratic

problems with analytic solutions. To make this paper self-contained, we first would like to give a brief review

of Bregman iteration. After that, we will introduce the idea of SOC for spherical constrained problems,

then generalize it to matrix orthogonality constrained problems. In addition, we will also demonstrate the

adaptability of the SOC idea to problems with spherical and linear equality constraints.

2.1. Background of Bregman iteration. Bregman iteration was first introduced into information

science by S. Osher et al. in [31] for solving total variation related problems in image processing. It has

attained intensive attention due to its efficiency in many l1 related constrained optimization problems which

can be typically written as follows [32, 33] :

arg min
x
J (x), s.t. Dx = f (2.1)

with a convex functional J (x) and a linear operator D. The optimizer of the above problem can be efficiently

approached using the the following Bregman iteration method:

xk+1 = arg min
x

Bpk

J (x, xk) +
r

2
‖Dx− f‖22

pk+1 = pk − rDT (Dxk+1 − b) (2.2)

where Bpk

J (x, xk) = J (x)−J (xk)− 〈pk, x− xk〉 is the Bregman distance [34]. It was shown that the above

scheme is equivalent to a simple two step procedure with Bregman penalty function [32]:

xk+1 = arg min
x
J (x) +

r

2
‖Dx− f + bk‖22

bk+1 = bk +Dxk+1 − f (2.3)

This is an analog of “adding back the noise” in image denoising [31] and also equivalent to the well-known

augmented Lagrangian method [35, 36].

2.2. Spherical constrained problems. To clearly describe the idea of SOC, we would like to first

consider a simple case, an optimization problem with a single spherical constraint as follows:

min
x∈Rn

J (x), s.t. ‖x‖2 = 1 (2.4)

where J (x) is convex and ‖x‖2 =
√
xTx is the l2 norm. We observe that a typical type of quadratic problem

with a spherical constraint can be solved analytically. Moreover, the original spherical constraint problem can

be iteratively solved by computing a spherical constraint quadratic problem and an unconstrained problem

using Bregman iteration. In other words, we introduce an auxiliary variable p = x to split the orthogonality

constraint, then the above problem is equivalent to:

min
x, p∈Rn

J (x), s.t. x = p & ‖p‖2 = 1 (2.5)
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The first constraint x = p in the above problem is linear, which can be solved using Bregman iteration

discussed in section 2.1. Namely, we iteratively solve:

(xk, pk) = arg min
x, p∈Rn

J (x) +
r

2
‖x− p+ bk−1‖22, s.t. ‖p‖2 = 1 (2.6)

bk = bk−1 + xk − pk. (2.7)

Similar to the one-step iterative method in the alternating direction method of multipliers (ADMM) [37, 23]

and split Bregman iteration [38], the problem (2.6) can be solved by iteratively minimizing with respect to

x and p, which inspires us to propose the following method of splitting orthogonality constraints (SOC):

1. xk = arg min
x∈Rn

J (x) +
r

2
‖x− pk−1 + bk−1‖22.

2. pk = arg min
p∈Rn

r

2
‖p− (xk + bk−1)‖22, s.t. ‖p‖2 = 1.

3. bk = bk−1 + xk − pk.
Here, the first problem is a convex optimization problem without constraint, which can be solved efficiently

in many cases. More importantly, the second problem has analytic solution:

pk = Sproj(xk + bk−1) :=
xk + bk−1

‖xk + bk−1‖2
, if ‖xk − bk−1‖2 6= 0 (2.8)

These two properties of the SOC make it different from penalty methods and standard augmented Lagrangian

methods, where the corresponding unconstrained problems have more complicated forms and may not be

able to be solved efficiently. In many applications, such as those involving l1 related problems, the SOC

method can be expected to have good performance due to the error forgetting of Bregman iteration [33]. We

will see this in the section 3.1.

Moreover, the SOC method can be easily adapted to solve the following problem with multiple spherical

constraints:

min
X∈Rn×m

J (X), s.t. ‖X(:, i)‖2 = 1, i = 1, · · · ,m (2.9)

where J is convex and X(:, i) denotes the i−th column vector of X. Similarly, we introduce an auxiliary

variable P = X to split the multiple spherical constraint as follows:

min
X,P∈Rn×m

J (X), s.t. X = P & ‖P (:, i)‖2 = 1, i = 1, · · · ,m (2.10)

Using Bregman iteration, we propose the following algorithm to solve the multiple spherical constrained

problem (2.9)

SOC Algorithm 1. Initialize B0 = 0, X0 = P 0

while “not converge” do

1. Xk = arg min
X
J (X) +

r

2
‖X − P k−1 +Bk−1‖2F ;

2. P k(:, i) = Sproj(Xk(:, i) +Bk−1(:, i)) =
Xk(:, i) +Bk−1(:, i)

‖Xk(:, i) +Bk−1(:, i)‖2
; i = 1, · · · ,m

3. Bk = Bk−1 + (Xk − P k)

Using the SOC method, one can solve the spherical constrained problem by iteratively minimizing an

unconstrained problem and a quadratic problem with the orthogonality constraints. More importantly, the

solution of the quadratic problem with the orthogonality constraints can be analytically written as the
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spherical projection. This provides an efficient way to handle the orthogonality constraints in the problem

(2.9). Furthermore, this inspires us to think that more general types of orthogonality constrained problems

can also be solved using the SOC method as long as the corresponding constrained quadratic problems

have closed-form solutions. In the next two subsections, we choose two other typical types of orthogonality

constrained problems to demonstrate the adaptability of SOC.

2.3. Matrix orthogonality constrained problems. We would like to further apply the SOC method

to the following matrix orthogonality constrained problem

min
X∈Rn×m

J (X), s.t. XTQX = I (2.11)

where J is convex, n ≥ m and Q = LTL is a symmetric positive definite matrix. This matrix orthogonality

constrained problem has been widely considered in many applications such as linear and nonlinear eigenvalue

problems, quadratic assignment problems and matrix valued image processing [17, 19, 20, 39]. Based on the

structure of Grassmann and Stiefel manifolds, geometric methods have been discussed in [17, 25, 26, 27].

Here, we would like to consider the SOC method to this problem. By introducing P = LX to split the

orthogonality constraint, the above minimization is equivalent to the following problem:

min
X,P∈Rn×m

J (X), s.t. LX = P & PTP = I (2.12)

Using Bregman iteration, the above problem can be iteratively solved as follows:

1. Xk = arg min
X
J (X) +

r

2
‖LX − P k−1 +Bk−1‖2F .

2. P k = arg min
P

r

2
‖P − (LXk +Bk−1)‖2F , s.t. PTP = I;

3. Bk = Bk−1 + LXk − P k.

where the first subproblem is a convex optimization problem without constraints and the second constrained

quadratic problem has closed-form solution provided by the following theorem.

Theorem 2.1. The constrained quadratic problem:

P ∗ = arg min
P∈Rn×m

1

2
‖P − Y ‖2F , s.t. PTP = I (2.13)

has the closed-form solution with two forms as follows:

1. P ∗ = UIn×mV
T , where U ∈ Rn×n, V ∈ Rm×m are two orthogonal matrices and D ∈ Rn×m is a

diagonal matrix satisfying the SVD factorization Y = UDV T .

2. If rank(Y ) = m, P ∗ = Y Ṽ D̃−1/2Ṽ T , where V ∈ Rm×m is an orthonormal matrix and D̃ ∈ Rm×m

is a diagonal matrix satisfying the SVD factorization Y TY = Ṽ D̃Ṽ T .

[Proof:] 1. This result can also be found in [40, 25]. To make the paper self-contained, we briefly write the

proof here. For Let P̂ = UTPV . Since ‖P − Y ‖2F = ‖U(UTPV −D)V ‖2F = ‖U(P̂ −D)V ‖2F = ‖P̂ −D‖2F
and PTP = I ⇐⇒ P̂T P̂ = I, it is clear that P ∗ in (2.13) can be given by P ∗ = UP̂ ∗V T , where P̂ ∗ is a

solution of the following problem:

P̂ ∗ = arg min
P̂∈Rn×m

1

2
‖P̂ −D‖2F , s.t. P̂T P̂ = I (2.14)

It is easy to see that the problem (2.14) has a unique solution P̂ ∗ = In×m if rank(D) = m. In the case that

rank(D) = k < m, without loss of generality, we can assume d1, · · · , dk > 0 and dk+1, · · · , dm = 0. Then
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for any orthogonal matrix O1 ∈ R(m−k)×(m−k), P̂ ∗ = diag{sign(d1), · · · , sign(dk), O1} is a solution of the

problem (2.14). Thus, P ∗ = UIn×mV
T is a solution of the constrained problem (2.13).

2. Consider the Lagrangian of the constrained problem (2.13): L(P,Θ) =
1

2
‖P−Y ‖2F+Tr(Θ(PTP−Id)),

we have: 
∂L
∂P

= (P − Y ) + P (Θ + ΘT ) = 0

PTP = I

=⇒

 P (I + Θ + ΘT ) = Y

PTP = I
(2.15)

This implies: (I + Θ + ΘT )(I + Θ + ΘT ) = Y TY and P = Y (I + Θ + ΘT )−1.

Since Y TY is symmetric and semi-positive definite, there is a diagonal matrix D̃ and an orthonormal

m×m matrix V with Ṽ T Ṽ = I such that Y TY = Ṽ D̃Ṽ T , then I + Θ + ΘT = ±Ṽ D̃1/2Ṽ T are two square

roots of Y TY . The principle square root I + Θ + ΘT = Ṽ D̃1/2Ṽ T is the one we desired. If rank(Y ) = m,

then Ṽ D̃1/2Ṽ T is invertible. Thus, P = Y (Ṽ D̃1/2Ṽ T )−1 = Y Ṽ D̃−1/2Ṽ T . �

According the above theorem, we propose the following algorithm to solve the problem (2.11):

SOC Algorithm 2. Initialize X0, P 0 = LX0, B0 = 0

while “not converge” do

1. Xk = arg min
X
J (X) +

r

2
‖LX − P k−1 +Bk−1‖2F .

2. Let Y k = LXk +Bk−1. Compute SVD factorization Y k = UDV T .

3. P k = UIn×mV
T

4. Bk = Bk−1 + LXk − P k
Remark 1. For problems with m� n, the solution of (2.13) given by the second form is more efficient

than the first form.

2.4. Spherical and linear equality constrained problems. According to the discussion in the

previous two subsections, the SOC method splits the orthogonality constraint into a quadratic problem with

analytic solution. This method successfully avoids studying the manifold structure of the constraint. As long

as the corresponding constrained quadratic problem can be solved efficiently, the SOC method can be adapted

to tackle problems with orthogonality constraints and other constraints, which the feasible approaches may

not be able to handle. To demonstrate the potential application of the SOC method, we consider a spherical

and linear equality constrained problem:

min
x∈Rn

J (x), s.t. Ax = f & ‖x‖2 = 1 (2.16)

where J (x) is convex and A ∈ Rm×n is a matrix. Again, we introduce an auxiliary variable p to split

constraints Ax = b and ‖x‖2 = 1, then the above problem is equivalent to:

min
x∈Rn

J (x), s.t. x = p, Ap = f & ‖p‖2 = 1 (2.17)

Similar as our previous method, we propose to solve the above problem using Bregman iteration:

1. xk = arg min
x
J (x) +

r

2
‖x− pk−1 + bk−1‖22;

2. pk = arg min
p

r

2
‖p− (xk + bk−1)‖22 s.t. Ap = f & ‖p‖2 = 1;

3. bk = bk−1 + xk − pk.

where the first problem is a convex minimization without constraints and, more importantly, the second

constrained quadratic problem can have closed-form solution, which is provided in the following theorem.
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Theorem 2.2. Let A be a m× n matrix with rank k. Write a QR decomposition of AT as

AT =

[
Q1
n×k

, Q2
n×(n−k)

] R1
k×m

0
(n−k)×m

 (2.18)

where Q = [Q1 Q2] ∈ Rn×n is an orthogonal matrix. Then the constrained quadratic problem:

p∗ = arg min
p∈Rn

r

2
‖p− y‖22, s.t. Ap = f & ‖p‖2 = 1. (2.19)

has the following closed-form solution:

p∗ =
√

1− ‖p#‖22 Sproj(p̂) + p# (2.20)

where p# = arg minAp=f ‖p‖2 and p̂ = Q2Q
T
2 y.

[Proof]: Based on the QR decomposition of AT = [Q1 Q2]

[
R1

0

]
in (2.18), the column vectors of Q2

form an orthonormal basis of the null space NA of the matrix A. Therefore, Q2Q
T
2 : Rn → NA, v 7→ Q2Q

T
2 v

provides an orthogonal projection from RN to NA. Let q ∈ Rn be a vector satisfying Aq = f , then

p# = arg minAp=f ‖p‖2 = p − Q2Q
T
2 p which is perpendicular to NA . If we write p = p̃ + p#, then the

problem (2.19) is equivalent to the following constrained problems:

p̃∗ = arg min
p̃∈Rn

r

2
‖p̃+ p# − y‖22, s.t. A(p̃+ p#) = f & ‖p̃+ p#‖2 = 1

⇐⇒ p̃∗ = arg min
p̃∈Rn

r

2
‖p̃+ p# − y‖22, s.t. Ap̃ = 0 & ‖p̃‖2 =

√
1− ‖p#‖22 (2.21)

And p∗ = p̃∗ + p#. Since p̃ ∈ NA, we have 〈p̃, p#〉 = 0. Thus,

p̃∗ = arg min
p̃∈NA

r

2
‖p̃− y‖22, s.t. ‖p̃‖2 =

√
1− ‖p#‖22

=
√

1− ‖p#‖22 Sproj(p̂) (2.22)

where p̂ is the projection of y to NA satisfying:

p̂ = arg min
p∈NA

r

2
‖p− y‖22 = Q2Q

T
2 y (2.23)

Therefore, we have:

p∗ =
√

1− ‖p#‖22 Sproj(p̂) + p# (2.24)

where p# = arg minAp=f ‖p‖2 and p̂ = Q2Q
T
2 y. �

According the above theorem, we propose the following algorithm to solve the constrained problem

(2.16).

SOC Algorithm 3. Initialize x0 = p0, b0 = 0 and compute the QR decomposition of AT = [Q1 Q2]

[
R1

0

]
.

Choose a vector q ∈ Rn satisfying Aq = f and let p# = q −Q2Q
T
2 q.
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while “not converge” do

1. xk = arg min
x
J (x) +

r

2
‖x− pk−1 + bk−1‖22.

2. pk =
√

1− ‖p#‖2Sproj(p̂) + p#, where p̂ = Q2Q
T
2 (xk + bk−1).

3. bk = bk−1 + xk − pk.

3. Applications and Numerical Results. To demonstrate the robustness of the algorithms based on

the SOC method proposed in section 2, several applications including direction field correction, color image

restoration, conformal mapping construction and their numerical results will be presented in this section. In

addition, comparisons with existing methods will also be conducted to show the efficiency of the algorithms.

All experiments were implemented in Matlab on a PC with a 2.66GHz CPU and 4G of RAM. Here, we

only illustrate applications for spherical constrained problems. Other applications involving algorithm 2 and

algorithm 3 will be explored in our future work.

3.1. L1-harmonic minimization. As we mentioned before, Bregman iteration has excellent perfor-

mance in l1 related problems due to its error forgetting [33]. Thus, we can expect our SOC algorithm based

on Bregman iteration will inherit this nice behavior. As a demonstration, we will show the SOC method for

a typical l1 related spherical constrained problem, L1-harmonic minimization.

L1-harmonic flow has many applications in directional diffusion, color image restoration, liquid crystal

theory as well as micromagnetics [4, 5, 6, 7, 8, 9, 10, 11, 13, 12]. It can be guided by the gradient flow of

the following L1-harmonic energy with orthogonality constraints:

min
~F
E(~F ) =

∫
Ω

|∇~F |dx, s.t. ‖~F (x)‖2 = 1 (3.1)

where ~F = (f1, · · · , fn) : Ω→ Rn, |∇~F (x)| =
√

n∑
i=1

|∇fi(x)|2 and ‖~F (x)‖2 =
n∑
i=1

|fi(x)|2.

Several different approaches have been proposed to solve the above L1-harmonic minimization problem.

In [6, 7], (3.1) is tackled by iteratively solving its nonlinear Euler-Lagrange equation and renormalization. A

penalty method is considered in [41] to penalize violation of the constraint with the following unconstrained

objective functional Eε(~F ) =

∫
Ω

|∇~F |dx+
1

ε
(‖~F (x)‖2− 1)2. A third approach in [11] is based on solving the

unconstrained problem

∫
Ω

∣∣∣∣∣∇
(

~F

|~F |

)∣∣∣∣∣ dx using a gradient descent method. More recently, a new approach

is introduced in [13] based on constraint preserving curvilinear search on the unit sphere with choosing

Barzilai-Borwein step size for updating. The authors in [13] also claim the most efficiency of the curvilinear

search method compared with the previous approaches. Thus, our comparison is mainly conducted with the

curvilinear search method.

According to the discussion of the SOC method in section 2, we propose to solve the problem (3.1) using

the Algorithm 1 by introducing an auxiliary variable ~P for ~F , which solves the following subproblem:

~F k = arg min
~F

∫
Ω

|∇~F |+ r

2

∫
Ω

‖~F − ~P k−1 + ~Bk−1‖2 (3.2)

This unconstrained problem is a well-known Rudin-Osher-Fatemi (ROF) model [42], which can be solved

by several well-known algorithms. Here, we use split Bregman method [38] to solve the problem (3.2) by
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introducing another auxiliary variable
~~Q for ∇~F . In other words, we iteratively solve the following problems:

(~F k,
~~Qk) = arg min

~F,
~~Q

∫
Ω

| ~~Q|+ r

2

∫
Ω

‖~F − ~P k−1 + ~Bk−1‖2 +
η

2

∫
Ω

‖∇~F − ~~Q+
~~D‖2 (3.3)

~~D ← ~~D +∇~F k − ~~Qk (3.4)

Combining with solving (3.2) using the split Bregman method [38] and the Algorithm 1, we propose the

following algorithm to solve the L1-harmonic minimization problem (3.1).

SOC Algorithm 4. Initialize ~B0 = 0,
~~D0 = 0, ~F 0 = ~P 0 and

~~Q0 = ∇~F 0

while “not converge” do

1. Solve (−η∆ + r)~F k = r(~P k−1 − ~Bk−1)− η∇ · ( ~~Qk−1 − ~~Dk−1),

2.
~~Qk = max{0, 1− 1

η

∣∣∣∣∇~Fk+
~~Dk−1

∣∣∣∣}
(
∇~F k +

~~Dk−1

)
3. ~P k(x) = Sproj(~F k(x) +Bk(x)),

4.
~~Dk =

~~Dk−1 +∇~F k − ~~Qk,

5. ~Bk = ~Bk−1 + ~F k − ~P k.

Note that the only equation needs to be solved in this algorithm is the first step for updating ~F k. This

linear equation can be efficiently solved by a Fast Fourier Transformation (FFT) or iteratively solved by

conjugate gradient method or Gauss-Seidel method. Here, we choose several steps of Gauss-Seidel to obtain

an approximate solution similar to what was used in the split Bregman method [38]. According to the error

forgetting property of Bregman iteration for the convex l1 related problems [33], we expect that similar

behavior of fast convergence can be observed for the proposed algorithm.

Different from the theoretically guarantee of convergence in the convex case, it is a challenge to have the

convergence analysis of the proposed algorithm for the orthogonality constrained problem. To demonstrate

the robustness of the proposed SOC algorithm, we first would like to consider the L1-harmonic energy

minimization problem for direction field correction using the Algorithm 4. More specifically, we typically

consider a unit norm direction field ~F (x) = (f1(x), f2(x)) defined on the domain D = [−1, 1]2 with Dirichlet

boundary condition
x

‖x‖ =
1√

x2
1 + x2

2

(x1, x2) on the boundary ∂D. We choose the same initial input

~F 0 : D = [−1, 1]2 → S2 using in [13] defined as follows:

~F 0(x) =


(

x

‖x‖ sinφ(‖x‖), cosφ(‖x‖)
)
, if x ∈ (−1, 1)2

x

‖x‖ , if x ∈ ∂D
(3.5)

where φ(‖x‖) = 3π
2 min{‖x‖2, 1}. By choosing grid width of the domain [−1, 1]2 as h =

√
2/2n, we set the

maximal iteration numbers as 10000 and terminate the program if ‖
~Fk−~Fk−1‖
‖~Fk‖

≤ 10−6 and |E(~Fk)−E(~Fk−1)|
E(~Fk)

≤
10−7. In this case, the solution of the optimization problem (3.1) is given by ~FT (x) =

x

‖x‖ . We further

define the relative error of the computation results by Error = ‖~F k − ~FT ‖/‖~FT ‖ to check the accuracy of

the proposed algorithm. In addition, we also numerically test the dependence of the algorithm performance

to the parameter r.

The convergence of Bregman iteration method has been proved for convex problems [31, 32, 33]. For the

orthogonality constrained problems, the non-convexity may introduce further restriction to the choice of the
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Fig. 3.1. The initial input and ground truth of the problem with grid size 23× 23 and 46× 46.

parameter r in the proposed algorithm. Intuitively, the larger r will force the stronger equality constraint

between ~F and the auxiliary variable ~P . While, a too much small r might not be able to provide strong

enough force to drive ~F to satisfy the orthogonality condition. To demonstrate this point, we apply the

Algorithm 4 to the above directional field correction problem with grid size 23 × 23 and 46 × 46 (Figure

3.1). Fixing µ = 50, we choose a small r = 1 and relative big r = 300 in our fist test. Figure 3.2 reports the

difference log ‖~F − ~P‖2, the difference log ‖(‖~F (x)‖2−1)‖2, the energy evolution via the number of iterations

and the direction filed correction results. From the first and third columns of Figure 3.2, we can clearly see

that the difference ‖~F − ~P‖ does not converge, thus the orthogonality constraint ‖~F (x)‖2 = 1 could not

be satisfied and the computation results are not close to the ground truth. As comparisons, the second the

fourth columns of Figure 3.2 illustrate the computation results using r = 300. It is clear to see that ‖~F − ~P‖
converge and the orthogonality constraint also satisfied. To further test the dependence of the algorithm

performance to the parameter r, we also test the algorithm by choosing r from 1 to 1500. In Figure 3.3, we

report the relative errors ‖~F k − ~FT ‖/‖~FT ‖ and number of iterations using different values of r. According

to the Figure. 3.3, we can also clearly see that the algorithm always converge as long as r is great than

a certain value. In addition, the relative errors ‖~F k − ~FT ‖/‖~FT ‖ does not depend on the values of r once

the algorithm converge. While, the iteration numbers of the algorithm does depend on the parameter r.

The bigger r is chosen, the more iterations the algorithm needs to run. Unfortunately, we currently could

not theoretically indicate how to choose a suitable threshold of the parameter r to guarantee the algorithm

convergence. This is certainly an interesting point to explore in our future work.

To further illustrate the efficiency of the proposed algorithm, we compare our algorithm with the curvi-

linear search algorithm proposed by Wen et al. [13, 28] recently, whose efficiency has been demonstrated to

be much better than the methods introduced in [41, 11]. We test two direction fields with size 23× 23 and

46×46 and the initial input defined in (3.5) for both algorithms and choose r = 300, η = 50 in the algorithm

4. Figure 3.4 plots numerical results and energy evolution curves obtained from both algorithms. The table

in Figure 3.4 reports the number of iterations, computation time and the accuracy ‖~F k− ~FT ‖/‖~FT ‖ for both

algorithms. According to the comparison, it is clear to see that both algorithms can provide satisfactory

results. The proposed SOC algorithm is slightly more expensive than the curvilinear search algorithm in

terms of the computation time for each iteration, while the total iteration numbers of the SOC algorithm are

much more fewer than the iteration numbers of the curvilinear search method. Thus, the total computation

time of our method is much less than the total time of curvilinear search method. Moreover, our proposed

algorithm 4 apparently is more accurate than the curvilinear search method for the L1-harmonic energy

minimization problem.

Next, we apply the Algorithm 4 to solve the L1-harmonic energy minimization problem (3.1) in the

case of n = 3 for an application to color RGB image chromaticity denoising [8, 9, 10, 11, 13]. In this
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Fig. 3.2. The algorithm performances by choosing different r. From top to bottom, each row plots the error

log ‖~F − ~P‖2, the error log ‖(|~F (x)|2 − 1)‖2, the energy evolution curve and computing results, respectively. The first
two columns report results by choosing grid size 23 × 23 and r = 1, 500 respectively. The last two columns report
results by choosing grid size 46× 46 and r = 1, 500 respectively.

application, a color image is represented as ~I = (IR, IG, IB), from which the brightness of the image is given

by |~I| =
√
I2
R + I2

G + I2
B and the chromaticity is given by ~F =

~I

|~I|
=

1√
I2
R + I2

G + I2
B

(IR, IG, IB) ∈ S2.

To test the L1-harmonic minimization for chromaticity denoising, we only assume that the chromaticity is

contaminated but the brightness is kept from the original image. In our test, Gaussian noise is added to the

chromaticity ~F so that the image with noisy chromaticity is given by ~F 0 =
~F + βξ

|~F + βξ|
, where ξ satisfies the

standard normal distribution N(0, 1). With the solution ~F ∗ of the L1 harmonic flow guided by L1-harmonic

energy, the denoised image can be assembled as ~I∗ = |~I|~F ∗.
We test two color images, a flower image and a clown image, with two different levels of Gaussian

noise, β = 0.4, 0.8, using the proposed Algorithm 4 and the curvilinear search method introduced in [13].
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Fig. 3.3. The relative error ‖~F k − ~FT ‖/‖~FT ‖ and number of iterations via the parameter r. The first two plots
report results using grid size 23× 23. The last two plots report results using grid size 46× 46.
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grid size
SOC Algorithm 4 the curvilinear algorithm

# of iterations
time(s)

Error # of iterations
time(s)

Error
per-iter total per-iter total

23× 23 346 0.000675 0.23 0.0018 1359 0.000543 0.74 0.0038
46× 46 832 0.001308 1.09 0.0004 3288 0.001001 3.29 0.0015

Fig. 3.4. Comparison between the proposed algorithm 4 and the curvilinear search algorithm in [13, 28]. The first

column shows the initial inputs ~F 0 for both algorithms. The second and the third columns are results obtained from the
curvilinear algorithm and our proposed SOC algorithm, respectively. The last column illustrates the energy evolution
via iteration numbers. The table list the comparisons of numbers of iterations, computation time and accuracy of both
algorithms.

Figure. 3.5 plots resulting denoised images and corresponding energy evolution curves. The first and third

rows of Figure. 3.5 plot results of noise level β = 0.4 and the second and fourth rows report results of noise

level β = 0.8. The table in Figure 3.5 reports the caparisons of computation time and iteration numbers

for both algorithms. Although the proposed SOC algorithm takes slightly more time than the curvilinear

search method, the total iteration numbers of the SOC algorithm are much more fewer than the iteration

numbers of the curvilinear search method. Overall, the SOC algorithm is more efficient than curvilinear

search method in this problem.

3.2. Global conformal parameterization for genus-0 surfaces. Surface parameterization allows

operations on the surface to be carried out on simple parameter domains. A special type of parameterization

12



Noise β= 0.4,  Size: 288× 288

50 100 150 200 250

50

100

150

200

250

Curvilinear,  Size: 288× 288

50 100 150 200 250

50

100

150

200

250

SOC,  Size: 288× 288

50 100 150 200 250

50

100

150

200

250

0 20 40 60 80 100 120
0

2

4

6

8

10
x 10

4

Number of iterations

E
n
e
rg

y

Size: 288× 288

 

 

Curvilinear
SOC

Noise β= 0.8,  Size: 288× 288

50 100 150 200 250

50

100

150

200

250

Curvilinear,  Size: 288× 288

50 100 150 200 250

50

100

150

200

250

SOC,  Size: 288× 288

50 100 150 200 250

50

100

150

200

250

0 50 100 150
0

2

4

6

8

10

12

14
x 10

4

Number of iterations

E
n
e
rg

y

Size: 288× 288

 

 

Curvilinear
SOC

Noise β= 0.4,  Size: 200× 320

50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200

Curvilinear,  Size: 200× 320

50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200

SOC,  Size: 200× 320

50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200
0

1

2

3

4

5

6

7
x 10

4

Number of iterations

E
n

e
rg

y

Size: 200× 320

 

 

Curvilinear
SOC

Noise β= 0.8,  Size: 200× 320

50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200

Curvilinear,  Size: 200× 320

50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200

SOC,  Size: 200× 320

50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200

0 50 100 150
0

2

4

6

8

10
x 10

4

Number of iterations

E
n
e
rg

y

Size: 200× 320

 

 

Curvilinear
SOC

image
SOC Algorithm 4 the curvilinear algorithm[13]

# of iterations
time(s)

# of iterations
time(s)

per-iter total per-iter total
flower (β = 0.4) 49 0.0758 3.72 108 0.0647 6.99
flower (β = 0.8) 63 0.0759 4.97 130 0.0622 8.10
clown (β = 0.4) 43 0.0479 2.06 159 0.0465 7.39
clown (β = 0.8) 55 0.0479 2.64 132 0.0449 5.92

Fig. 3.5. Comparison between the proposed algorithm 4 and the curvilinear algorithm in [13] with fixed 30 it-
erations. The first column shows the input images contaminated by two different levels of Gaussian noise on their
chromaticity. The second and the third columns are results obtained from the curvilinear algorithm and our proposed
SOC algorithm 4, respectively. The last column illustrates the energy evolution via iteration numbers. The table list
the comparisons of numbers of iterations, computation time of both algorithms.

with the angle preserving property, so called conformal parameterization, is widely used in many different

areas such as computer vision, computer graphics, as well as medical image analysis [43, 44, 45, 46, 1, 2,

47, 48, 49, 50]. In many situations, a global conformal parameterization that maps a surface onto a global

parameter domain is desirable. Particularly, a global conformal parameterization of a genus-0 surface (M, g)

is equivalent to a harmonic map from M to the unit sphere (S2, g0), which can be obtained by optimizing
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the following harmonic/Dirichlet energy minimization problem [51, 52]:

min
~F=(f1,f2,f3):M→R3

E(~F ) =
1

2

∫
M

3∑
i=1

|∇Mfi(x)|2dM, s.t. f2
1 (x) + f2

2 (x) + f2
3 (x) = 1 (3.6)

where ∇Mfα =

2∑
i,j=1

gij
∂fα
∂xi

∂xj is gradient of fα, α = 1, 2, 3 on (M, g) and (gij) is the inverse of the metric

matrix g. If we write ∇M ~F = (∇Mf1,∇Mf2,∇Mf3) and ‖∇M ~F‖2 =
∑3
i=1 |∇Mfi(x)|2, then the above

problem can be written as:

min
~F=(f1,f2,f3)

E(~F ) =
1

2

∫
M
‖∇M ~F‖2, s.t. ‖~F (x)‖2 = 1 (3.7)

This constrained optimization problem is tackled in [1, 2] using the gradient descent method and iteratively

projecting back to the sphere. More recently, a more efficient algorithm for the above problem is discussed

in [3] based on a curvilinear search method, with Barzilai-Borwein step size, introduced in [28].

Here, we can use the proposed Algorithm 1 to solve the problem (3.7) by introducing an auxiliary variable
~P for ~F to split the constraint, which is needed to solve the following subproblem:

~F k = arg min
~F

1

2

∫
M
‖∇M ~F‖2 +

r

2

∫
M
‖~F − ~P k−1 + ~Bk−1‖2 (3.8)

whose minimizer satisfies the following Euler-Lagrangian equation:

(−∆M + r)~F = r(~P k−1 − ~Bk−1) (3.9)

where ∆M is the Laplace-Beltrami operator on M and ∆M ~F = (∆Mf1,∆Mf2,∆Mf3). Therefore, the

harmonic energy minimization problem (3.7) can be iteratively solved using our proposed SOC method

described in Algorithm 1 as follows:

SOC Algorithm 5. Initialize ~B0 = 0, ~F 0 = ~P 0 = Gauss map G

while “not converge” do

1. Solve (−∆M + r)~F k = r(~P k−1 − ~Bk−1),

2. ~P k(x) = Sproj(~F k(x) + ~Bk−1(x)) =
~F k(x) + ~Bk−1(x)

|~F k(x) + ~Bk−1(x)|
,

3. ~Bk = ~Bk−1 + (~F k − ~P k).

Where the Gauss map G :M→ S2,G(p) = ~np, in which ~np is the unit outward normal vector at p ∈M.

Comparing with the curvilinear method in [28, 3], the algorithm is very easy to implement without requiring

further sophisticated optimization techniques. Meanwhile, it has comparable efficiency with the curvilinear

method, which will be illustrated in the numerical experiments.

In practice, we approximate M by a triangulated surface M = {V = {pi}Ni=1, T = {Tl}Ll=1}, where

pi ∈ R3 is the i-th vertex and Tl is the l-th triangle. For a function f = (f(p1), · · · , f(pN ))T defined on the

triangle mesh, we approximate the Laplace-Beltrami operator on surface M by [53, 54, 55]:

4Mf(pi) ≈
∑
j∈Ni

ωij(pi) (f(pj)− f(pi)) , (3.10)
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where ωij(pi) =
cotαij(pi) + cotβij(pi)

2
, αij and βij are the two angles opposite to the edge pipj , Ni is the

first ring neighborhood of the vertex pi.

Since the discretization of the operator (−∆M + r) is a sparse and symmetric positive definite matrix,

there are variety of numerical linear algebra packages to solve the equation (3.9), such as Jacobi, Gauss-

Seidel, or conjugate gradient method etc. In all our numerical experiments, 5 steps of Gauss-Seidel are

chosen to approximate the solution of (3.9).

Given a general genus-0 surface (M, g), it is hard to have analytical forms of the conformal maps from

(M, g) to (S2, g0). However, the angle preserving property and the relation of conformal factor ~F ∗(g0) =

e2ug 1 can help us check the accuracy of the resulting conformal map ~F :M→ S2, p 7→ (f1(p), f2(p), f3(p))

by checking its conformality. Numerically, we can compute the angle differences between triangles on the

input surface M and the corresponding triangles on the obtained map. In addition, the “conformal factor”

with respect to the map ~F can be approximated by:

e2u(pi) =

∑
pi∈Tl

Area(~F (Tl))∑
pi∈Tl

Area(Tl)
(3.11)

To further illustrate the efficiency of the proposed Algorithm 5, we conduct comparisons of our algorithm

with the gradient descent approach in [2] and curvilinear search method in [28, 3]. For all three algorithms,

surface Gauss maps are chosen to be the initial maps and the stop criteria is chosen as |E(~Fk)−E(~Fk−1)|
E(~Fk)

≤ ε =

10−10. Figure 3.2 plots the resulting conformal factors, angle differences and curves of energy evolution for

three algorithms. The numbers of iterations and corresponding computation time are reported in Table 3.2.

According to the corresponding patterns of the conformal factors and angle differences illustrated in Figure

3.2, all three methods provide satisfactory results. It is clear to see that both of the proposed method and

the curvilinear method are much more efficient than the gradient descent method. Our proposed algorithm

based on the SOC method has the comparable efficiency with the curvilinear search method. Again, we

would like to point out that our proposed method is more convenient to implement than the curvilinear

search method which needs more attention about Cayley transformation and Barzilai-Borwein step size.

Surface # of verticies
SOC Algorithm 5 the curvilinear algorithm the gradient descent method

# of iterations time(s) # of iterations time(s) # of iterations time(s)
Hippo1 2000 362 0.34 210 0.19 3994 2.08

Putamen1 10002 1036 4.57 1157 4.86 30000 89.74
Table 3.1

Comparison of the proposed Algorithm 5 with the curvilinear algorithm in [28, 3] and the gradient descent method
in [1].

4. Conclusion and Future Work. In this paper, we tackle the orthogonality constrained problems

using the proposed SOC method. With the introduced auxiliary variables, the SOC method iteratively solves

the constrained problem by computing an unconstrained problem and a quadratic constrained problem with

an analytic solution. Different from penalty methods and the standard augmented Lagrangian methods, the

SOC method directly solves the orthogonality constraint in each iteration. Meanwhile, it also successfully

avoids handling the complicated manifold structure as the feasible approaches need to do. To demonstrate

the robustness of the SOC method, three applications, conformal mapping construction, directional field

1 ~F ∗ is the standard pull-back map in differential geometry.
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Fig. 3.6. Comparison the proposed Algorithm 5 with the curvilinear algorithm in [28, 3] and the gradient descent
method in [2]. Surfaces are color coded by the conformal factors obtained from the resulting conformal mappings.
Histograms show angle difference between triangles on the input surface M and the corresponding triangles on the
obtained map. The last column illustrates the energy evolution via iteration numbers.

correction and color image restoration, are discussed. In addition, we also conduct comparisons of the

SOC method with existing fast algorithms for orthogonality constrained problems to illustrate its efficiency.

According to our numerical comparison, the efficiency of the SOC method is comparable with curvilinear

search method in conformal mapping construction problem. Moreover, the SOC method converges much

faster than the curvilinear search method for l1 related problems due to the error forgetting of Bregman

iteration.

Our applications and numerical experiments focus on spherical constrained problems so far, although we

also propose algorithms to solve matrix orthogonality constrained problems and spherical and linear equality

constrained problems. The applications and numerical demonstrations of the latter two types of problems

will be explored in our future work. More importantly, we have not been able to show the convergence of

the SOC method in this paper, which we believe it is true according to our experiments. In our future work,

we will certainly take the proof of convergence of the SOC method as a high priority.
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