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Abstract

The regularization methods for image restoration using the `1 norm of the coef-
ficients of the underlying image under some system assume that the image has
a good sparse approximation under the given system. Such a system can be a
basis, a frame or a general over-complete dictionary. One widely used system
in image restoration is wavelet tight frame. There have been enduring efforts
on seeking wavelet type of tight frames under which certain class of functions
or images can have a good sparse approximation. However, the structure of
images varies greatly in practice and a system working well for one type of
images may not work for another. This paper presents a method that derives
discrete tight frame system from the input image itself to provide a better sparse
approximation to the input image. Such an adaptive tight frame construction
scheme is applied on image denoising by constructing a tight frame tailor down
to the given noisy data. The experiments showed the proposed approach per-
forms better in image denoising than those wavelet tight frames designed for a
class of images. Moreover, by ensuring the system derived from our approach
is always a tight frame, our approach also runs much faster than some other
adaptive over-complete dictionary based approaches with comparable PSNR
performance.

Key words: tight frame, image de-noising, wavelet thresholding, sparse
approximation

1. Introduction

In the past decades, sparse approximation has been playing a fundamental
role in many signal processing areas, such as compression, data analysis and
signal restoration. Sparse approximation is about keeping most information
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of the given data with a linear combination of a small number of atoms of
some system. Among many different systems, orthonormal wavelet basis [1]
has been very successful in signal processing as it can approximate piece-wise
smooth 1D signals very efficiently with only few non-zero wavelet coefficients.
In recent years, over-complete system has become more and more recognized
and used in signal processing. Over-complete system has several advantages
over orthonormal basis for sparsely approximating signals, as signals are more
likely to have a good sparse approximation under a redundant system. Also, it
offers more flexibilitis and conveniences in the filter design. One representative
over-complete system is the so-called wavelet tight frame ([2, 3]) which is now
widespread in many signal processing tasks. Wavelet tight frame sacrifices the
orthonormality and linear independence of orthonormal basis while still enjoying
the same efficient decomposition and reconstruction schemes as orthonormal
wavelet basis.

Most wavelets used in image processing are separable wavelet bases defined
from the tensor product of the 1D wavelet bases. Despite their successes in 1D
signal processing, tensor wavelets are much less efficient when approximating
images since tensor wavelets mostly focus the horizontal and vertical disconti-
nuities of images. When the discontinuities of the target image has complex geo-
metric properties, the sparsity of a good approximation under tensor wavelets is
not satisfactory. In recent years, many tight frames have been proposed to more
efficiently represent nature images, including ridgelet [4], curvelet [5, 6], bandlet
[7], shearlet [8] and many others. However, the efficiency of these redundant
systems heavily relies on certain functional assumptions of nature images, e.g.
isolated objects with C2 singularity assumed by curvelet. Such an assumption
is applicable to cartoon-type images but not to textured images. Nature images
vary greatly in terms of the geometrical structure, and often they contain a sig-
nificant percentage of irregular textures with fractal structures. A tight frame
designed for efficiently representing one type of continuum may not provide a
good sparse approximation to the input image. A better approach is to develop
a tight frame system that is specifically optimized for the given image. In other
words, the design of a tight frame system should be driven by the input data in
order to achieve great performance in terms of sparse approximation.

The concept of “adaptivity” has been explored in recent years by the so-
called learning approaches (e.g., [9, 10, 11, 12, 13]). The learning approach
learns an over-complete dictionary from the input image itself to achieve better
sparsity of the input image over the learned dictionary. The basic idea of most
existing approaches is first partitioning images into small image patches and
then finding a set of atoms of the dictionary such that each image patch can be
approximated by a sparse linear combination of atoms in the dictionary. The
adaptively learned over-complete dictionaries by these approaches are very ef-
fective on sparsely approximating nature images with rich textures. As a result,
these adaptive over-complete dictionary based approaches tend to outperform
the sparsity-based wavelet thresholding methods in image denoising. Despite
the success of these adaptively learned approaches, the over-complete dictionar-
ies constructed by these approaches lack several properties desired for image
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restoration. One is the so-called perfect reconstruction property which ensures
that the given signal can be perfectly represented by its canonical expansion in
a manner similar to orthonormal bases. Also, finding an optimal over-complete
system often leads to a severely under-constrained ill-posed problem owing to
the redundancy of the over-complete system. It remains a challenging task
to develop fast and stable numerical methods for estimating an optimal over-
complete system.

In this paper, we aim at developing an new approach to construct discrete
tight frame that is adaptive to the input image. The adaptively learned tight
frame in our proposed approach is more likely to give a highly sparse approx-
imation of the input image than existing wavelet tight frames. Different from
general over-complete dictionary, tight frame satisfies the perfect reconstruction
property which is appealing to many image restoration tasks. Also, the sparsity
of canonical frame coefficients of an image is closely related the regularity of the
image, which are assumed by many image restoration approaches to obtain the
results with less artifacts (see more details in [14]). Moreover, as we will show
later, the minimization problems arising in the construction of tight frame are
much better conditioned than that of generic over-complete dictionary, owing
to the unitary extension principle [14] satisfied by wavelet tight frame. Thus,
by considering a class of tight frames with certain special properties, a very fast
numerical method is available to construct data-driven tight frame.

To illustrate the benefit of adaptively constructed tight frame from the data
itself, we derived an adaptive tight frame denoising method based on the data-
driven tight frame construction scheme. The experiments showed that our adap-
tive tight frame denoising technique significantly outperformed standard wavelet
thresholding approaches on images of rich textures. Also, it is much faster than
some over-complete dictionary based approaches, e.g. the K-SVD method [11],
with comparable performance. The rest of the paper is organized as follows. In
Section 2, we first give a brief introduction to the preliminaries of wavelet tight
frame. Then, in Section 3, we introduce the proposed minimization model and
the corresponding numerical method. Section 4 is devoted to the experimental
evaluation of the proposed method and discussions.

2. Preliminaries and previous work

2.1. Wavelet and tight frame

In this section, we give a brief introduction to tight frame, wavelet tight
frame in a Hilbert space H and their constructions. Interested readers are
referred to [3, 14, 15] for more details. A sequence {xn} ⊂ H is a tight frame
for H if

‖x‖2 =
∑
n

|〈x, xn〉|2, for any x ∈ H.

There are two associated operators. One is the analysis operator W defined by

W : x ∈ H −→ {〈x, xn〉} ∈ `2(N)
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and the other is its adjoint operator W> called the synthesis operator:

W> : {an} ∈ `(N) −→
∑
n

anxn ∈ H.

Then, a sequence {xn} ⊂ H is a tight frame if and only if W>W = I, where
I : H −→ H is the identical operator. In other words, given a tight frame {xn},
we have the following canonical expansion:

x =
∑
n

〈x, xn〉xn, for any x ∈ H.

The sequence {〈x, xn〉} is called the canonical tight frame coefficient sequence.
Thus, tight frames are often viewed as generalizations of orthonormal bases. In
fact, a tight frame {xn} is an orthonormal basis for H if and only if ‖xn‖ = 1
for all xn.

One widely used class of tight frames in signal processing is the wavelet tight
frame. The wavelet tight frame for L2(R) starts with a finite set of generators
Ψ := {ψ2, ψ3, . . . , ψm} ∈ L2(R). The shifts and dilations of the generators
defines an affine system:

X(Ψ) = {ψ`j,k, 2 ≤ ` ≤ m, j ∈ Z, k ∈ Z},

where ψ`j,k = M j/2ψ`(M j · −k) for some positive integer M . The affine system
X(Ψ) ⊂ L2(R) is called a wavelet tight frame of L2(R) if it is a tight frame
satisfying

f =
∑

x∈X(Ψ)

〈f, x〉x, for any x ∈ L2(R). (1)

where 〈·, ·〉 is the inner product of L2(R). One construction scheme of wavelet
tight frame systems is using multi-resolution analysis (MRA). The construction
of MRA-based wavelet tight frames usually starts with a compactly supported
refinable function φ (often referred as a scaling function) with a refinement mask
a1 satisfying

φ̂(M ·) = â1φ̂,

where φ̂ is the Fourier transform of φ, and â1 is a 2π-periodic trigonometric
polynomial defined as â1(ω) :=

∑
k∈Z a1(k)e−ikω and â1(0) = 1. After ob-

taining a compactly supported refinable function φ, the next step is to find an
appropriate set of framelets Ψ = {ψ2, . . . , ψm} defined in the Fourier domain by

ψ̂i(M ·) = âiφ̂, i = 2, 3, . . . ,m

such that X(Ψ) forms a wavelet tight frame, where the associated masks {ai}mi=2

are 2π-periodic trigonometric polynomials:

âi(ω) =
∑
k∈Z

ai(k)e−iπkω.
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The construction of MRA-based wavelet tight frames is based on the Unitary
Extension Principle (UEP) [2], which says that X(Ψ) forms a tight frame pro-
vided that φ ∈ L2(R) and

m∑
i=1

âi(ω)âi(ω + 2πγ) = δγ , for γ ∈ ΩM ∩ [0, 1), (2)

where ΩM := (M)−1Z. A class of MRA-based wavelet tight frames are con-
structed in [2, 3] using the UEP. For example, the linear B-spline framelet used
in many image restoration tasks (see e.g. [16, 17, 18]) has the following three
masks:

a1 =
1

4
(1, 2, 1)>; a2 =

√
2

4
(1, 0,−1)>; a3 =

1

4
(−1, 2,−1)>. (3)

Once the wavelet tight frame for L2(R) is obtained, one way to construct higher-
dimensional wavelet tight frame for L2(R2) is via the tensor product.

The masks of the tight frame constructed for L2(R2) can be used to generate
the tight frame for the space of square summable sequences, denoted by `2(Z2).
Given some positive integer M , let ↓M denote the down-sampling operator and
↑M the up-sampling operator such that

[v ↓M ](n) := v(Mn), n ∈ Z2;
[v ↑M ](Mn) := v(n), n ∈ Z2, and all other elements of v ↑M are zero.

Then there are two essential operators associated with wavelet tight frames.
One is the decomposition operator Ta : `2(Z2)→ `2(Z2) defined by

[Tav](n) := M [(a(−·)∗v) ↓M ](n) = M
∑
k∈Z2

v(k)a(k−Mn), ∀ v ∈ `2(Z2), (4)

and the other is the reconstruction operator Ra : `2(Z2)→ `2(Z2) defined by

[Rav](n) := M [(a ∗ (v ↑M )](n) = M
∑
k∈Z2

v(k)a(n−Mk), ∀ v ∈ `2(Z2), (5)

where ‘*’ denote the discrete convolution operator. Let {ai ∈ `2(Z2)}mi=1 denote
the masks (filters) associated with a wavelet tight frame system. If considering
a single-level wavelet tight frame decomposition and reconstruction, then

Theorem 1. ([19]) Let aj , j = 1, . . . ,m be m be m real-valued finitely supported
filters. Then the following three conditions are equivalent:

(i)
∑m
i=1 âi(ω)âi(ω + 2πγ) = δγ , for any γ ∈M−1Z2 ∩ [0, 1)2;

(ii)
∑m
i=1RaiTaiv = v, for any v ∈ `2(Z2);

(iii)
∑m
i=1

∑
n∈Z2 ai(k +Mn+ `)ai(Mn+ `) = M−1δk, for any k, ` ∈ Z2.
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If the wavelet tight frame system is a shift-invariant system by using M = I,
then there is no downsampling involved in (4) and (5). Let W> be the set
formed by all sequences vai,k given by

[vai,k](n) = ai(n− k), n ∈ Z2, (6)

for k ∈ Z2. Suppose that {ai}mi=1 is the set of all filters associated with a tight
frame in L2(R2) satisfying the UEP condition. Then the equivalence between
(i) and (ii) in Theorem 1 gives

W>W = I,

In other words, the elements of W> form a tight frame of `2(Z2). Also, by the
equivalence between (i) and (iii) in Theorem 1, the UEP condition (2) for the
shift-invariant wavelet tight frame can be expressed as the following,

m∑
i=1

∑
n∈Z2

ai(k + n)ai(n) = δk, for any k ∈ Z2. (7)

The analysis operator W and the synthesis operator W> associated with
a tight frame for sequences are also applicable to images, finite sequences in
`2(Z2). Let f ∈ RN denote the vector form of the image f by concatenating all
columns of f into a single column vector. For a given finitely supported 2D filter
a, let the N -by-N matrix Sa be the matrix that represents the decomposition
operator Ra under Neumann boundary condition (see [17, 14] for more details).
Then, the synthesis operator W> ∈ RN×P for RN w.r.t. the wavelet filters
H = {ak}mk=1 is defined as

W> = [Sa1 ,Sa2 , . . . ,Sam ]. (8)

The columns of W> form a wavelet tight frame for RN such that W>W = IN .
Interesting readers are referred to [14] for more details.

2.2. Previous work on adaptively learning over-complete dictionaries

In the past, there have been several approaches proposed to learn an over-
complete dictionary from a signal/image such that the sparsity of the tar-
get signal/image under the learned over-complete dictionary is optimized, e.g.,
[20, 9, 10, 11, 12, 13]. Earlier works are based on probabilistic reasoning. For
example, the maximum likelihood method is used in [20, 9] and the maximum
A-posteriori probability approach is used in [10] to construct over-complete dic-
tionaries. In recent years, there have been steady progresses on development of
the deterministic approaches of learning an over-complete dictionary from the
image (e.g. [11, 12, 13]). The representative work along this direction is the
so-called K-SVD method [11], which presents a minimization model to learn a
dictionary from the noisy image and use the learned dictionary to denoise im-
ages. Since our work also belongs to this category, we only give a brief review
on the K-SVD method.
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Let f, g denote the vector forms of the images f and g respectively. Let
D ∈ Rm,p denote the dictionary whose column vectors denotes the dictionary
atoms. Partitioning the image into ` image patches of m pixels with overlaps.
Then let Pj denotes the projection operator that maps the image to its j-th
image for j = 1, 2, . . . , `. Then the K-SVD method is to denoise image by
solving the following minimization:

min
g,c,D

1

2
‖f − g‖22 +

∑
j

µj‖cj‖0 + λ
∑
j

‖Dcj − Pjg‖22, (9)

where f, g ∈ Rn are the noisy image and the noise-free image to be estimated,
c = (c1, c2, . . . , c`) ∈ Rp,` is the matrix whose j-th column vector cj denotes the
expansion coefficient vector of j-th image patch over the dictionary D. The K-
SVD method showed better performance than the standard wavelet thresholding
method in the application of image denoising. Such an improvement comes from
the fact that the repeating texture elements are likely to be captured as atoms
in the system learned by the method.

Despite the impressive performance of the K-SVD method in image denois-
ing, how to efficiently solve the minimization (9) with satisfactory stability re-
mains a challenging task, as the minimization (9) is a very challenging ill-posed
minimization problem. An alternating iterative method is implemented in [11]
to alternatively update the estimations of c, g and D during each iteration.
Under such an scheme, there are two challenging sub-problems to solve during
each iteration. One is how to estimate the dictionary D given the current esti-
mations on c and g, which is a severely under-constrained problem owing to the
redundancy of D (p� m). A heuristic method is proposed in [11] to update the
atoms of the dictionary one by one in a greedy manner, which lacks the rigorous
treatment on the stability and optimality. Also, how to find a sparse coefficient
c given an over-complete dictionary D could be a computationally expensive
process. The orthogonal matching pursuit is used in [11] to find a sparse coeffi-
cient vector c during each iteration, which is quite slow and accounts for most
of computational amount of the K-SVD method.

3. Minimization model and numerical method

In this section, we present a new minimization model for constructing an
adaptive discrete tight frame for the given image. An efficient numerical solver
for solving the proposed minimization model is also provided.

3.1. Basic idea

Same as wavelet tight frame, the discrete tight frame constructed in our
approach is also generated by the shifts of a few generators. Moreover, it is
known that a shift-invariant system is more effective on reducing the artifacts
of the results than a shift-variant system in many image restoration tasks (see
e.g. [21, 14]). Thus, the tight frame constructed in our approach is a shift-
invariant system. In other words, the tight frame constructed in our approach
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is in the form of (8). Suppose that the image is of size L ×M and let N =
LM . Let Sa : RN −→ RN be the block-wise Toeplitz matrix that represents
the convolution operator with a finitely supported 2D filter a under Neumann
boundary condition. Then the synthesis operator W> ∈ RN×Nm is defined by

W> = [Sa1 ,Sa2 , . . . ,Sam ], (10)

where {ai}mi=1 are the filters associated with a tight frame and the columns
of W> form a tight frame for RN . Its transpose, the analysis operator W ∈
RNm×N is then as follows,

W = [S>a1(−·),S
>
a2(−·), . . . ,S

>
am(−·)]

>. (11)

Let g ∈ RN denote an input image and let W denote the analysis operator
of the tight frame defined by (11). We propose to construct a tight frame
W>(a1, . . . , am) by solving the following minimization:

min
v,{ai}mi=1

‖v −W (a1, a2, . . . , am)g‖22 + λ2‖v‖0, subject to W>W = I. (12)

There are two unknowns: one is the coefficient vector v which sparsely approxi-
mates the canonical tight frame coefficient Wg, and the other is the set of filers
{ai}mi=1 that generates a tight frame as (10). We take an iterative scheme to al-
ternatively update the estimation of the coefficient vector v and the estimation

of {ai}mi=1. More specifically, let {a(0)
i }mi=1 be the set of the initial filters to start

with, e.g. the linear spline framelet filters. Then for k = 0, 1, . . .,K − 1,

1. Given the frame filters {a(k)
i }mi=1, define the sparse frame coefficient vector

v(k) by
v(k) := argminv‖v −W (k)g‖22 + λ2‖v‖0, (13)

where W (k) is the analysis operator derived from {a(k)
i }mi=1 as (11).

2. Given the sparse frame coefficient vector v(k), update the frame filters

{a(k+1)
i }mi=1 by

{a(k+1)
i }mi=1 := argmin{ai}mi=1

‖v(k) −W (a1, a2, . . . , am)g‖22 (14)

subject to W>W = IN , where W> is the tight frame defined by {ai}mi=1

as (10).

After K + 1 iterations, the tight frame adaptive to the image g is defined as

W>(a
(K)
1 , a

(K)
2 , . . . , a

(K)
m ). In the next, we will give a more detailed discussion

on the model (12) and present an efficient numerical solver.
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3.2. Minimization (13) and its implications

It is known that the minimization (13) has a unique solution v̄ by applying
a hard thresholding operator on the canonical frame coefficient vector Wg:

v̄ := Tλ(Wg), (15)

where Tλ : RNm → RNm denote the hard thresholding operator defined by

[Tλv](n) =

{
v(n) if |v(n)| > λ;
0 otherwise.

(16)

Proposition 2. Let v̄ denote the solution to the minimization (13). Then, for
all v with ‖v‖0 ≤ ‖v̄‖0,

‖v −Wg‖2 ≥ ‖v̄ −Wg‖2.

Proof. For any v ∈ RNm, by the definition of v̄, we have

‖v −Wg‖22 + λ2‖v‖0 ≥ ‖v̄ −Wg‖22 + λ2‖v̄‖0.

Thus
‖v −Wg‖22 − ‖v̄ −Wg‖22 = λ2(‖v̄‖0 − ‖v‖0) ≥ 0.

The proof is done.

Proposition 2 states that v̄ is the best approximation to the canonical frame
coefficient vector Wg among all sparse vectors whose cardinality no greater
than the cardinality of v̄. Using the coefficient v̄, we can reconstruct a signal ḡ
defined by

ḡ = W>v̄ = W>(Tλ(Wg)).

When W> is a redundant tight frame, the approximation error of the recon-
struction ḡ to g is bounded by ‖v̄ −Wg‖2. However, ḡ is not necessarily the
best approximation to the signal g.

Proposition 3. Let W denote the tight frame satisfying W>W = I. Then

‖g −W>v‖22 + ‖(I −WW>)v‖22 = ‖v −Wg‖22.

Proof. By the fact that W>W = I, we have

‖g −W>v‖22 + ‖(I −WW>)v‖22
= g>g − 2g>W>v + v>WW>v + v>(I −WW>)(I −WW>)v
= g>g − 2g>W>v + v>WW>v + v>(I −WW>)v
= g>g − 2g>W>v + v>v
= g>W>Wg − 2g>W>v + v>v
= ‖v −Wg‖22.

(17)

This completes the proof.
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Proposition 3 essentially says that reconstruction ḡ from the coefficients v̄
obtained via (13) indeed minimizes the following objective function:

‖g −W>v‖22 + ‖(I −WW>)v‖22 + λ2‖v‖0. (18)

The minimization (18) is actually the so-called balanced approach for sparsity-
based regularizations (see more details in [14]). In the next, we give a brief
discussion on such a balance approach. Given a signal f and a tight frame sys-
tem W>, there exist several regularizations to find a sparse approximation to f
with different outcomes. Suppose we are using `1 norm as a convex replacement
of `0 norm to prompt sparsity. Most existing regularization methods of find-
ing a sparse approximation ḡ to the signal g is done via solving the following
minimization:

ḡ := W>v̄; v̄ := argminv‖g −W>v‖22 + τ‖(I −WW>)v‖22 + 2λ‖v‖1, (19)

Based on different values of τ , the minimization (19) can be classified into three
categories. When τ = 0, the model (19) is called the synthesis based approach
(e.g. [22, 18]). When τ =∞, the minimization (19) can be rewritten as

ḡ := argminf‖g − f‖22 + 2λ‖Wg‖1 (20)

as the coefficient v ∈ range(W ). The above approach is called the analysis
based approach (e.g. [23, 24]). When 0 < τ < ∞, the model (19) is called a
balanced approach (e.g. [25, 16, 17]).

The main difference among three methods lies in how much the second
term ‖(I − WW>)v‖22 contributes to the objective function. By rewriting
‖(I − WW>)v‖22 as ‖v − W (W>v)‖22, we see that it measures the distance
between the coefficient vector v and the canonical coefficients of its correspond-
ing reconstructed signal W>v. Since the magnitude of the canonical coefficients
reflects the regularity of the reconstructed signal under some mild conditions on
the tight frame W> (see [26] fore more details), this distance is closely related
to the regularity of the reconstructed signal. The smaller is ‖(I −WW>)v‖22,
the more accurately the corresponding coefficient v reflects the regularity of the
underlying signal. Thus, the synthesis based approach emphasizes the sparsity
of the coefficient vector v̄, but the decay of v̄ does not reflect the regularity
of the resulting reconstruction W>v̄. In contrast, the analysis based approach
emphasizes the sparsity of the canonical coefficient vector Wḡ which leads to
a more regular approximation. Indeed, it is shown in [27] that, by choosing
parameters properly, the analysis based approach can be seen as sophisticated
discretization of minimizations involving the total variation penalties or their
generalizations. It is noted that the coefficient vector v̄ obtained from the syn-
thesis based approach will be much more sparse than the canonical coefficient
vector Wḡ obtained by the analysis-based approach. The balanced approach
yields the result which balances the sparsity of the coefficient vector and the
regularity of the reconstructed signal.

Each approach has its disadvantages and advantages. The choice of the
approach depends on the nature of the targeted application. It is empirically
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observed that for image restoration, the reconstructed image obtained by the
synthesis-based approach tends to have some visually unpleasant artifacts. In
contrast, the results from the analysis-based approach and the balanced ap-
proach usually have less artifacts as they ensure certain regularities along image
edges. For our purpose, we take the balanced approach and the reason is two-
fold. First, our goal is to construct the tight frame that works better for image
restoration than the existing ones. Thus, we are not seeking for the tight frame
that maximizes the sparsity of the coefficients. Second, the minimization model
(20) resulting from the analysis-based approach requires an iterative solver,
which is too expensive for our purpose as the minimization (20) will be called
for many times in our approach. Therefore, we take an balanced approach and
the result W>(Tλ(Wg) seeks the balance between the regularity of the result
and the sparsity of its associated tight frame coefficients.

3.3. The modification of Model (14) and its numerical solver

The minimization model (14) is a constrained minimization with the quadratic
constraints W>W = I. Since the tight frame we are interested is a shift-
invariant system, the UEP condition (2) for ensuring W>W = I is then simpli-
fied to the constraints (7):

m∑
i=1

∑
n∈Z2

ai(k + n)ai(n) = δk, for any k ∈ Z2. (21)

The minimization (14) with the above quadratic constraints requires solving a
rather complex non-convex minimization problem. Thus, we propose to con-
struct the tight frame with certain special structure which will greatly simplify
the quadratic constraints (7) such that the minimization (14) has an explicit
analytic solution.

Proposition 4. Let ai, i = 1, 2, . . . , r2 be r2 real-valued filters with support on
Z2 ∩ [1, r]2 for some positive integer r. Then the filters {ai}r

2

i=1 satisfy the
following condition:

r2∑
i=1

∑
n∈Z2

ai(k + n)ai(n) = δk, k ∈ Z2,

as long as they satisfy the following orthogonal constraints:

〈ai, aj〉 =
∑

k∈[1,r]2∩Z2

ai(k)aj(k) =
1

r2
δi−j , 1 ≤ i, j ≤ r2.

Proof. For each ai, let ~ai denote its column vector form by concatenating all
its columns. Define the matrix A ∈ Rr2×r2 by

A = [~a1,~a2, . . . ,~ar2 ]. (22)
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Then

(A>A)(i, j) = ~a>i ~aj =
1

r2
δi−j , 1 ≤ i, j ≤ r2.

Thus we have A>A = 1
r2 I which implies AA> = 1

r2 I. Notice that

(AA>)(k, `) =

r2∑
i=1

~ai(k)~ai(`) =
1

r2
δk−`, 1 ≤ k, ` ≤ r2,

which gives
∑r2

i=1 ai(m)ai(n) = 1
r2 δm−n,m, n ∈ Z2. Then we have

r2∑
i=1

∑
n∈Z2

ai(k + n)ai(n) =
∑
n∈Z2

r2∑
i=1

ai(k + n)ai(n)

=

{
r2

r2 = 1, k = 0;
0, otherwise.

The proof is done.

By considering the frame filters {ai}r
2

i=1 with a special structure proposed in

Proposition 4, we greatly simplified the quadratic constraints on {ai}r
2

i=1 to
ensure that W>W = I. The minimization (14) is now simplified to

{a(k+1)
i }r

2

i=1 := argmin{ai}r2i=1
‖v(k) −W (a1, a2, . . . , ar2)g‖2 (23)

subject to 〈ai, aj〉 = 1
r2 δi−j , 1 ≤ i, j ≤ r2, where W is the analysis operator

defined by {ai}r
2

i=1 in the form of (11).
In the next, we derive the explicit analytic solution to the constrained mini-

mization problem (23). Sequentially partitioning the coefficient vector v(k) into
r2 vectors, denoted by v(k),i ∈ RN×1, i = 1, 2 . . . , r2. Then we can rewrite the
objective function of (23) as follows,

‖v(k) −Wg‖22 =

r2∑
i=1

‖v(k),i − Sai(−·)g‖
2
2

=

r2∑
i=1

N∑
n=1

‖v(k),i(n)− [Sai(−·)g](n)‖22

=

N∑
n=1

r2∑
i=1

‖v(k),i(n)− [Sai(−·)g](n)‖22.

Let ~ai denote the vector form of ai by concatenating all its columns. Since the
convolution is commutative, for i = 1, 2, . . . , r2, we have then

[Sai(−·)g](n) = [Sg(−·)~ai](n) = ~g>n ~ai = ~a>i ~gn, 1 ≤ n ≤ N,

12



where ~gn denote the transpose of the n-th row of Sg(−·). Let

~vn =
(
v(k),1(n), v(k),2(n), . . . , v(k),r2(n)

)>
, 1 ≤ n ≤ N,

and define 
V = (~v1, ~v2, . . . , ~vN ) ∈ Rr2×N

G = (~g1, ~g2, . . . , ~gN ) ∈ Rr2×N

A = (~a1,~a2, . . . ,~ar2) ∈ Rr2×r2 .
(24)

We have then

‖v(k) −W>g‖22 =

N∑
n=1

‖~vn −A>~gn‖22

=

N∑
n=1

~v>n ~vn + ~g>nAA
>~gn − 2~v>nA

>~gn

=

N∑
n=1

~v>n ~vn +
1

r2
~g>n ~gn − 2(A~vn)>~gn

= Tr(V >V ) +
1

r2
Tr(G>G)− 2Tr(AV G>)

where Tr(·) denote the trace of the matrix. Since the first two terms are con-
stants, the minimization (23) can be rewritten as follows,

max
A

Tr(AV G>) s.t. A>A =
1

r2
Ir2 . (25)

The following theorem gives an explicit solution to the above minimization (25).

Theorem 5. ([28]) Let B and C be m×r matrices and B has rank r. Consider
the constrained maximization problem:

B∗ = argmaxBTr(B>C), s.t. B>B = Ir,

Suppose that the single value decomposition (SVD) of C is C = UDX>, then
B∗ = UX>.

By Theorem 5, we obtained the solution of (25):

A∗ =
1

r
(UX>)> =

1

r
XU>, (26)

where U and X are the SVD decomposition of V G> such that

V G> = UDX>.

In other words, the vector form of the filters a
(k+1)
i defined by the minimizer of

(23) is exactly the i-th column vector of the matrix A∗ given by (26).

13



In summary, the ultimate minimization model we proposed for constructing
a tight frame adaptive to the input image is as follows,

{a∗i }r
2

i=1 := argmin
v,{ai}r

2
i=1
‖v −W (a1, . . . , ar2)g‖22 + λ2‖v‖0 (27)

subject to 〈ai, aj〉 = 1
r2 δi−j , 1 ≤ i, j ≤ r2, where W is the analysis operator

defined by W = [S>a1(−·),S
>
a2(−·), . . . ,S

>
ar(−·)]

>. The complete description of the

numerical solver for solving (27) is given in Algorithm 1. Notice that there
are two steps during each iteration and each involves solving one minimization
problem. The first is simply done by applying a hard thresholding operator on

tight frame coefficients W (a
(k)
1 , . . . , a

(k)
r2 )g, and the second can be obtained by

the single value decomposition of the matrix V G>. Thus, the computation cost
for each iteration is very low.

Algorithm 1 Construction of the discrete tight frame adaptive to the image

Input: the image g (clean or noisy)

Output: a shift-invariant discrete tight frame W> defined by filters {a(K)
i }r2i=1

Main procedure:

(I) Initialize tight frame filters {a(0)
i }r

2

i=1 of size at most r×r by some existing
tight frame system.

(II) For k = 0, 1, 2, . . . ,K − 1 do

(1) define W (k) from {a(k)
i }r

2

i=1 by (11);

(2) set v(k) = Tλ(W (k)g), where Tλ is the hard thresholding operator
defined in (16);

(3) assembling the matrix V,G by (24);

(4) run the SVD decomposition on V G> s.t. V G> = UDX>;

(5) set a
(k+1)
i to the i-th column vector of the matrix A(k+1) = 1

rXU
>

for i = 1, . . . , r2.

(III) Output {a(K)
i }r2i=1.

3.4. Experiments on some real images

To illustrate the behavior of the tight frame from Algorithm 1, the proposed
algorithm is tested on some real images which contains both cartoon-type re-
gions and texture regions. As we discussed in Section 3.2, neither Algorithm 1 is
seeking for the tight frame which maximizes the sparsity of the canonical tight
frame coefficients, nor it is seeking for the tight frame in which the signal can
be approximated by a most sparse coefficient vector. Instead, Algorithm 1 seeks
for the tight frame system whose resulting approximation balances the sparsity

14
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Figure 1: The comparison of the PSNR values of the reconstructions using only a portion
of the tight frame coefficients under different tight frame systems. The x-axis denotes the
percentage of the tight frame coefficients used in the reconstruction and the y-axis denotes
the PSNR value of the reconstruction. (a) The comparison between the 5-level shift-invariant
Haar wavelet system and the tight frame systems obtained by Algorithm 1 taking the input
as the Haar filters. Both system have 16 filters in total. (b) The comparison between the
6-level shift-invariant linear spline framelet system and the tight frame systems obtained by
Algorithm 1 taking the input as the linear framelet filters. Both system have 49 filters in
total.

of tight frame coefficients and the regularity of the reconstruction. Nevertheless,
the tight frame reconstructed from Algorithm 1 is still much more effective on
sparsifying the canonical tight frame coefficients than the existing non-adaptive
ones. In the experiments, we measure the effectiveness of such a sparsification
as follows. Given a tight frame W and an image g, let Γα% denote the hard
thresholding operator which keeps α% of largest frame coefficients in absolute
value and set all other coefficients zero. Then we calculate the PSNR value of
W>(Γα%(Wg)) to measure the quality of the reconstructed image by only using
α% of frame coefficients. Using the same percentage of canonical frame coef-
ficients, the larger is the PSNR value of the reconstruction, the more effective
the tight frame sparsifies the canonical coefficients of the input image. For an
image x, the peak signal to noise ratio (PSNR) of its estimate x̂ is defined as

PSNR(x̂,x) = 10 log10

2552

1
LM

∑L
i=1

∑M
j=1(x̂(i, j)− x(i, j))2

where L and M are the dimensions of the image x, and x(i, j), x̂(i, j) are the
pixel value of the input and the estimate image at the pixel location (i, j).

In the experiments, Algorithm 1 is applied on two images “Barbara” and
“Lena” shown in Fig. 2 (a) with two different initializations. The filters of
one initialization is the tensor Haar wavelet filters with totally 16 filters and
the filters of another initialization is the tensor linear spline framelet [3] with
totally 49 filters. Through all experiments, The maximum iteration number
K of Algorithm 1 is set to 25. In Figure 1, the PSNR values of the recon-
struction using different percentages of tight frame coefficients are plotted with

15
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Figure 2: The illustration of the data-driven tight frame filters constructed by Algorithm 1.
(a) Two tested images “Barbara” and “Lena”; (b): The filters associated with the multi-
level Haar wavelets (on the top) and the filters associated with the multi-level linear spline
framelet (on the bottom); (c) the corresponding adaptive tight frame filters constructed by
Algorithm 1 using the filters in (b) as the input. One small block of the images shown in (b)
and (c) represents one filter.

respect to different images and different tight frame systems. Clearly, the tight
frames constructed by Algorithm 1 are more effective on sparsifying the canon-
ical tight frame coefficients of the input images than the Haar wavelets and
linear framelets, as the PSNR values of the reconstructed images are signifi-
cantly higher. Such an effectiveness comes from the fact that the tight frame
constructed by Algorithm 1 can efficiently capture the repeating complex tex-
ture patterns in two input images while the two existing frame systems can not.
See Fig. 2 for an illustration of the filters of the tight frames constructed by Al-
gorithm 1 with respect to two different initializations and two different images.
It is seen that the filters constructed by Algorithm 1 tends to fit the repeating
patterns in the images.

4. Adaptive tight frame image denoising method

Algorithm 1 can be easily extended to an adaptive tight frame denoising
method as follows. The proposed construction scheme of adaptive tight frame
is first applied to a noisy input and then the obtained tight frame is used for
noise removal. Let f = g+n denote some noisy observation of g where n denotes
the i.i.d. Gaussian white noise. Then the first two steps in (II) of Algorithm 1
can be viewed as a thresholding denoising method under a tight frame. The

16



intermediate denoising result during each iteration is then

g(k) = W (k)>(Tλ(W (k)f))

with W (k) = W (a
(k)
1 , . . . , a

(k)
r2 ), where λ is the threshold whose value depends

on both the noise level and the desired sparsity degree of the image. After

Algorithm 1 is terminated. The resulting tight frameW (K) = W (a
(K)
1 , . . . , a

(K)
r2 )

then can be used to denoise the image.

g(K) = W (K)>(Tλ̃(W (K)f)),

where λ̃ is the threshold only determined by the noise level. Thus, the value
of λ should be set larger than the value of λ̃. It is empirically observed that
λ ≈ 2λ̃ is a good choice. It is noted that the tight frame constructed during each
iteration is directly estimated from the noisy data f instead of the noise-free
image g.

The above adaptive tight frame denoising method is evaluated on several
test images with different configurations. Through all experiments, all noisy
images degraded by i.i.d. Gaussian white noise are synthesized as follows:

f = g + ε(σ),

where ε(σ) is the i.i.d Gaussian noise with zero mean and standard deviation σ.
Besides the visual inspection, the PSNR measurement is used to quantitatively
evaluate the quality of the de-noised results. There are only two parameters λ
and λ̃ in the Algorithm 1 based adaptive tight frame denoising method. Both of
them are closely related to the noise variance σ and the redundant degree of the
used tight frame system. Through all experiments, we uniformly set λ = 5.1σ
and λ̃ = 2.6σ.

4.1. Computational cost

The proposed method is implemented in MATLAB 2011b and all the ex-
periments are run on a laptop with a 2.1GHz Intel dual-core CPU and 4 GB
memory. Table 1 listed the PSNR values of the results for the image “Barbara”
of size 256 × 256 by Algorithm 1 with different maximum iteration numbers.
The tight frame is initialized by 64 Harr wavelet filters. It is seen from Ta-
ble 1 that after 25 iterations, there is little improvement on the PSNR values of
the results. In other words, 25 iterations seem to be adequate to yield a good
discrete tight frame for image denoising.

We compared the computational efficiency of Algorithm 1 against that of
the K-SVD method [11] in terms of the running time on the same hardware
configuration. There are two implementations of the K-SVD available online:
one is implemented in MATLAB1 and another is the faster version with key

1http://www.cs.technion.ac.il/~elad/software/
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σ\K input 0 5 15 25 50 100 200 K-SVD
5 34.14 36.47 37.84 38.16 38.23 38.32 38.35 38.37 38.14
10 28.13 31.71 33.34 34.49 34.63 34.69 34.73 34.73 34.43
15 24.59 28.96 31.00 31.89 32.35 32.51 32.55 32.57 32.42
20 22.11 27.11 28.07 30.69 30.87 30.95 30.99 31.00 30.93
25 20.18 25.68 27.38 29.62 29.76 29.80 29.81 29.82 29.76

Table 1: The PSNR values (dB) of the noisy image, denoised results by Algorithm 1 with
maximum iteration number K = 0, 5, 15, 25, 50, 100, 200 and denoised results by the K-SVD
method with 15 iterations respectively, where σ denote the standard deviation of the image
noise. The support of the filters in Algorithm 1 is set to 8 × 8. The patch size is set to 8 × 8
in the K-SVD method.

Method \ patch (filter) size 2×2 4×4 8×8 16×16
K-SVD in MATLAB 596.1 1930.99 10672.70 - - - -

K-SVD in C 29.35 20.81 57.13 576.88
Alg. 1 in MATLAB 0.37 1.29 6.51 64.32

Table 2: Comparison of running time in seconds between the K-SVD method with 15 iterations
and Algorithm 1 with 25 iterations on the same hardware configuration.

components written in C language2. The running times of both implementations
of the K-SVD method and the MATLAB implementation of Algorithm 1 are
listed with respect to the image “Barbara” of size 256 × 256. It is seen that
the methods with larger patch/filter size will require more time to execute the
iterations.

It is also seen from Table 2 that our approach is much faster than the K-SVD
method when the filter size is small. When the filter size is 8× 8 or 16× 16, the
MATLAB implementation of our approach is still nearly 10 times faster than
the C implementation of the K-SVD method with comparable PSNR values.
The significant gain of our approach on computational efficiency comes from
the fact that the dictionary we learned is a tight frame with perfect reconstruc-
tion property. There are only two simple components in our approach: one
thresholding operation for denoising and one SVD operation for updating the
tight frame. As the comparison, each iteration of the K-SVD method requires
an iterative OMP method for each image patch (totally about 4000 patches for
an image of size 256 × 256) to find the sparse approximation. It also updates
all atoms in the dictionary in a sequential manner which is not fast either.

2http://www.cs.technion.ac.il/~ronrubin/software.html
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initial tight frame filter size hard thresholding Alg. 1

local DCT

2×2 26.90 26.32
4×4 28.60 28.96
8×8 30.08 30.47
9×9 30.21 30.64

16×16 30.45 30.93

Haar Wavelet

2×2 26.82 26.34
4×4 27.59 29.91
8×8 27.99 30.46

16×16 28.05 30.95

linear framelet
3×3 27.52 28.14
7×7 28.70 30.22

15×15 28.95 30.86

Table 3: The comparison of the PSNR values (dB) of the de-noised results by the wavelet
thresholding denoising method and by Algorithm 1 with respect to different initializations on
tight frame and different filter sizes.

4.2. Performance of the proposed method with respect to different filter sizes
and different initializations

In this experiment, we would like to see how the performance of the proposed
method is influenced by the different settings, including the filter size and the ini-
tialization of tight frame. Three different types of initialized tight frames: shift-
invariant local discrete cosine transform (DCT), shift-invariant Haar wavelet [1]
and shift-invariant linear framelet [14], are tested on the image “Barbara” with
different filter sizes. The Haar wavelet filters of size 2×2, 4×4, 8×8 and 16×16
are corresponding to the filters associated with the 1, 2, 3, 4-level shift-invariant
wavelet decompositions and reconstructions respectively. The linear tight frame
filters of size 3×3, 7×7, 15×15 are corresponding to the filters associated with
the 1, 2, 3-level framelet decompositions and reconstructions respectively. Table
3 listed the PSNR values of the results from our approach after 25 iterations,
using different initializations on tight frame of different filter sizes. It is seen
from Table 3 that what tight frame is used for initialization does not have much
impact on the performance. The PSNR values of the results by three different
types of tight frames are nearly the same. However, the performance of our
method varies significantly with respect to different filter sizes. It is seen that
the larger filter size is used, or equivalently the more filters are used, the higher
the PSNR values of the results will be. Such a phenomena is not surprised as
the larger the filter size is and the more the filters are used, the learned tight
frame filters are more likely to capture the special structures of the input im-
age content. At last, the learned adaptive tight frame filters after 25 iterations
are shown in Fig. 2 (a), compared with the initial inputed 4-level Haar wavelet
filters shown in Fig. 2 (b).
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Barbara Cameraman Boat Couple

Fingerprint Hill Lena Man

Figure 3: Visualization of 9 tested images.

4.3. Experiments on several sample images.

In this experiment, we tested the proposed method with different filter sizes
on several images of different types, as shown in Fig. 3. The noisy inputs are
synthesized by adding i.i.d. Gaussian white noise with different standard devia-
tion σ to the original images. Two filter sizes are used in the experiments: 8×8
and 16×16. The results are compared against the results from the thresholding
method by 3-level shift-invariant Haar wavelets, the K-SVD method with patch
size 8× 8 and the K-SVD method with patch size 16× 16. Table 4 summarizes
the PSNR values of the denoising results from these methods with different
configurations.

As can be seen from Table 4, both the K-SVD method and our method
performed better than the wavelet thresholding method on all images. In par-
ticular, there are significant improvements using the adaptive systems on the
images including “Barbara”, “Fingerprint” and “Lena”. The main reason is
that these three images all have some complex texture regions which the Haar
wavelet transform cannot effectively sparsify.

On the other hard, the performances of the K-SVD method with patch size
8×8 and our approaches with filter 8×8, 16×16 are nearly the same with similar
PSNR values. There are images on which the K-SVD method performed better
and there are some on which our approaches performed better. Overall, the
performances of our proposed method and the K-SVD method are comparable
in terms of PSNR value, and so is the visual quality. See Fig. 4 for an visual
inspection of the results for the image “Barbara” by different methods.
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(a) noisy image (20.09 dB) (b) K-SVD, 8× 8 (30.93 dB) (c) K-SVD, 16× 16 (30.16 dB)

hard thresholding (27.98 dB) (d) Alg. 1, 8× 8 (30.42 dB) (e) Alg. 1, 16× 16 (31.01 dB)

Figure 4: Visual comparison of denoising results. (a) Noisy image; (b)–(c): the K-SVD
method with patch size 8× 8 and 16; (d): the result denoised by hard thresholding on 3-level
shift-invariant Haar wavelet and (e)–(f): the results de-noised by Algorithm 1 with filter size
8 × 8 and 16 × 16.
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image σ thresholding K-SVD; 8× 8 K-SVD; 16× 16 Alg. 1; 8× 8 Alg. 1; 16× 16

Barbara

5 36.48 38.14 37.91 38.07 38.26
10 32.10 34.43 33.96 34.26 34.68
15 29.61 32.42 31.73 32.03 32.51
20 27.98 30.93 30.16 30.42 31.01
25 26.73 29.76 28.83 29.27 29.85

Cameraman

5 37.49 37.93 36.93 37.86 37.81
10 32.97 33.71 32.79 33.59 33.54
15 30.53 31.46 30.42 31.27 31.13
20 28.89 29.91 28.92 29.59 29.61
25 27.61 28.91 27.70 28.51 28.49

Boat

5 36.32 37.16 36.63 37.04 37.08
10 32.81 33.63 32.96 33.65 33.73
15 30.80 31.70 30.81 31.70 31.77
20 29.34 30.31 29.27 30.32 30.40
25 28.23 29.25 28.16 29.21 29.34

Couple

5 36.79 37.24 36.78 37.31 37.28
10 33.08 33.50 32.74 33.63 33.67
15 30.94 31.47 30.49 31.54 31.63
20 29.43 30.02 28.97 30.07 30.21
25 28.27 28.84 27.80 28.99 29.15

Fingerprint

5 35.01 36.61 36.06 36.58 36.55
10 30.52 32.39 31.80 32.31 32.26
15 28.12 30.07 29.35 29.91 29.92
20 26.53 28.44 27.58 28.33 28.34
25 25.35 27.28 26.32 27.17 27.17

Hill

5 36.33 36.96 36.51 36.96 36.97
10 32.65 33.34 32.72 33.35 33.35
15 30.74 31.43 30.68 31.51 31.52
20 29.43 30.17 29.27 30.21 30.25
25 28.41 29.19 28.24 29.23 29.31

Lena

5 37.63 38.56 38.13 38.61 38.70
10 34.17 35.55 34.94 35.52 35.71
15 32.17 33.72 32.98 33.61 33.83
20 30.66 32.39 31.64 32.19 32.43
25 29.46 31.35 30.45 31.05 31.38

Man

5 36.77 37.55 36.82 37.58 37.57
10 32.73 33.60 32.68 33.63 33.65
15 30.54 31.45 30.51 31.46 31.49
20 29.09 30.13 29.09 30.99 30.08
25 27.99 29.11 27.92 29.03 29.02

Table 4: Comparison of the PSNR values (dB) of Algorithm 1 and the K-SVD method with
respect to different images and different noise level.
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5. Conclusion and future work

Finding a sparse approximation of a given image plays an important role
in many image restoration tasks. Wavelet tight frames have been successfully
used to restore the image of interest by utilizing its sparsity under the wavelet
tight frame, e.g, the framelets and shift-invariant wavelets. However, due to
the significant variations of image structure, a pre-defined redundant system
is not efficient when representing images of complex structures. In this paper,
we developed an iterative numerical scheme to construct a discrete tight frame
that is adaptive to the given image. Different from most existing learning based
approaches which learn an over-complete dictionary, the dictionary constructed
in our approach is always a tight frame during each iteration. As a result, the
proposed approach is very computationally efficient. Also, the tight frame we
constructed has several properties appealing to many image processing appli-
cations than the over-complete dictionary, including the perfect reconstruction
property. Based on the proposed construction scheme, the derived adaptive
tight frame denoising method shows its advantage over the traditional wavelet
thresholding method. Also, our tight frame based approach is much faster than
the over-complete dictionary based approaches, e.g., the K-SVD method. In
future, we would like to investigate how to construct the adaptive tight frame
from images corrupted by other factors, e.g., the blurring.
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