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Abstract. In this paper, we propose a generalized penalization technique and a convex
constraint minimization approach for the p-harmonic flow problem following the ideas
in [20]. We use fast algorithms to solve the subproblems, such as the dual projection
methods, primal-dual methods and augmented Lagrangian methods. With a special
penalization term, some special algorithms are presented. Numerical experiments are
given to demonstrate the performance of the proposed methods. We successfully show
that our algorithms are effective and efficient due to two reasons: the solver for sub-
problem is fast in essence and there is no need to solve the subproblem accurately (even
2 inner iterations of the subproblem are enough). It is also observed that better PSNR
(Peak Signal to Noise Ratio) values are produced using the new algorithms.
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1. Introduction

First we present the p-harmonic flow problem in [17,28] as

min
U∈ W1,p(Ω,SN−1)

E(U) =

∫

Ω
|∇U(x )|pF dx, (1.1)

where 1≤ p <∞. Some notations in (1.1) are defined as follows

• Ω: an open subset of RM .
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• ∇: differential operator, i.e., ∇U =
�

∂ Ui

∂ x j

�

N×M
,∇Ui =

�

∂ Ui

∂ x1
, · · · , ∂ Ui

∂ xM

�

, ∀ U =

(U1, · · · , UN )T ∈ RN .

• |·|: Euclidean norm, and |·|F : Frobenius norm, i.e., |B|F =
Ç

∑

i, j
B2

i, j ,∀B = (Bi, j)N×M .

• W1,p(Ω, SN−1) := W1,p(Ω,RN ) ∩ SN−1, SN−1 := { U ∈ RN : |U| = 1, a.e.}, M ≥
1, N ≥ 2.

• (·)T denotes the transpose of the matrix.

The minimization of (1.1) is associated with the Dirichlet boundary condition : U|Ω = n0 ∈
SN−1 or Neumann boundary condition : ∂U

∂ n
= 0 where n is the exterior unit normal to ∂Ω.

The difficulties of solving (1.1) lie in three aspects, i.e., the non-convexity due to con-
straints of SN−1, the non-regularity and non-uniqueness. Several kinds of approaches are
used to solve (1.1) in literature. The authors [14, 15] dealt with the Euler-Lagrange e-
quations for (1.1) using the iteration which updated the solution by normalizing U = V

|V | .
Analysis on the similar algorithms were done in [3–5] and constraints preserving finite
element methods were proposed in [6, 7]. In [19], the authors adopted the saddle-point
approach and established the proper finite element discretization in the case of two di-
mensional space. The second kind of approach was proposed by adding a penalization to
eliminate the non-convex constraint of SN−1 [8, 9, 24]. Such technique is also adopted to
solve the Ginzburg-Landau functional, i.e.,

Eε(U) := E(U) +
1

ε

∫

Ω

�

|U2| − 1
�2

dx. (1.2)

The third kind of approach is to reformulate (1.1) to become a constrained optimization
problem as follows

min
U∈W1,p(Ω,RN )

E(V), s.t. V =
U

|U|
. (1.3)

Such constraint was used to preserve gradient descent for solving (1.3) in [10,28]. Further
improvements based (1.3) were done in [17,29] in which the authors proposed an innova-
tive curvilinear search method with the global convergence property as long as satisfying
Armijo-Wolfe conditions.

In this paper, by combining the second and the third approach via the relaxation and
penalization, a general model is established with penalization terms following the idea
in [20]. We derive the saddle-point problem for (1.1) based on the augmented Lagrangian
methods. To solve the saddle-point problem fast and efficiently, we adopt the operator
splitting method or alternating optimization method, which are the classical techniques
for solving the augmented Lagrangian functional. Motivated by the development of image
processing, all subproblems after the operator splitting can be efficiently solved by the
primal-dual method, the dual method, or fast Fourier transform(FFT).
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As we know, the p-harmonic flow problem has many applications in extensive fields
such as liquid crystal theory, directional diffusion, color image denoising, and etc. To
demonstrate the efficiency of the proposed algorithm, we present numerical examples of
the above problem. On one hand, our experiments show that the algorithms are effective
and efficient. There are two reasons: one is that the solver for subproblem is fast and
efficient and the other is that we do not need to solve the subproblem accurately (even 2
times of inner iterations of the subproblem works). On the other hand, the examples of
cases with new penalization terms achieve better PSNR(Peak Signal to Noise Ratio) values
than the penalization in [20].

The paper is organized as follows. In Section 2 we present the model with general
penalization terms. In Section 3 we present the saddle-point problem solved by the aug-
mented Lagrangian methods. Algorithms for solving the saddle-point problem with details
on the subproblem solutions are then presented. Numerical examples are given in Section
4. In the last section we conclude our paper with the future work.

2. Model

We propose the model based on the ROF ( [26]) with a known function U0 which may
be contaminated by random noise

min
U∈ W1,p(Ω,SN−1)

F̂(U) = E(U) +
η

2

∫

Ω
|U −U0|2dx . (2.1)

As we know, the constraint set W1,p(Ω, SN−1) is nonconvex. Our aim is to eliminate the
nonconvex constraint. Combining the second and the third approach in Section 1, two
additional terms are added to (2.1). First we introduce a convex set K to (2.1) as follows
K = { U ∈ RN : |U| ≤ 1, a.e.} that would be added to (2.1) as convex relaxation. Then
following the idea in [20], we propose the generalized penalization term as 1

s1s2ε

∫

Ω
(1−

|U|s1)s2 where ε is the positive constant and s1, s2 are the positive integers. Our main idea
is to add these two conditions to (2.1) with convex relaxation and generalized penalization
terms. Thus we modify the model (2.1) as

min
U∈ W1,p(Ω,RN )

Fε(U) =

∫

Ω
|∇U|F dx +

η

2

∫

Ω
|U −U0|2dx

+
1

s1s2ε

∫

Ω
(1− |U|s1)s2dx +χK(U),

(2.2)

where

χK(U) =
�

0, U ∈ K ,

+∞, U 6∈ K .

Here one readily knows that different values of s1 and s2 generate different models. In
this paper, we concentrate on the choices of s1 and s2 which lead to easily computed, and
effective models. Specifically speaking, we concern the following three models.
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• Case I: s1 = 2, s2 = 1.
Penalization term is 1

2ε

∫

Ω
(1−|U|2). Due to the constraint set K , this term has positive

lower bound. Thus following the idea in [31], the special choice of s1 = 2, s2 = 1 is
suitable. By using the augmented Lagrangian methods, the subproblems are easy to
be computed. Furthermore, we can restore the data with better PSNR values than
that of Case II.

• Case II: s1 = 1, s2 = 2.
Here we must emphasize the article [20]. They added this penalization term 1

2ε

∫

Ω
(1−

|U|)2. We still study this case and give the new algorithms, which is faster than the
simple gradient projection or time marching methods.

• Case III: s1 = 2, s2 = 2.
Penalization term is 1

4ε

∫

Ω
(1−|U|2)2. It is the same as (1.2) which is used to solve the

Ginzburg-Landau functional. However, we do not compute this case at all. Because
it leads to higher order algebraic equations which do not have explicit solution. Our
general penalization terms include this case as well.

In this paper we only consider the above three special cases. From our analysis in
Section 3, the model with the higher order penalization term is difficult to solve i.e., s1, s2 ≥
2. Thus we choose the cases of I and II to realize the model, and develop the fast algorithms
whose sub-problem has the explicit solution proposed by the ideas in the image processing
areas.

The penalization term is non-convex so that the problem may have not unique min-
imization. Following [20], we get the theorem which reveals the equivalence of (2.1)
and (2.2) when ε tends to zero. In our paper we concentrate on the case of p = 1. The
existence of the minimization of (2.2) shall be considered in the bounded variation space

BV (Ω,RN ) =

¨

U ∈ L1(Ω,RN ) :

∫

Ω
|DU| ≤+∞

«

,

where
∫

Ω
|DU| is defined as

∫

Ω
|DU| := sup

φ∈Φ

N
∑

i=1

∫

Ω
Ui divφi ,

and

Φ :=
n

φ = (φT
1 , . . . ,φN

T )T ∈ C1
0 (Ω,RN×M ) :

|φ|F ≤ 1, a.e.in Ω, φi = (φi,1, . . . ,φi,M ) ∈ RM
o

,

divφi =
M
∑

j=1

∂ φi, j

∂ x j
, U = (U1, . . . , UN )

T ∈ RN .

The following theorem holds for (2.2) with the generalized term in the bounded variation
space, while the norm term

∫

Ω
|∇U|F dx is replaced by

∫

Ω
|DU|.
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Theorem 2.1. (Existence and Convergence)

1. There exists Uε ∈ BV (Ω,RN ) which minimizes Fε(U) with fixed ε.

2. Supposing that A= {Uε} is a sequence satisfying Uε = arg min
U∈BV (Ω,RN )

Fε(U), there exists

a subsequence {Uεk
} ⊂ A and U∗, s.t. Uεk

−→ U∗ in Lq(Ω,RN )as k→∞, ∀1 ≤ q ≤
∞, where U∗ = arg min

U∈BV (Ω,SN−1)
F̂(U).

Proof. The proof is the same as [20] so we omit the details.

3. Augmented Lagrangian methods for (2.2)

In this section, we will use augmented Lagrangian methods in [16, 30] to solve (2.2).
There are many efficient algorithms for the image restoration problems recently, e.g.,
Graph-cuts method( [1,21,25]) , Bregman iteration( [18,23,27,32]), primal-dual method(
[12,13,33,34]), dual projection method( [11]), and augmented Lagrangian method( [16,
30]). Motivated by the above algorithms, especially the augmented Lagrangian method
which is suitable for (2.2), we formulate a saddle-point model. The Uzawa algorithm for
the saddle-point model benefits advantages: the variables can be separated into subprob-
lems by decomposition techniques, and fast algorithms, e.g., FFT, dual projection methods,
or primal-dual method can be adopted to solve the related subproblems. Thus we modify
the model (2.2) as follows:

max
Λ

min
U ,V

Ls1,s2(U , V;Λ) =

∫

Ω
|∇U|F dx +

η

2

∫

Ω
|U −U0|2dx

+
1

s1s2ε

∫

Ω
(1− |V |s1)s2dx +χK(V)

+

∫

Ω
Λ · (U − V)dx +

r

2

∫

Ω
|U − V |2dx .

(3.1)

We consider the above model under Case I and Case II.

max
Λ

min
U ,V

L2,1(U , V;Λ) =

∫

Ω
|∇U|F dx +

η

2

∫

Ω
|U −U0|2dx

+
1

2ε

∫

Ω
(1− |V |2)dx +χK(V)

+

∫

Ω
Λ · (U − V)dx +

r

2

∫

Ω
|U − V |2dx ,

(3.2)

where r is a positive constant and Λ is the Lagrange multiplier.
On the other hand, for Case II, we can present the model as follows:
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max
Λ

min
U ,V

L1,2(U , V;Λ) =

∫

Ω
|∇U|F dx +

η

2

∫

Ω
|U −U0|2dx

+
1

2ε

∫

Ω
(1− |V |)2dx +χK(V)

+

∫

Ω
Λ · (U − V)dx +

r

2

∫

Ω
|U − V |2dx .

(3.3)

In the saddle-point problem (3.2), the parameter r is used to control the parameter
ε. First of all we need to keep r 6= 1

ε
. The sufficient condition is r > 1

ε
, to guarantee the

convexity of L(U , V;λ) over V . If r < 1
ε
, the V subproblem can also be solved. However,

we cannot guarantee the convergence of the algorithm. From the right one in Figure 5.3
one readily knows the proposed algorithm diverges if r < 1

ε
.

In the following we give detailed augmented Lagrangian methods for (3.2) and (3.3).
See Algorithm I.

Algorithm I

1. Initialization: Λ0 = 0,U0 = U0, V0 = U0, parameters η,ε, r.

2. For k = 1, 2, . . . , update Uk, Vk as follows:

Uk = arg min
U

Ls1,s2(U , Vk−1;Λk−1), (3.4)

Vk = argmin
V

Ls1,s2(Uk, V;Λk−1). (3.5)

3. Update the multiplier:

Λk = Λk−1+ r(Uk − Vk).

First we show how to solve V− subproblem (3.5). The different penalization terms lead to
different algorithms for V− subproblem while they have the same U−subproblem.

3.1. V− subproblem

In the following parts we consider different cases with different s1, s1. The solutions
with closed forms are obtained easily. The subproblems own almost the same structure,
i.e. minimizing the quadratic functionals over a convex set. Thus the solutions to the
subproblems have similar forms. Details are present as follows.
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3.1.1. s1 = 2, s2 = 1

We rewrite the subproblem (3.5) as

Vk = arg min
V
S1(V) := c2,1

∫

Ω

�

�V − g2,1

�

�

2
dx +χK(V), (3.6)

where c2,1 := r − 1
ε
6= 0, g2,1 := 1

c2,1
(rUk +Λk−1). One readily observes that the functional

is quadratic over the convex set. Thus it shall have global minimizer. If c2,1 > 0, (3.6) has

the explicit solution Vk = g2,1 min
§

1, 1
|g2,1|

ª

. If c2,1 < 0, the V− subproblem is non-convex.

The minimization can be deduced as

Vk =







−
g2,1

|g2,1|
, x ∈

¦

g2,1(x ) 6= 0
©

,

b, ∀ |b|= 1, x ∈
¦

g2,1(x ) = 0
©

.

3.1.2. s1 = 1, s2 = 2

We rewrite the subproblem (3.5) as

Vk = arg min
V
Ŝ1(V) :=

∫

Ω

�

|V |2− 2c1,2|V | − 2g1,2V
�

dx +χK(V),

where c1,2 :=
1

1+ rε
, and g1,2 := εc1,2

�

rUk +Λk−1
�

. The objective functional is noncon-

vex. But we can still compute the minimizer after some simple computation. The explicit
solution to the above minimization is

Vk(x ) =







g1,2

|g1,2|
min

¦

c1,2+ |g1,2|, 1
©

, x ∈ {g1,2(x ) 6= 0}, (3.7a)

c1,2b, ∀ |b|= 1, x ∈ {g1,2(x ) = 0}. (3.7b)

From the previous part, we give the explicit solution for the subproblems. The compu-
tation complexity of these two cases are almost the same. We will compare these two cases
in the numerical examples. Then we will continue to consider the U− subproblem.

3.2. U-subproblem

Next we consider U−subproblem (3.4). Rewrite the subproblem (3.4) as

Uk = arg min
U
S2(U) :=

∫

Ω
|∇U|F dx +

c2

2

∫

Ω
|U − f |2dx , (3.8)
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where c2 := η+ r, f := 1
c2

�

ηU0+ rVk−1−Λk−1
�

.

Following the idea in [2, 11, 12, 30], we propose the dual projection method, primal
dual method and augmented Lagrangian method in the following three subsections. Then
(3.8) is considered in bounded variation space as

Uk = arg min
U
S2(U) :=

∫

Ω
|DU|dx +

c2

2

∫

Ω
|U − f |2dx . (3.9)

3.2.1. Dual projection method for (3.9)

Some notations:

divY =
�

divY1, . . . , divYN
�T ,∀ Y =

�

Y T
1 , . . . , Y T

N

�T
∈ RN×M ,

Yi =
�

Yi,1, . . . , Yi,M

�

∈ RM .

We can consider the dual form for the subproblem. Following this direction as [2,11], the
dual projection method is constructed as

Dual Projection Method

1. Initialization: τ and Y0.

2. Iteration:

l = 0, · · · , Y l+1 =
Y l +τH

1+τ|H |F
, H :=∇

�

divY l − c2 f
�

.

3. Uk = f − 1
c2

divY∞.

3.2.2. Primal dual method for (3.9)

Define L = ‖∇‖ := sup
U 6=0

∫

Ω
|∇U|F
∫

Ω
|U|

, where U satisfies some boundary conditions. In the

discrete form, L ≈
p

8 in [12]. The primal dual method is listed as follows:

Arrow-Hurwicz Primal Dual Method
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1. Initialization: τ0,σ0, with τ0σ0 L2 ≤ 1, and P0, Û0.

2. Iteration: l = 0, · · · ,

1) P l+1 =
H1

max
�

1, |H1|F
	 , H1 := P l +σl∇Û l .

2) U l+1 =
H2+τl c2 f

1+τl c2
, H2 := U l +τldivP l+1.

3) τl+1 = θlτl , σl+1 =
σl

θl
, θl =

1
p

1+ 2γτl

.

3. Uk := Û∞.

The algorithm with variant steps can convergence fast with the order of O(n−2) as they
in [12] have proved, where n is the iteration number.

3.2.3. Augmented Lagrangian method for (3.8)

By introducing the variable Q, the Lagrangian multiplier Λs, and the penalization parame-
ter r1, the augmented Lagrangian of (3.8) is

Ls(U ,Q;Λs) =

∫

Ω
|Q|F dx +

c2

2

∫

Ω
|U − f |2dx

+

∫

Ω
Λs : (Q−∇U)dx +

r1

2

∫

Ω
|Q−∇U|2F dx ,

where P : Q =
∑

i, j
Pi, jQ i, j , P = (Pi, j), Q = (Q i, j), which is Frobenius inner product.

Then following the idea in [30], we give the procedures by using the operator splitting
method for solving max

Λs
min
U ,Q

Ls(U ,Q;Λs) as follows:

Augmented Lagrangian Methods

1. Initialization: Û0,Q0,Λ0
s .

2. Iteration: For l = 0, · · · ,
1) solve Û l+1 = argmin

U
Ls(U ,Ql ;Λl

s), that is equivalent to solving the following e-

quation
−r1∆Û l+1+ c2Û l+1 = c2 f − divΛl

s − r1divQl .

2) solve Ql+1 = arg min
Q

Ls(Û l+1,Q,Λl
s), that has the closed form
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Ql+1 =
1

r1
max

�

1−
1

|W |F
, 0
�

W , where W := r1∇Û l+1−Λl
s.

3) update Λl+1
s as follows

Λl+1
s = Λl

s + r1

�

Ql+1−∇Û l+1
�

.

3. Uk := Û∞.

In the following section, we give some numerical example for Algorithm I with s1 =
2, s2 = 1 (Simplified as Algorithm I2,1) and with s1 = 1, s2 = 2 (Simplified as Algorithm
I1,2). We point out the main difference between the two algorithms as follows. The U- sub-
problem and V -subproblem is strictly convex in Algorithm I2,1 assuming the penalization

parameter ε and the multiplier r satisfying r >
1

ε
. In Algorithm I1,2, the V− subproblem is

nonconvex.

4. Difference Schemes and Numerical Examples

We use the classical difference schemes for PDE-based image processing problems. For
the simplicity, we set Ω ∈ R2, i. e., M = 2, which is a rectangle as well. We denote the
domain as

Ωh :=
¦

(x i , yi)| x i = ihx , y j = jhy , 0≤ i ≤ m, 0≤ j ≤ n
©

,

with grid size of hx , hy . We define the gradient and divergence of each ui, j ,

(∇u)i, j =
�

(∇u)1i, j , (∇u)2i, j
�

,

with

(∇u)1i, j =







1

hx

�

ui+1, j − ui, j

�

, i < m,

0, i = m,

(∇u)2i, j =







1

hy

�

ui, j+1− ui, j

�

, j < n,

0, j = n.

And the divergence of p = (p1, p2) ∈ R2 satisfying div = −∇∗ in discrete form is defined
as
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(divp)i, j =



























1

hx

�

p1
i, j − p1

i−1, j

�

, 0< i < m,

1

hx
p1

i, j , i = 0,

−
1

hx
p1

i−1, j , i = m,

+



























1

hy

�

p2
i, j − p2

i, j−1

�

, 0< j < n,

1

hy
p2

i, j , j = 0,

−
1

hy
p2

i, j−1, j = n.

(∇U)i, j = ((∇U1)
T
i, j , · · · , (∇UN )

T
i, j)

T ,∀ U = (U1, · · · , UN )
T , Ul ∈ R2,

(divY )i, j = ((divY1)i, j , · · · , (divYN )i, j)
T ,∀ Y = (Y T

1 , · · · , Y T
N )

T ∈ RN×2,

Yl = (Yl,1, Yl,2) ∈ R2.

Based on the difference schemes we present numerical examples in the cases that M =
2, and N = 2,3. These examples consist of three types models: liquid crystals, directional
denoising and chromaticity denoising for the color image.

4.1. Liquid crystals

Here we test one example for liquid crystals where N = 2. Consider the case similar to
the examples in [28]. Assume that initial condition U0 = (u, v)T is defined as

u(x1, x2) =
x1− 0.5

|x − x0|
+ 0.1

�

1+ x2
1 − x2

2

�

− 0.5ζ1,

v(x1, x2) =
x2− 0.5

|x − x0|
+ 0.1(x1− 2x2) + 0.5ζ2,

with x = (x1, x2) ∈ Ω = (0, 1)2, ζi ∼ Normal(0, 1) and x0 = (0.5,0.5). We test the
example by Algorithm I2,1 and Algorithm I1,2, where the U-subproblem is solved by the
dual projection methods as in Subsection 3.2.1. We set r = 5,η = 0.5,τ = 0.05,ε = 1 for
this example. From the results displayed in Figure 4.1, we observe that both Algorithm I2,1

and Algorithm I1,2 perform well and stable. As we know, the map x 7→
x − x0

|x − x0|
is an exact

solution to (1.1) and the restored liquid crystals are well reordered as the map indicates in
Figure 4.1.
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Figure 4.1: Liquid crystal U0 in the first row, and U by Algorithm I2,1, Algorithm I1,2 from left to
right in the second row

4.2. Directional denoising

4.2.1. Example 1

We define U0 as follows

UT
0 =



























�

cos
�

3π

2
+αζ

�

, sin
�

3π

2
+αζ

��

, −1< x1 ≤ 0, 0≤ x2 < 1,
�

cos
�π

2
+αζ

�

, sin
�π

2
+αζ

��

, 0≤ x1 < 1, − 1< x2 ≤ 0, |x1|+ |x2| 6= 0,

(cos (π+αζ) , sin(π+αζ)) , 0< x1 < 1, 0< x2 < 1,

(cos(αζ), sin(αζ)) , −1< x1 < 0, − 1< x2 < 0,

with Ω = (−1, 1)2. To test the directional denoising of Algorithm 2,1 and Algorithm 1,2,
we set α = 0.8 and we have the following conclusions from the experiments shown in
Figure 4.2 and Figure 4.3, respectively. For the first group tests shown in Figure 4.2, set
r = 10,η = 0.2,τ = 0.05,ε = 0.2. We let r > 1

ε
. Both Algorithm 2,1 and Algorithm 1,2

work well as the examples of liquid crystal reveals. For the second group tests in Figure
4.3, set r = 4,η= 0.2,τ= 0.05,ε= 0.2 or r = 0.2,η= 0.2,τ= 0.05,ε= 0.2. One readily

knows that r <
1

ε
. The Algorithm I2,1 is effective in the left one in Figure 4.3 while it fails

to work for the right one. Thus we assume that r >
1

ε
in the following examples.
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Figure 4.2: Directional denoising U0 in the first row, and U by Algorithm I2,1, Algorithm I1,2 from
left to right in the second row.
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Figure 4.3: Directional denoising From left to right: r = 4,ε= 0.2 and r = ε= 0.2

4.2.2. Example 2: directional denoising represented by color image

In Figure 4.4, a map from R2 −→ S2 is presented by three channels of RGB colors instead
of vector in [28] and the noised image is also given in Figure 4.4, which is corrupted
by noise of level 0.5. We display the denoised images in Figure 4.5. It is shown from
the results in Figure 4.5 that the edge of the color image are successfully restored by the
proposed algorithms.
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Figure 4.4: Directional denoising From left to right: Original image and noised image

Figure 4.5: Directional denoising From left to right: Denoising image by Algorithm I2,1, and Algo-
rithm I1,2 r = 10,η= 0.2,τ= 0.1,ε= 0.2.

4.3. Chromaticity denoising

We choose a color image I =
�

IR, IG , IB
�T ∈ R3 and define the brightness of the image

as

B = |I |=
Æ

I2
R + I2

G + I2
B,

and also the chromaticity as

C =
I

|I |
=
�

IR

|I |
,

IG

|I |
,

IB

|I |

�

∈ S2.

We add the noise to chromaticity U0 =
Cn

|Cn|
,Cn = C + αζ with ζ = (ζ1,ζ2,ζ3)T ,ζi ∼

Normal(0, 1), where α is the noise level while keeping the brightness unchanged. After de-
noising the chromaticity, we reassemble the new image as Inew = U|I | using the unchanged
brightness |I | and the denoised chromaticity U . We define the peak signal-to-noise ratio
(PSNR) as

PSNR= 10 log10
2552mn

∑

i, j

�

�Up −U
�

�

2
i, j

,
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where Up is the original image, U is the restored image with m× n pixels. The original
images and noised images are in Figure 4.6, where noise level is α = 0.6. We also define
the numerical energy E and the relative error e as follows:

E(Uk) :=
∑

i, j

�

|∇Uk|F
�

i, j
+
η

2

∑

i, j

�

|Uk −U0|2
�

i, j

+
1

s1s2ε

∑

i, j

�

(1− |Uk|s1)s2
�

i, j
,

and

e(Uk) :=

∑

i, j

�

|Uk −Uk−1|
�

i, j

∑

i, j

�

|Uk|
�

i, j

.

Figure 4.6: In the first row, Original images from left to right: peppers(resolution : 215 × 212),
animal(resolution: 312×312), and fabric(resolution: 302× 309); In the second row, different noised
images

In the following subsection, we will discuss the algorithms which are different in solv-
ing the V-subproblem. Furthermore, the different algorithms for the U-subproblem are
discussed as well.
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4.3.1. Algorithm I 2,1 and Algorithm I1,2 while U-subproblem is solved by dual projec-
tion methods

For Figure 4.7 to Figure 4.9, the qualities of the restored images from different algorithms
are measured by the PSNR, energy E and relative error e. One readily observes that both
algorithms work well as the PSNR values of the restored images by the proposed algorithm
under Case I are better than Case II which was proposed in [20]. At the same time, the
minimum energy from Algorithm I2,1 is smaller than the energy obtained from Algorithm
I1,2.

4.3.2. Algorithm I2,1 with different solver for U− subproblem

For the examples in the above subsection, we just concern the Algorithm I2,1 for better P-
SNR values of the restored images. In this paper we have proposed three different methods
for solving the U− subproblem. For the simplicity, we use DP to denote the dual projec-
tion method, AH to denote the Arrow-Hurwicz primal dual method and AL to denote the
augmented Lagrangian method. The numerical energy, relative error and PSNR value by
these three algorithms are plotted in Figure 4.10 - Figure 4.12. In the plots, we set the
inner loop for the U− subproblem to be 10. Besides, plots with 2 inner loops are shown
in Figure 4.13- Figure 4.15. These figures tell that we can always restore the images with
few inner iterations because there is no need to solve the solution exactly. Not only the
algorithms for the subproblem are fast, but also few iterations are needed in the inner loop
for solving the subproblem. It is also shown the dual projection method is the best way to
solve the U− subproblem compared to the other two approaches. This is because the dual
projection is the fastest method in finishing one iteration and can recover the images with
only few iterations.

5. Conclusion

The proposed algorithms can be easily applied to the high dimension manifolds without
special difference schemes. That also can be extended to other models in image restoration
areas including high order model proposed in [22]. If we add the pulse noise, the TV-
L1 model can be considered. It is observed that p-harmonic flow problems by adding
the penalization 1

ε

∫

Ω
(1 − |U|s1)s2 in cases of s1 ≥ 2, s2 ≥ 2 are not easily solved. The

V− subproblem leads to the algebra equation of higher order, which is hard to get an
explicit solution. Thus, how to implement the algorithm fast and efficient for the general
penalizations will be considered in the future.
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Figure 4.10: Data of peppers
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Figure 4.12: Data of fabric
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Figure 4.14: Data of animal
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