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Abstract—A new image decomposition scheme, called the
adaptive directional total variation (ADTV) model, is proposed
to achieve effective segmentation and enhancement for latent
fingerprint images in this work. The proposed model is inspired
by the classical total variation models [1], but it differentiates
itself by integrating two unique features of fingerprints; namely,
scale and orientation. The proposed ADTV model decomposes
a latent fingerprint image into two layers: cartoon and texture.
The cartoon layer contains unwanted components (e.g. structured
noise) while the texture layer mainly consists of the latent
fingerprint. This cartoon-texture decomposition facilitates the
process of segmentation, as the region of interest can be easily
detected from the texture layer using traditional segmentation
methods. The effectiveness of the proposed scheme is validated
through experimental results on NIST SD27 latent fingerprint
database. The proposed scheme achieves accurate segmentation
and enhancement results, leading to improved feature detection
and latent matching performance.

Index Terms—Latent fingerprints, total variation, fingerprint
recognition, fingerprint segmentation.

I. INTRODUCTION

Latent fingerprint identification plays a critical role for law
enforcement agencies in identifying and convicting criminals.
An important step in an automated fingerprint identification
systems (AFIS) is the process of fingerprint segmentation.
While a tremendous amount of efforts has been made on
plain and rolled fingerprint segmentation, latent fingerprint
segmentation remains to be a challenging problem. Collected
from crime scenes, latent fingerprints are often mixed with
other components such as structured noise or other finger-
prints. Existing fingerprint recognition algorithms fail to work
properly on latent fingerprint images, since they are mostly
applicable under the assumption that the image is already
properly segmented and there is no overlap between the target
fingerprint and other components.

Fingerprint segmentation refers to the process of decompos-
ing a fingerprint image into two disjoint regions: foreground
and background. The foreground, also called the region of
interest (ROI), consists of the desired fingerprints while the
background contains noisy and irrelevant contents that will
be discarded in the following processing steps. Accurate
fingerprint segmentation is critical as it affects the accurate ex-
traction of minutiae and singular points, which are key features
for fingerprint matching. When feature extraction algorithms
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are applied on a fingerprint image without segmentation, lots
of false features may be extracted due to the presence of noisy
background, and eventually leading to matching errors in the
later stage. Therefore, the goal of fingerprint segmentation is
to discard the background, reduce the number of false features,
and thus improve the matching accuracy.

Based on the collection procedure, fingerprint images can
generally be divided into three categories, namely, rolled, plain
and latent [2]. Rolled fingerprints are obtained from rolling the
finger from one side to the other in order to capture all ridge
details of the fingerprint. Plain fingerprints images are acquired
by pressing the fingertip onto a flat surface. Both rolled and
plain prints are obtained in an attended mode, so they are
usually of good visual quality and contain sufficient informa-
tion for reliable matching. On the contrary, latent fingerprints
are usually collected from crime scenes, in which the print
is lifted from object surfaces that were inadvertently touched
or handled. The matching between latents and rolled/plain
fingerprints plays a crucial role in identifying suspects by law
enforcement agencies.

Segmentation on rolled and plain fingerprint images has
been well-studied in literature. In the early work of [3],
segmentation was achieved by partitioning the fingerprint
image into blocks, followed by block classification based on
gradient and variance information. This method was further
extended to a composite method [4] that takes advantage of
both the directional and variance approaches. Ratha et al.
[5] considered the gray-scale variance along the direction
orthogonal to the ridge-flow orientation as the key feature for
block classification. In [6], fingerprints were segmented using
three pixel-level features (coherence, mean and variance). An
optimal linear classifier was trained for pixel-based classifica-
tion and morphology operators were applied to obtain compact
segmentation clusters.

While significant effort has been made on developing
segmentation algorithms for rolled/plain fingerprints, latent
fingerprint segmentation remains to be a challenging problem.
Although automated identification has already achieved high
accuracy for plain/rolled fingerprints, manual intervention is
still necessary for latent prints processing [2]. The difficulty
mainly lies in: 1) the poor quality of fingerprint patterns in
terms of the clarity of ridge information, and 2) the presence
of various structured noise in the background. Traditional
segmentation methods fail to work properly on latent finger-
prints as they are based on many assumptions that are only
valid for rolled/plain fingerprints. In recent works on latent
fingerprints [7], [8], [9], the region-of-interest (ROI) is still
manually marked and assumed to be known. Undoubtedly,
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Fig. 1. Illustration of six types of structured noise in latent fingerprint images.

accurate and robust latent segmentation is an essential step
towards achieving automatic latent identification, and it is the
main focus of our current research.

Most recently, several studies [10], [11] have been con-
ducted to address the problem of latent fingerprint segmenta-
tion. Karimi-Ashtiani and Kuo [10] used a projection method
to estimate the orientation and frequency of local blocks. Af-
ter projection, the distance between center-of-transient points
measures the amount of data degradation and used for segmen-
tation. Short et al. [11] formulated a ridge model template
and used the cross-correlation between a local block and
the generated template to assign one of six quality scores.
Blocks with high quality score are labeled as foreground
while the rest are treated as background. While the proposed
methods demonstrated improved performance in handling la-
tent fingerprint images, experimental results show that their
performances are still limited by the presence of structured
noise.

Total-Variation-based (TV-based) image models have been
widely used in the context of image decomposition [12],
[13]. Among several well known TV-based models, the model
using total variation regularization with an L1 fidelity term,
denoted by the TV-L1 model, is especially suited for multi-
scale image decomposition and feature selection [14], [15].
Besides, a modified TV-L1 model was adopted in [15] to
extract small-scale facial features for facial recognition under
varying illumination. More recently, the authors proposed
an adaptive TV-L1 model for latent fingerprint segmentation
in [16], where the fidelity weight coefficient is adaptively
adjusted to the background noise level. Furthermore, the
Directional Total Variation (DTV) model was formulated in
[17] by imposing the directional information on the TV term,
which proved to be effective for latent fingerprint detection and
segmentation. It appears that the TV-based image model with
proper adaptation offers a suitable tool for latent fingerprint
segmentation. However, the performance of both models in
[16], [17] was evaluated only subjectively, as no objective
evaluation was performed to determine whether the proposed

scheme improved the matching accuracy, which is the ultimate
goal for fingerprint segmentation.

In this paper, we take advantage of both TV methods in
[16], [17] and combine them into one single model, called
the Adaptive Directional Total Variation (ADTV) model. Both
the anisotropic directional TV term and the spatially-adaptive
fidelity weight are incorporated into the model formulation.
The proposed ADTV model decomposes a latent fingerprint
image into two layers: cartoon and texture. The cartoon layer
contains the unwanted components (e.g. structured noise)
while the texture layer mainly consists of the latent fingerprint.
This cartoon-texture decomposition facilitates the process of
segmentation, as the region of interest can be easily detected
from the texture layer using traditional segmentation methods.
In addition, the effectiveness of our proposed scheme is
validated through experiments on feature detection and latent
matching. As compared with our prior work, the materials in
Sections III.C and IV are new.

The rest of this paper is organized as follows. In Section
2, we first examine several forms of structured noise that
commonly appear in latent fingerprint images. In Section 3,
we introduce the proposed ADTV model and explain how
it can be utilized for latent fingerprint image decomposition
and segmentation. In Section 4, we validate the effectiveness
of our proposed scheme through a series of benchmarking
experiments. Concluding remarks are given in Section 5.

II. STRUCTURED NOISE IN LATENT FINGERPRINT IMAGES

The difficulty for latent fingerprint segmentation mainly lies
in two aspects. On one hand, the fingerprint itself is usually
of very poor quality, often with smudged or blurred ridges. It
is very common that the image contains only partial area of
the finger and large nonlinear distortions exist due to pressure
variations. As a result, while a typical rolled fingerprint has
around 80 minutiae, a latent fingerprint contains only about
15 usable minutiae with reasonable quality [2].

On the other hand, the presence of various types of struc-
tured noise further hinders the proper segmentation for latent
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prints. As compared with the oscillatory ridge structures
of fingerprints, structured noise are usually of much larger
scale and can appear in various forms. Based on appearance,
structured noise can be classified into six categories: arch, line,
character, speckle, stain and others. They are shown in Fig.
1 and elaborated below.

1) Arch. The big arch is manually marked by crime-scene
investigators to indicate the possible existence of latent
fingerprints in the region encircled by the arch. The arch
noise is considered to be the simplest type of structured
noise.

2) Line. The line noise may appear in the format of a single
line or multiple parallel lines. Single line is usually
detected and removed using methods based on Hough
transform [11]. Multiple parallel lines are easily con-
fused with fingerprints since they share many common
features.

3) Character. The most common type of structured noise
that appears in latent fingerprint images. The characters
may appear in various font types, sizes, brightness, and
can be either handwritten or typed.

4) Stain. It is generated when the finger, instead of being
properly pressed, was inadvertently smeared on a wet or
dirty surface. Stain noise often appears in spongy shape
with inhomogeneous brightness.

5) Speckle. As compared with lines and characters, the
speckle noise tends to consist of tiny-scale structures,
which can be either regular (e.g., clusters of small dots)
or random (e.g., ink and dust speckles).

6) Others. A latent fingerprint image may contain other
structured noises such as arrows, signs, etc. Similar to
arch and character noise, they usually consist of smooth
surfaces with sharp edges.

The line, character and speckle noise often appear when the
latent fingerprint is lifted from the surface of a text document
(e.g. maps, newspapers, checks, etc).

For latent fingerprint segmentation, the main challenge lies
in how to effectively separate latent fingerprints, the relatively
weak signal, from all structured noise in the background,
which is often the dominant image component. Additional
complexity arises when structured noise overlaps with the
fingerprint signal. Previous methods proposed for fingerprint
segmentation are mostly feature-based, and features commonly
used for segmentation include the mean, variance, contrast,
coherence as well as their variants [6], [18], [19]. However,
these methods may fail to work properly on latent fingerprints
as they are based on many assumptions that are only valid for
rolled/plain fingerprints. For instance, in [6], the mean feature
was used since the background was assumed to be bright and
the variance feature was used since the variance of background
noise was assumed to be much lower than that of fingerprint
regions. However, these assumptions are no longer valid in the
context of latent fingerprint images.

To evaluate the effectiveness of traditional segmentation
features, we manually segment a plain and a latent finger-
print image, and plot the distributions of three segmentation
features, namely, the mean, variance and coherence, for both

foreground and background regions. As shown in the Fig. 2,
the distributions of these features in foreground and back-
ground regions are well separated for plain fingerprints, while
those of latent fingerprints have significant overlaps. These
overlaps can be explained by two reasons. First, regions with
structured noise often have high contrast and coherent gradient
orientations as well, so it’s difficult to differentiate them
from fingerprints using these features. Second, the qualities
of some latent fingerprints are so poor that they cannot be
well characterized by traditional fingerprint features. As a
result, new features or models need to be considered for more
effective separation of latent fingerprint and structured noises.

Plain Fingerprint 

Latent Fingerprint 

Mean 

Mean 

Variance 

Variance 

Coherence 

Coherence 

Fig. 2. Comparison of distributions of three features (mean, variance
and coherence) in the foreground and background areas of plain and latent
fingerprints.

III. LATENT SEGMENTATION WITH ADTV MODEL

In this section, we introduce the proposed Adaptive Di-
rectional Total Variation (ADTV) model and explain how
it can be used to effectively separate latent fingerprint with
structured noises, and thus facilitate the process of fingerprint
segmentation. We begin with introducing the TV-L1 model,
which serves as the basis for the proposed ADTV model, and
explain its capability in multiscale feature selection. Finally,
we propose the ADTV model and discuss the choice of its
parameters.

A. The TV-L1 Model

TV-based image models have been widely studied to achieve
the task of image decomposition. Among many existing TV
models, the total variation regularization model with an L1
fidelity term, denoted by TV-L1, is suitable for multiscale
image decomposition and feature selection. In the context
of facial recognition under varying illumination, a modified
TV-L1 model was proposed in [15] to separate small-scale
facial features with nonuniform illumination, and thus leads
to improved recognition result.

Similar to other TV-based image models (e.g., the ROF
model [1]), the TV-L1 model decomposes an input image, f ,
into two signal layers:
• Cartoon u, which consists of the piecewise-smooth com-

ponent in f , and
• Texture v, which contains the oscillatory or textured

component in f .
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Fig. 3. Feature selection based on the TV-L1 model for latent fingerprint image: input image f (left most) and its TV-L1 decomposed components u and v
with its λ value shown in the subscript. As λ increases, only features of smaller scales are extracted to texture output v, while features of larger scales are
kept in cartoon u.

The decomposition
f = u+ v,

is obtained by solving the following variational problem:

min
u

∫
|Ou|+ λ

∫
|u− f | dx, (1)

where f , u and v are functions of image gray-scale intensity
values in R2, Ou is the gradient value of u and λ is a constant
weighting parameter. We call

∫
|Ou| and

∫
|u− f | the total

variation of u and the fidelity term, respectively.
The TV-L1 model is difficult to compute due to nonlinearity

and non-differentiability of the total variation term as well as
the fidelity term. A gradient descent approach was proposed
in [14], which solves for u as a steady solution of the Euler-
Lagrange equation of (1):

O ·
(

Ou
|Ou|

)
+ λ

f − u
|f − u|

= 0. (2)

Although (2) is easier to implement, the gradient descent
approach is slow due to a small time step imposed by the strict
stability constraint. That is, the term f−u

|f−u| is non-smooth at
f − u, which forces the time step to be very small when the
solution is approaching the steady state. In addition, |Ou| in
the term Ou

|Ou| might be zero, and a small positive constant
needs to be added to avoid zero division, which results in
inexact solution.

Many numerical methods have been proposed to improve
this method. One approach is the split Bregman iteration [20],
[21], [22], [23], which uses functional splitting and Bregman
iteration for constrained optimization. The equivalence of the
split Bregman iterations with the alternating direction method
of multipliers (ADMM), the Douglas-Rachford splitting and
the augmented Lagrangian method can be found in [23], [24],
[25], [26].

The use of TV model is motivated by the analogy between
the problem of TV decomposition and latent fingerprint seg-
mentation. As discussed in Section II, the key challenge for
latent segmentation is to effectively separate latent fingerprint
with different structured noise. Structured noise (e.g. arch,

character), with its smooth inner surface and crisp edges, share
many similar characteristics with components in the cartoon
layer u. On the other hand, fingerprint pattern, which consists
of oscillatory ridge structures, matches the characteristics of
the texture components in v. This interesting analogy suggests
that TV model could be a viable solution to our problem.

B. Multiscale Feature Selection of TV Model
The TV-L1 model distinguishes itself from other TV-based

models by its unique capability of intensity-independent multi-
scale decomposition. It has been shown both theoretically [14]
and experimentally [12] that the fidelity weight coefficient, λ,
in (1) is closely related to the scale of features in the texture
output v. This relation is supported by the analytic example
in [14]. If f is equal to a disk signal, denoted by Br, which
has radius r and unit height, the solution of (1) is given as:

uλ(x) =


0 if 0 ≤ λ < 2

r

f(x) if λ >
2

r

cf(x) if λ =
2

r
, for any c ∈ [0, 1]

In other words, depending on the λ value, the TV-L1
functional is minimized by either 0 or input f . This shows that
the TV-L1 model has the ability to select geometric features
based on a given scale. Fig. 3 shows an example of feature
selection on the latent fingerprint image.

As shown in Fig 3, the numerical results match with the
analysis before. The fidelity weight coefficient λ controls the
feature selection by manipulating the scale of content captured
in each image layer. When λ is very small (e.g., λ = 0.10),
u captures the inhomogeneous illumination in the background
while most fine structures are kept in v. When λ = 0.30,
large-scale objects (arch) are captured in u, and separated from
structures of smaller scales (characters). As λ continues to
increase, only small-scale structures (fingerprint and noise) are
left in v while the major content of f is extracted to u.

We observe that one of the differences between fingerprint
patterns and structure noise is their relative scale. By applying
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Fig. 4. (a) Top: original image f . Bottom: texture output v after decomposition by the TV-L2 model [1], (b) Texture output v for orientation vector ~a in
four different directions. Top: ~a = (0, 1) and ~a = (1, 0). Bottom: ~a = (−
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the TV-L1 model with an appropriately chosen λ value, it’s
seemingly possible to extract fingerprints to texture layer v
while leaving the unwanted structure noise in cartoon layer
u. However, there arise two problems by applying the TV-L1
model directly:

1) The value of λ forces structures that are smaller that
or equal to a given scale to appear in v. As a result,
structured noises of smaller scales as fingerprints (e.g.
speckle, stain), will also be captured by v along with
fingerprints.

2) A small amount of boundary signals near non-smooth
edges will appear in v (see Fig. 5) due to the non-
smoothness of the boundary and the use of finite dif-
ferencing. This issue was also reported in [15].

f 

u 

v 

Fig. 5. Illustration of the boundary signal problem in TV-L1 decomposition:
a small amount of structure noise edge signal is still kept in texture v (left)
and signals along the dash line depicted in f , u and v (right).

To overcome these limitations, we propose the Adaptive
Directional Total-Variation (ADTV) model, which will be
presented next.

C. The ADTV Model

The TV-L1 model with spatially invariant fidelity (1) does
not generate the desired output throughout the entire finger-
print image. In the fingerprint region, when λ is well matched
with the scale of fingerprints, all essential contents can be
captured in the texture layer v. However, in the noisy region,
some unwanted signals will also be extracted to v under the
same λ value. In addition, being an isotropic model, the TV
model minimizes the total variation of cartoon layer u along all
directions. This scheme does not fully exploit the information
of orientation coherency, which is one of the most unique
characteristics of fingerprints.

These concerns motivate us to consider a more flexible
image model that is capable of integrating the special charac-
teristics of fingerprints. We call this new model the Adaptive
Directional Total-Variation (ADTV) model:

u∗ = argmin
u

∫
|Ou · ~a(x)| dx+

1

2

∫
λ(x) |u− f | dx (3)

where ~a(x) is a spatially varying orientation vector adjusted
to the local texture orientation, and λ(x) is a spatially varying
parameters that controls the feature scale.

The spatially varying parameter, λ(x), can be understood
in two ways. First, λ(x) is a scalar that controls the scale of
features appearing in v at pixel x. A large λ(x) value enforces
most textures to be kept in u, leaving only tiny-scale structures
in v. When λ(x) is sufficiently large, u∗(x) ≈ f(x), and
the original content is almost totally blocked from v. Thus,
v(x) = f(x) − u∗(x) ≈ 0. Second, parameter λ(x) can
also be interpreted as a weighting coefficient that balances
the importance between fidelity and smoothness of u. In the
fingerprint region, the λ(x) value should be relatively small,
since low fidelity ensures the smoothness of u and, thus, more
textures could be extracted to v. In regions with structured
noise, fidelity becomes important and large λ(x) ensures all
noise components to be filtered out from texture v.
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The orientation vector ~a(x) also controls the content cap-
tured in the texture layer v, but in a different manner. By
tuning ~a(x) to a specific direction, we are mainly interested in
minimizing the total variation of u along that direction, while
allowing the variation of u to exist along other directions.
As a result, textures along the corresponding direction will
be fully captured by v while textures of other directions will
be weakened in v. In particular, textures along the orthogonal
direction of ~a(x) will be totally blocked from v. In Fig. 4,
we illustrate the impact of ~a(x) on the texture output v by
applying our ADTV model with fixed orientation vector ~a on
a typical fingerprint image. In the proposed ADTV model,
~a(x) is a spatially varying vector that is adaptively chosen
according to the image content.

Algorithm 1. Augmented Lagrangian method for our
proposed ADTV model.

1) Initialization: u0 = 0, ~p 0 = 0, q0 = 0, w0 = 0;

2) For k = 0, 1, 2, ..., compute:

(uk+1, ~p k+1, qk+1, wk+1) = argmin
(u,~p,q,w)

L(u, ~p, q, w, ~µp
k, µkq , µ

k
w)

(4)
3) Update:

~µp
k+1 = ~µp

k + rp(~p
k+1 − Ouk+1)

µk+1
q = µkq + rq(q

k+1 − ~p k+1 · ~a)
µk+1
w = µkw + rw(w

k+1 − uk+1)

We use the augmented Lagrangian method [27], [28], [29],
[30] to solve the proposed ADTV model given in (3). The
augmented Lagrangian method is both accurate and efficient,
as it benefits from the FFT-based fast solver with a closed-form
solution. It has been proven that the augmented Lagrangian is
equivalent to the split Bregman iteration and its convergence
is always guaranteed [23].

In the augmented Lagrangian method, three new variables
(~p, q, w) are introduced to reformulate (3) into the following
constraint optimization problem:

min
u

∫
|q|+ 1

2

∫
λ(x) |w − f | dx,

s.t. ~p =

(
p1
p2

)
=

(
∂xu
∂yu

)
= Ou, q = ~p · ~a,w = u

(5)

To solve (5), the following augmented Lagrangian func-
tional is defined:

L(u, ~p, q, w, ~µp, µq, µw) =

∫
|q|+ 1

2

∫
λ(x) |w − f | dx

+
rp
2

∫
(~p− Ou)2 +

∫
~µp(~p− Ou)

+
rq
2

∫
(q − ~p · ~a)2 +

∫
µq(q − ~p · ~a)

+
rw
2

∫
(w − u)2 +

∫
µw(w − u),

where ~µp, µq and µw are the Lagrange multipliers and rp, rq ,
rw are positive constants. The augmented Lagrangian method
uses an iterative procedure to solve (5) as shown in Algorithm

1. The iterative scheme runs until some stopping condition is
satisfied. Since variables u, ~p, q, w in L(u, ~p, q, w, ~µp, µq, µw)
are coupled together, it is difficult to solve them simulta-
neously. Instead, the problem is decomposed into four sub-
problems and an alternative minimization process is applied.
Instead of solving 4 exactly, we apply the alternating direction
method of multipliers (ADMM) [23], [24] and run one iter-
ation for each sub-problem. It should be mentioned that this
was also reused in the split Bregman iteration method [25],
[26]. This approach of splitting technique is efficient since all
sub-problems have closed-form solution, which are given as:

uk = F−1


−rp · F(div · ~p)−F(div · ~µkp)

+rwF(w) + F(µkw)
rw − rpF(4)

 ,

~p k(x) = Ou− 1

rp

(
~µp
k − (rqq − rqρ(x) + µkq ) · ~a(x)

)
,

qk(x) = max

{
0, 1− 1

rq |ψ(x)|

}
· ψ(x),

wk(x) = max

{
0, 1− λ(x)

rw |φ(x)|

}
· φ(x) + f(x)

where ρ(x) =
rp(Ou·~a(x))− ~µp

k·~a(x)+(µk
q+rqq)‖~a(x)‖

2

rp+rq‖~a(x)‖2
, ψ(x) =

~p · ~a(x) − µk
q (x)

rq
, and φ(x) = u(x) − f(x) − µk

w(x)
rw

. F(u)
and F−1(u) denotes the Fourier transform and inverse Fourier
transform of u, respectively.

D. Orientation Field Estimation

In order to extract the fingerprint components to texture out-
put v, ~a(x) should be spatially varying and well aligned with
the local fingerprint ridge orientation. We use the gradient-
based approach [31], [32] for computing the coarse orientation
field at each pixel:

o(x) =
1

2
tan−1

∑
W 2fx1

fx2∑
W (f2x1

− f2x2
)
+
π

2

where W is a neighborhood window around x, (fx1
, fx2

) is
the gradient vector at x = (x1, x2), and tan−1 is a 4-quadrant
arctangent function with output range of (−π, π).

The estimation above is relatively accurate at fingerprint
regions, while it becomes less reliable at noisy regions. We
evaluate the reliability of the estimated orientation field by its
local coherency:

c(x) =
(
∑
W (f2x1

− f2x2
))2 + 4(

∑
W fx1

fx2
)2

(
∑
W (f2x1

+ f2x2
))2

where c(x) ∈ [0, 1] (close to 1 for strongly oriented pattern,
and 0 for isotropic regions). The value of c(x) provides a
reliability measure of the estimated orientation field and will
be utilized to generate the final orientation vector ~a(x).

The coarse orientation field o(x) still contains inconsisten-
cies caused by creases and ridge breaks of the fingerprint
pattern. We further improve the estimation by orientation
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Fig. 6. Essential steps for computing ~a(x). From left to right: original image f , coarse orientation estimation o(x), orientation smoothening O(x) and
coherency evaluation c(x).

smoothening:

O(x) =
1

2
tan−1

{
Gσ ∗ sin(2 · o(x))
Gσ ∗ cos(2 · o(x))

}
where Gσ is a Gaussian smoothing kernel with standard
deviation σ.

Finally, the orientation vector ~a(x) in (3) is computed as:

~a(x) = (− cosO(x), sinO(x)) · c(x)

At regions where the orientation estimation is reliable, the
large c(x) value enforces textures along the direction ~a(x)
to be fully captured by v, leaving textures of the remaining
orientations in u. On the other hand, at regions where c(x) is
small and the estimation is not trustworthy, the fidelity term
1
2

∫
λ(x) |u− f | dx becomes dominant and most of the image

content will be kept in u. In this way, we can efficiently filter
out the structured noises from the texture output v. The process
for computing the parameter ~a(x) is illustrated in Fig. 6.

E. Scale Parameter Selection

As discussed in Section III-B, applying one uniform λ value
over the entire fingerprint image does not generate satisfactory
results. To improve the result, the value of λ should be spatially
adaptive. That is, λ(x) ought to be adaptively chosen according
to the background noise level. Ideally, parameter λ(x) should
take larger values in regions with much structured noise and
be relatively small in fingerprint regions.

To differentiate these regions, we study their characteristics
after going through local low-pass filtering. When an input
image, f , is locally filtered by a low-pass filter denoted by

Lσ(ξ) =
1

1 + (2πσ |ξ|)4
,

its cartoon and texture components, though both being blurred
to some extent, change differently by means of local total
variation (LTV), which is defined as

LTV (f) = Gσ ∗ |Of | ,

where f is the image region and Gσ is a Gaussian kernel with
standard deviation σ. In [33], the author used the relative LTV
reduction ratio to differentiate cartoon with textural regions.
It was observed that the LTV of textural regions decay much
rapidly than that of cartoon regions after low-pass filtering.

Fig. 7. Plots of ησ(x) for several pixels in different latent fingerprint images.
It has a sharp peak located near σ = 2.0 in the fingerprint region while it
reaches the maximum at different σ values in other regions.

Though the LTV reduction ratio provides a good measure
for separating edgy regions from textural regions, it has limited
capability in differentiating textures of different scales (e.g.,
fingerprints with speckles). To overcome this limitation, we
further introduce the differential LTV reduction rate, denoted
by ησ , as

ησ =
LTV (Lσ+1 ∗ f)− LTV (Lσ ∗ f)

LTV (f)
. (6)

For a given local patch, the parameter ησ describes its
structural components’ sensitivity to low-pass filtering of scale
σ. It provides useful information about the underlying texture
structure of a local region. Intuitively, it measures the texture’s
local oscillatory behavior at a certain spatial scale σ. In
Fig. 7, we demonstrate the ησ values of different textural
patches, which are extracted from latent fingerprint images.
We observe that the ησ value of fingerprint regions all reaches
local maxima around σ = 2.0. With a fixed σ value, ησ will
have the largest response for textural components of scales
around σ, while the response for textures of other scales will
be suppressed.

Based on this observation, we choose the spatially variant
coefficient λ(x) in (3) as:
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(a) Latent print input: Type-1 (b) Latent print input: Type-2 (c) Latent print input: Type-3 (d) Mated rolled fingerprint

Fig. 8. Input images for latent matching. (a) Type-1: without any segmentation, (b) Type-2: segmentation mask over original image f , (c) Type-3: segmentation
mask over texture layer v, (d) the corresponding mated rolled fingerprint.

λ(x) = κ · 1

ηc(x) + ε
, (7)

where ηc is the differential LTV reduction rate at σ = c, which
is adjusted to the best response of fingerprint patterns, κ and
ε are trivial positive constants used for scaling and avoiding
zero-division. In our experiments, we observe that c = 2.0
gives the optimum value for the latent fingerprint patterns
while parameters κ and ε are empirically set to 0.5 and 0.01,
and used for scaling and avoiding zero-division, respectively.

F. Region-of-interest Segmentation and Enhancement

After decomposing the latent fingerprint image using our
proposed ADTV model, we have obtained two image layers:
1) cartoon u, which contains the majority of unwanted content
(e.g. structured noise, small-scale structures), and 2) texture
v, which consists of latent fingerprints and only a small
amount of random noise. This decomposition facilitates two
procedures: segmentation and enhancement.

(a) Input f (b) Texture v

Fig. 9. Distributions of the variance feature for the foreground and
background region in f and v, respectively.

The variance value acts as a key segmentation feature
for rolled/plain fingerprints [6]. As discussed in Section II,
this feature cannot be directly applied to latent fingerprints
due to the presence of structured noise. However, after the
cartoon-texture layer decomposition, most high-variance noise
components are kept away from the texture layer v, allowing
us to use the variance features for segmentation. We verify
this point in Fig. 9, where we plot the probability distribution
of variance feature at foreground/background regions before
and after the ADTV-based decomposition.

In addition, our proposed decomposition scheme is capable
of enhancing the fingerprint quality. After decomposition, in
the texture layer v, we have removed all the unwanted com-
ponents that may overlap with the fingerprints. The extracted
patterns are less degraded by structured noises and free of
illumination effects, leading to enhanced fingerprint quality.
In the next section, we will experimentally demonstrate that
this enhancement as well as the segmentation will result in
better latent matching performance.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed ADTV model by
several experiments. We first show the segmentation results
for latent fingerprint images with different quality types.
The decomposed texture layer v using the ADTV model is
compared with two other TV models: the TV-L1 [14] and TV-
L2 [1] model. Then we experimentally examine the impact of
our proposed segmentation scheme on the accuracy of feature
extractions. Finally, we conduct latent matching experiments
to verify whether the segmentation result can indeed lead to
higher matching accuracy.

A. Data Preparation

The experiments are conducted on the public domain fin-
gerprint database, NIST SD27, which contains 258 latent
fingerprints and their corresponding rolled fingerprints. In this
database, fingerprint experts have assigned to each fingerprint
one of three quality levels - good, bad and ugly. The numbers
of ”good”, ”bad” and ”ugly” latent prints are 88, 85 and 85,
respectively. In our experiment, we have selected 29, 27 and
27 prints from each category, and experimented on this subset
of data. For the matching experiment, we included 27,000
rolled fingerprints from the NIST SD14 database and extended
the background database to 27,258 fingerprints, making the
problem more realistic and challenging.

The feature extraction and fingerprint matching process are
conducted using the commercial matcher Neurotechnology
VeriFinger SDK 6.5 [34]. For each latent fingerprint, we
compare the results for three inputs:
• Type-1: original latent fingerprint without segmentation,
• Type-2: segmentation mask applied on original image,
• Type-3: segmentation mask applied on texture layer v.
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Fig. 10. Performance comparison of the proposed ADTV model and two other TV-based models. First row: original image f , texture output v of TV-L2 [1],
TVL1 [14] and the proposed ADTV model. Second row: distribution of variance feature in the foreground and background areas. Third row: the segmentation
result based on variance feature.

As mentioned previously, our proposed ADTV model has
two functionalities: segmentation and texture enhancement.
We evaluate the effectiveness of segmentation by comparing
the corresponding results of Type-1 and Type-2, while com-
paring results of Type-2 and Type-3 provides evaluation for
the impact of texture enhancement.

B. Comparison with other TV-based models

In Fig. 13-15, we present the segmentation results using our
proposed ADTV scheme for latent prints of good, bad and ugly
quality types, respectively. Visual inspection shows that the
proposed ADTV segmentation scheme provides satisfactory
results.

In Fig. 10, we compare the texture output v of our pro-
posed ADTV model with two classical TV models: TV-
L1 [14] and TV-L2 [1]. The variance distribution of fore-
ground/background regions as well as the corresponding seg-
mentation result are shown in the bottom part of Fig. 10,
respectively. In fingerprint regions, our proposed ADTV model
is able to extract all essential fingerprint texture with clear
ridge information, while the results of other TV model still
contains some background noise. In regions with structured
noise, boundary and speckle noise can be clearly observed
in the texture layer v obtained by other TV-based model. In
contrast, our proposed ADTV model is capable of filtering out
these background noise signals from the texture output v.

C. Feature Extraction Accuracy

Without segmentation, the performance of latent matching
is very poor due to the high number of unreliable features.

There are two types of features that are essential for fin-
gerprint matching: singular points (core, delta) and minutiae.
Traditional feature extraction algorithms perform poorly on
latent fingerprints, especially at regions with much structured
noises. Some areas of the noise are often miss-identified as
useful fingerprint features, which could heavily affect the
accuracy of the fingerprint matching stage. Therefore, with the
help of accurate segmentation, we can remove the unwanted
structured noise components and thereby decrease the number
of erroneous features.

We manually segment each latent fingerprint image, and
use VeriFinger SDK 6.5 for feature extraction. All extracted
features points that fall within the manual segmentation region
are used as the ground truth. Then we calculate the number of
true features points that were missing as well as the number
of false feature points detected, for two scenarios: with and
without segmentation. Experimental results are given in Table
I. For latent inputs without any segmentation, though none of
the true features points are missing, 30 - 40% of the detected
features are erroneous. On the other hand, for inputs after
segmentation, the false feature point ratio has decreased to less
than 5%, while the missing features points have only slightly
increased by 5 - 10%. In the next session, we will show that the
improvement in feature extractions will lead to better matching
performance.

D. Fingerprint Matching Results

The ultimate goal of segmentation is to successfully match
the input latent fingerprint with the corresponding plain/rolled
fingerprint in a large database. In the preceding sections, we
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TABLE I
FEATURE EXTRACTION ACCURACY WITH AND WITHOUT SEGMENTATION OF ADTV MODEL

Without Segmentation Segmentation with ADTV model
Missed Minutiae 0.0% 9.5%

Missed Singular Points 0.0% 4.2%
False Minutiae 34.2% 5.3%

False Singular Points 45.3% 0.0%

have visually demonstrated the effectiveness of the segmen-
tation scheme using our proposed ADTV model, and shown
that the segmentation does improve the accuracy of feature
extractions. In this section, we conduct matching experiment
to verify whether the segmentation result can indeed lead to
improved matching accuracy.
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Fig. 11. Average latent matching score for latent inputs of all three quality
types (good, bad, ugly).

We first use VeriFinger SDK 6.5 to match all three input
types with their corresponding mated rolled fingerprint. The
average matching scores are computed for three quality types
separately (see Fig. 11). For input latents of good quality, the
average matching scores increase significantly after segmenta-
tion, and further improvement can be observed after texture
extraction using our ADTV model, which acts similar to
fingerprint enhancement. However, for latent prints of bad and
ugly qualities, no significant improvements can be observed.
For these input images, the fingerprint patterns are so degraded
that even with reliable segmentation and enhancement, latent
matching still remains to be extremely challenging.

The Cumulative Match Characteristic (CMC) curves of the
three input types to the fingerprint matcher are shown in Fig.
12. Each input is searched against the background database
of 27,258 rolled fingerprint. The CMC curve plots the rank-
k identification rate against k, for k = 1, 2, 3, ..., 100. The
rank-k identification rate indicates the proportion of times the
mated rolled fingerprint appears in the top k matches. Due to
the poor matching scores of bad and ugly latent prints, we
only include the matching results of latent prints with good
quality. As shown in Fig. 12, automatic matching performance

is significantly improved when Type-2 and Type-3 are used
as input to the matcher. The rank-1 identification ratio has
increased from 9.8% (Type-1) to 18.9% (Type-2) and 30.2%
(Type-3).
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Fig. 12. Cumulative matching curve (CMC) of all three latent input types.

V. CONCLUSIONS AND FUTURE WORK

While current automated fingerprint identification systems
have achieved high accuracy in matching rolled/plain prints,
latent matching still remains to be a challenging problem and
requires much human intervention. The goal of this work is
to achieve accurate latent segmentation, which is an essential
step towards achieving automatic latent identification. Existing
fingerprint segmentation algorithms performs poorly on latent
prints, as they are mostly based on the assumptions that are
only applicable for rolled/plain fingerprints.

In this paper, we have proposed the Adaptive Directional
Total Variation (ADTV) model as an image decomposition
scheme that facilitates effective latent fingerprint segmenta-
tion and enhancement. Based on the classical Total-Variation
model, the proposed ADTV model differentiates itself by
integrating two unique features of fingerprints, scale and
orientation, into the model formulation. The proposed model
has the ability to decompose a single latent image into two
layers and locate the essential latent area for feature matching.
The two spatially varying parameters of the model, scale and
orientation, are adaptively chosen according to the background
noise level and textural orientation, and effectively separate the
latent fingerprint from structured noises in the background.
Experimental results show that the proposed scheme provides
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Fig. 13. Experimental results of latent fingerprints with good quality. From left to right: original image f , scale parameter λ(x), orientation vector ~a(x),
texture output v and the final segmentation result.

effective segmentation and enhancement. The improvements in
feature detection accuracy and latent matching further justifies
the effectiveness of the proposed scheme.

The proposed scheme can be regarded as a preprocessing
technique for automatic latent fingerprint recognition. It also
has strong potential to be applied on other relevant applica-
tions, especially for processing images with oriented textures.
This study can be further extended along the following direc-
tions:

1) The effectiveness of the proposed scheme is related
to the accuracy of orientation estimation. When the
estimated orientation is unreliable, fingerprint patterns
may not be fully extracted to the texture layer v,
leading to poor segmentation and enhancement results.
In addition, the positions of singular points were not
taken into consideration by our proposed model. Though
only very few singular points appear in each latent
image, additional detection and processing techniques
need to be introduced for handling regions surrounding
the singular points.

2) Experimental results on latent matching shows that our
proposed scheme shows significant improvement only
for latent images of good quality, while not much
improvement could be observed for bad and ugly latent
prints. These challenging images still require manual
processing from fingerprint experts.

3) For a latent image of size 768×768 pixels, it would take
about one minute for the proposed model to converge.
Although this computation complexity is acceptable for
the processing of latent fingerprints, speed-up solutions
are desirable to enable more efficient processing.

ACKNOWLEDGMENT

The authors would like to thank Dr. Xian Tang, Dr. Lester
Li and other researchers at 3M Cogent Inc. for their support
in data collection and useful discussion.

REFERENCES

[1] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Phys. D, vol. 60, pp. 259–268, November
1992.

[2] A. K. Jain and J. Feng, “Latent fingerprint matching,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 33, pp. 88–100, January 2011.

[3] B. M. Mehtre, N. N. Murthy, S. Kapoor, and B. Chatterjee, “Seg-
mentation of fingerprint images using the directional image.” Pattern
Recognition, vol. 20, no. 4, pp. 429–435, 1987.

[4] B. Mehtre, “Segmentation of fingerprint images - a composite method,”
Pattern Recognition, vol. 22, no. 4, pp. 381–385, 1989.

[5] N. K. Ratha, S. Chen, and A. K. Jain, “Adaptive flow orientation-based
feature extraction in fingerprint images.” Pattern Recognition, vol. 28,
no. 11, pp. 1657–1672, 1995.

[6] A. M. Bazen and S. H. Gerez, “Segmentation of fingerprint images,” in
ProRISC 2001 Workshop on Circuits, Systems and Signal Processing,
2001, pp. 276–280.

[7] J. Feng, S. Yoon, and A. K. Jain, “Latent fingerprint matching: Fusion
of rolled and plain fingerprints,” in Proceedings of the Third Interna-
tional Conference on Advances in Biometrics, ser. ICB ’09. Berlin,
Heidelberg: Springer-Verlag, 2009, pp. 695–704.

[8] F. Chen, J. Feng, A. K. Jain, J. Zhou, and J. Zhang, “Separating
overlapped fingerprints.” IEEE Transactions on Information Forensics
and Security, vol. 6, no. 2, pp. 346–359, 2011.

[9] S. Yoon, J. Feng, and A. K. Jain, “On latent fingerprint enhancement,” in
Society of Photo-Optical Instrumentation Engineers (SPIE) Conference
Series, ser. Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, vol. 7667, Apr. 2010.

[10] S. Karimi-Ashtiani and C. C. J. Kuo, “A robust technique for latent
fingerprint image segmentation and enhancement,” in Proceedings of
the International Conference on Image Processing. IEEE, 2008, pp.
1492–1495.

[11] N. Short, M. Hsiao, A. Abbott, and E. Fox, “Latent fingerprint seg-
mentation using ridge template correlation,” in Proceedings of the In-
ternational Conference on Imaging for Crime Detection and Prevention.
London, UK: IEEE, 2011.



IEEE TRANSACTION ON INFORMATION FORENSICS AND SECURITY, VOL. X, NO. X, JUNE 2012 12

Fig. 14. Experimental results of latent fingerprints with bad quality. From left to right: original image f , scale parameter λ(x), orientation vector ~a(x),
texture output v and the final segmentation result.

Fig. 15. Experimental results of latent fingerprints with ugly quality. From left to right: original image f , scale parameter λ(x), orientation vector ~a(x),
texture output v and the final segmentation result.

[12] W. Yin, D. Goldfarb, and S. Osher, “The total variation regularized
l1 model for multiscale decomposition,” Multis. Model. Simul., vol. 6,
2006.

[13] J.-F. Aujol, G. Gilboa, T. Chan, and S. Osher, “Structure-texture image
decomposition–modeling, algorithms, and parameter selection,” Int. J.
Comput. Vision, vol. 67, no. 1, pp. 111–136, Apr. 2006.

[14] T. Chan and S. Esedoglu, “Aspects of total variation regularized l1 func-
tion approximation,” SIAM Journal on Applied Mathematics, vol. 65,
2004.

[15] T. Chen, W. Yin, X. S. Zhou, D. Comaniciu, and T. S. Huang,
“Total variation models for variable lighting face recognition,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 28, pp.
1519–1524, 2006.

[16] J. Zhang, R. Lai, and C.-C. J. Kuo, “Latent fingerprint segmentation
with adaptive total variation model,” in Proceedings of the International
Conference on Biometrics, 2012 (to appear).

[17] ——, “Latent fingerprint detection and segmentation with a directional
total variation model,” in Proceedings of the International Conference
on Image Processing (ICIP), 2012 (to appear).

[18] H. Fleyeh, D. Jomaa, and M. Dougherty, “Segmentation of low quality
fingerprint images,” International Conference on Multimedia Computing
and Information Technology (MCIT-2010), vol. March 2-4, 2010.

[19] Z. Shi, Y. Wang, J. Qi, and K. Xu, “A new segmentation algorithm for
low quality fingerprint image,” in Proceedings of the Third International
Conference on Image and Graphics, ser. ICIG ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 314–317.

[20] T. Goldstein, X. Bresson, and S. Osher, “Geometric applications of
the split bregman method: Segmentation and surface reconstruction,”
Journal of Scientific Computing, vol. 45, no. 1-3, 2009.

[21] T. Goldstein and S. Osher, “The split bregman method for l1-regularized
problems,” SIAM J. Img. Sci., vol. 2, pp. 323–343, April 2009.

[22] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An iterative regu-
larization method for total variation-based image restoration,” Multiscale
Mode. Simul., vol. 4, 2005.

[23] C. Wu and X. Tai, “Augmented lagrangian method, dual methods and
split bregman iterations for rof model, vectorial tv and higher order
models,” SIAM J. Imaging Science, vol. 3, 2010.

[24] E. Esser, “Applications of lagrangian-based alternating direction methods
and connections to split bregman,” UCLA CAM Report (09-31), 2009.

[25] S. Setzer, “Split bregman algorithm, douglas-rachford splitting and frame
shrinkage,” in Proceedings of the Second International Conference on
Scale Space and Variational Methods in Computer Vision, ser. SSVM
’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 464–476.

[26] J. Cai, S. Osher, and Z. Shen, “Split bregman methods and frame based
image restoration,” Multiscale Model. Simul., vol. 8, 2009.

[27] R. Glowinski and P. L. Tallee, “Augmented lagrangian and operator-
splitting methods in nonlinear mechanics,” SIAM, 1989.

[28] M. Hestenes, “Multiplier and gradient methods,” Journal of Optimization
Theory and Applications, vol. 4, 1969.

[29] X. Tai, J. Hahn, and G. Chung, “A fast algorithm for euler’s elastic
model using augmented lagrangian method,” SIAM J. Imaging Science,
vol. 4, 2011.

[30] C. Wu, J. Zhang, and X.-C. Tai, “Augmented lagrangian method for
total variation restoration with non-quadratic fidelity,” Inverse Problems
and Imaging (IPI, vol. 4, 2011.

[31] L. Hong, Y. Wan, and A. Jain, “Fingerprint image enhancement:
Algorithm and performance evaluation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 20, pp. 777–789, 1998.

[32] E. Zhu, J. Yin, C. Hu, and G. Zhang, “A systematic method for
fingerprint ridge orientation estimation and image segmentation,” Pattern
Recognition, vol. 39, no. 8, pp. 1452–1472, 2006.

[33] A. Buades, T. M. Le, J.-M. Morel, and L. A. Vese, “Fast cartoon +
texture image filters,” Trans. Img. Proc., vol. 19, pp. 1978–1986, August
2010.

[34] Neurotechnology Inc., VeriFinger, http://www.neurotechnology.com,
2012.


