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1 Introduction

Image segmentation is one of the most important yet challenging problems in imaging science. The goal of
segmentation is to locate important edges and boundaries in an image. The difficulty resides in the notion
of the edge or boundary set, and thus the definition of segmentation itself. One way to define segmentation
is as the process of partitioning up an image into different features or objects. In this way, the edge set
must be made up of curves with no endpoints (loops) or that terminate at the boundaries of the image
domain. An alternative definition, one that is employed by many mathematical segmentation techniques,
is the location of boundaries between important features and objects. The latter is more general, since the
boundary set may contain curves with free endpoints which do not partition the domain in the classical
sense. In this paper, we propose an extension to the classical level set based segmentation techniques which
allow for the more general class of boundaries, including curves with free endpoints. We will do so by
extending the active contours models [5,34], using a different formulation of the edge set which can capture
a large class of edges.

The Mumford and Shah model (MS) is defined as follows: find a piecewise smooth approximation, u, of
a given image f , which may have jumps along a set Γ by minimizing the following:

inf
u,Γ

EMS(u, Γ ) = µ

∫
Ω\Γ
|∇u|2dx+ γ

∫
Ω

|u− f |2dx+ λH1(Γ ) (1)

The first term requires u to be smooth outside of the jump set Γ , the second term ensures that u remains
close to f in the L2 sense, and the last term is the Hausdorff measure (“length”) of the jump set which
regularizes the edge set. Theoretical results on the existence and regularity of minimizers can be found in the
works of Morel and Solimini [21,22], Dal Maso, Morel, Solimini [9], and De Giorgi, Carriero and Leaci [12].
Specifically, the edge set is made up of C1,1 segments whose endpoints either terminate perpendicularly to
the boundary of the domain, terminate at a triple junction where three segments connect, or terminate at
a free endpoint where the segment does not connect to any other edges.

Based on Γ -convergence [1], Ambrosio and Tortorelli proposed an elliptic approximation to the Mumford
and Shah model. The set Γ is replaced by a function v ∈ [0, 1], which is 1 away from an edge and 0 on an
edge, thus acting as an indicator function. The approximated functional is:

inf
u,v

EAT (u, v) = µ

∫
Ω

(v2 + ηε)|∇u|2dx+ γ

∫
Ω

|u− f |2dx+ λ

∫
Ω

(
ε

2
|∇v|2dx+

1

2ε
|v − 1|2

)
dx (2)

where ε > 0 is a small parameter and ηε = o(ε). The last integral replaces the length term and enforces that
the function v is smooth and close to 1 except for a small region around an edge. It can be shown that as
ε→ 0 the functional above Γ -converges to the weak formulation of the Mumford and Shah functional. One
advantage of this formulation over the level set based methods is that the edge set can contain all types
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of curves theoretically possible as minimizers of the Mumford and Shah model. On the other hand, since
the indicator function v does not sharply define edges, the reconstructed image may not have sharp jumps.
The width of the edge is determined by the parameter ε, which may also cause thickening of the edge set.
This was extended in [30] to include a texture regularizer.

In this work, our proposed model is formulated using the Level Set method, proposed by Osher and
Sethian [27]. The level set method provides an implicit representation for curves by defining them as the
zero level set of a Lipschitz continuous function φ : Ω → R. Using the level set framework allows the curve
to undergo changes in topology and allows for the formation of cusps and corners. The level set method does
restrict the class of possible edge sets to curves made up of segments without endpoints or that terminate
at the boundary of the domain.

In [5],the authors proposed a region based segmentation and restoration method formulated within the
level set framework. The reconstructed image u is defined as a piecewise constant function, equal to c1 inside
the region enclosed by the curve and c2 outside the region enclosed by the curve. The energy minimization
is as follows:

inf
c1,c2,Γ

ECV (c1, c2, Γ ) = γ1

∫
inside(Γ )

|f − c1|2dx+ γ2

∫
outside(Γ )

|f − c2|2dx+ λLength(Γ ) (3)

The first two terms enforce that the given image f must remain close to the constants c1 and c2 in each
region of their respective regions. When minimized, the last term regularizes the edge set by making it
as small as possible while still separating the two regions. Equation (3) is a special case of the Mumford
and Shah functional [23], in which the reconstructed image is restricted to the class of piecewise constant
solutions.

In [34], the authors proposed an extension of the original active contours model without edges, providing
a practical implementation of the full Mumford and Shah model. Two level set functions are used to define
four regions and the reconstructed function u is defined piecewise by four auxiliary functions uj , 1 ≤ j ≤ 4,
which are smooth in each of their respective regions. The model is as follows:

inf
uj ,Γ

EV C(uj , Γ ) = µ

{∫
Ω1

|∇u1|2dx+ µ

∫
Ω2

|∇u2|2dx+ µ

∫
Ω3

|∇u3|2dx+ µ

∫
Ω4

|∇u4|2dx
}

+γ

{∫
Ω1

|u1 − f |2dx+ µ

∫
Ω2

|u2 − f |2dx+ µ

∫
Ω3

|u3 − f |2dx+ µ

∫
Ω4

|u4 − f |2dx
}

+ λLength(Γ ) (4)

and the regions Ω1, ..., Ω4 are represented using two open sets. The minimizing function u is smooth outside
of the set Γ , where it may have jumps. The minimizing edge set Γ is comprised of curves that terminate
perpendicularly to the boundary of the domain and curves without endpoints, but cannot have curves with
free endpoints. See also [33] for parellel related work, [3] for an alternative model based on geodesics, and [4]
for an extension to vector valued images.

An alternative level set formulation can be found in [6], where the authors proposed a multilayer
extension to the piecewise constant active contours model. Their model uses multiple level lines of φ in
order to segment many embedded objects. The resulting reconstructed image is piecewise constant and the
resulting edge set is comprised of curves that terminate perpendicularly to the boundary of the domain
and curves without endpoints which may be enclosed in each other.

The level set based segmentation methods thus far are unable to located edges with free endpoints. In
this paper, we propose an extension to the level set techniques for segmentation by defining a more general
edge set. Using the method from the work of Smereka [31] to represent curves with endpoints, we propose
a level set based segmentation method which can capture free curves, in addition to all previously possible
curves. Related work on free curves can be found in [7, 14–18,20].

The paper is organized as follows. Chapter 2 provides a description of the model with our particular
curve and function representation. Also, a brief description of Sobolev gradients and its application to
our equations is provided. In Chapter 3, some analytical remarks on the model and its relation to other
level models are discussed. The numerical techniques and algorithm are presented in Chapter 4, with
experimental results on both synthetic and real images in Chapter 5.
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2 Description of the Proposed Model

Before discussing the model, the level set method with addition of free curves will be reviewed. After that,
the energy will be presented with the associated equations of motion. Lastly, we will review the theory of
Sobolev gradients and its application to our evolution equations.

2.1 Representation of Curves with Free Endpoints and Domain Partitioning

Osher and Sethian proposed the level set method as an implicit representation of curves [27]. In the classical
level set formulation, a curve Γ is represented as the zero level set of a Lipschitz continuous function,
φ : Ω → R. The assumption is that Γ is the boundary of an open set, and thus Γ is comprised of curves
without endpoints and curves which terminate at the boundary of the domain. The interior region is defined
as the set of points where φ > 0 and the exterior region is defined as the set of points where φ < 0. The
standard example of a level set function is the signed distance function to the curve.

Using the Heaviside function, defined as H(s) = 1, if s ≥ 0, and H(s) = 0, if s < 0, in conjunction with
the level set function, one can reformulate geometric quantities into easier-to-handle equations. Instead of
looking at quantities along the curve, φ allows the calculations to be extended to the entire domain, making
calculations more practical. For example, the length of the curve and the area enclosed by the curve can
be written as:

L(Γ ) =

∫
|∇H(φ)|, A(Γ ) =

∫
H(φ)dx

The derivative of the Heaviside function is taken in the sense of measures. The problem can be regularized
by taken a differentiable approximation, Hε, which limits to the Heaviside function as ε→ 0. This provides
an approximation to the Dirac delta function, δε = H ′ε, and the quantities above can be approximated:

Lε(Γ ) =

∫
δε(φ)|∇φ|dx, Aε(Γ ) =

∫
Hε(φ)dx

These equations can then be minimized by introducing an artificial time and descending using (the negative)
of the Euler-Lagrange equations respectively:

∂φ

∂t
= δε(φ)div

(
∇φ
|∇φ|

)
∂φ

∂t
= −δε(φ)

Since the delta function’s approximation is assumed to be strictly positive, the equations can be rescaled
to the following equations, which have the same steady state solutions as the equations above:

∂φ

∂t
= |∇φ|div

(
∇φ
|∇φ|

)
,

∂φ

∂t
= −|∇φ|

The length minimizing equation is the mean curvature flow, while the area minimizing equation is a
Hamilton-Jacobi equation. Each of the two equations above play an important role in level set based
segmentation models. For example, let us consider the Chan-Vese model:

ECV (c1, c2, φ) = λ

∫
δ(φ)|∇φ|dx+

∫ (
(c1 − f)2H(φ) + (c2 − f)2 (1−H(φ))

)
dx

In terms of φ, the length term acts as the regularizer while the area terms are connected to the regional
fidelity terms. Each region is clearly defined by the level set function, where the sign determines the regions.
Using the same formulation, the two phase piecewise smooth Vese-Chan model is:

EV C(u1, u2, φ) = λ

∫
δ(φ)|∇φ|dx+

∫ (
(u1 − f)2H(φ) + (u2 − f)2 (1−H(φ))

)
dx

+µ

∫ (
|∇u1|2H(φ) + |∇u1|2(1−H(φ))

)
dx.

Again, the level set function partitions the domain into two regions. This partitioning allows the function
u, which is an approximation of f , to have clearly defined jumps. In this paper, we wish to further extend
the level set based segmentation methods to allow for jumps on curves with free endpoints. This is done by
introducing a second level set function ψ, which acts as an indicator function partitioning up the zero level
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(a) Level Set Representation of the Curve Γ , the
dotted line above

(b) Color Coded Partition of Space

Fig. 1 Level Set Representation of the curve Γ , with free endpoints

set of φ into two segments (see Figure 1 a), based on the work of Smereka [31]. The curve Γ is defined as{
(x, y) ∈ Ω

∣∣ φ(x, y) = 0 and ψ(x, y) > 0
}

, which now allows the curve to have loops, segments terminating
at the boundary of the domain, and segments with free endpoints. Revisiting the length functional from
before, the new formulation is as follows:

L(Γ ) =

∫
|∇H(φ)|H(ψ), Lε(Γ ) =

∫
δε(φ)Hε(ψ)|∇φ|dx,

The length can be minimized by descending using the first variation:

∂φ

∂t
= δ(φ)div

(
H(ψ)

∇φ
|∇φ|

)
∂ψ

∂t
= −δ(ψ)δ(φ)|∇φ|,

assuming the Heaviside and Dirac delta functions are replaced by their smooth counterparts. The standard
rescaled versions become:

∂φ

∂t
= |∇φ|div

(
H(ψ)

∇φ
|∇φ|

)
∂ψ

∂t
= −δ(φ)|∇φ||∇ψ|.

The equation for φ defines a mean curvature flow, while the equation ψ defines an area minimizing Hamilton-
Jacobi equation.

Although similar in structure, there is a key difference between the classical and the proposed formula-
tions – in the proposed case, the domain does not have a natural partition, since there is no clear concept
of the interior and exterior of Γ . A proper partition for the domain should enforce that the reconstructed
function only has jumps along the curve, so one choice (and the choice we use in this paper) is to divide
the domain in three regions: region 0: φ < 0 and ψ < 0 (red in Figure 1 b), region 1: φ > 0 (blue in Figure
1 b), and region 2: φ < 0 and ψ > 0 (white in Figure 1 b). In this way, the important boundary is the one
separating the white and blue region. As in the classical formulation, two auxiliary functions u1 and u2 are
chosen so that each function is smooth in their respective regions, but unlike the other methods, they must
be smooth over the zero level curves outside of φ = 0 and ψ > 0. If we define the reconstructed image as a
linear combination of the two auxiliary functions, then choosing the partition in this manner ensures that
the only discontinuities in u lie on Γ . If we denote the regions using the following characteristic functions:
χ1 = H(φ), χ2 = H(ψ)(1−H(φ)), and χ0 = (1−H(ψ))(1−H(φ)), then u1 exists in region 0 and region
1 and u2 exists in region 0 and region 2. The reconstructed function becomes:
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u = u1χ1 + u2χ2 +
(u1 + u2

2

)
χ0 (5)

where the two auxiliary functions are averaged in region 0, although any non-trivial linear combination is
sufficient. Using the partition and function above, we can formulate the level set based MS energy for a
general curve.

2.2 The Energy

Recall that the MS energy in terms of the reconstructed image u and jump set Γ , with given (possibly
corrupt) image f is:

EMS(u, Γ ) = µ

∫
Ω\Γ

|∇u|2dx+ λH1(Γ ) +

∫
Ω

|u− f |2dx.

Using equation (5) and our definition of Γ the energy becomes:

E(u1, u2, φ, ψ) = µ

∫
Ω

(
|∇u1|2(χ1 +

χ0

4
) + |∇u2|2(χ2 +

χ0

4
) +

1

2
∇u1 · ∇u2χ0

)
dx+ λ

∫
Ω

χ3 |∇χ1|

+

∫
Ω

(
|u1 − f |2χ1 + |u2 − f |2χ2 +

∣∣∣u1 + u2
2

− f
∣∣∣2 χ0

)
dx

where χ3 = H(ψ) and all measure zero terms are ignored. The first three terms are the regional regularities
of the reconstructed function, the fourth term is the length regularity for the curve, and the last three
terms are the regional fidelity terms. The average of the auxiliary function is necessary to ensure that both
functions are smooth over the non-essential zero level sets. For the sake of argument, let us assume the
reconstructed function u is exactly uo (the original image), and, instead of an average, we took the sum of
the auxiliary: u = u1χ1 + u2χ2 + (u1 + u2)χ0. Then we have the following: in region 1 u1 = uo, in region
2 u2 = uo, and in region 0 u1 + u2 = uo. For this to be possible, one of the functions must take values that
are at most half of uo, so that function’s values would sharply decrease over the boundary between region
1 or 2 and region 0. By taking the average, neither function may have jumps over the non-essential zero
level sets.

Next, assuming that the Heaviside functions are regularized, the Euler-Lagrange equations are as follows:



∂uj

∂t = µ div
(
2χj∇uj + χ0

2 ∇(u1 + u2)
)
− 2(uj − f)χj −

(
u1+u2

2 − f
)
χ0

∂φ
∂t = δ(φ)

{
λdiv

(
χ3
∇φ
|∇φ|

)
− |u1 − f |2 + χ3|u2 − f |2 + (1− χ3)

∣∣u1+u2

2 − f
∣∣2

−µ|∇u1|2
(
3
4 + χ3

4

)
+ µ|∇u2|2

(
1
4 + 3χ3

4

)
+ 1

2µ∇u1 · ∇u2(1− χ3)
}

dψ
dt = −δ(ψ)

{
λ|∇χ1|+ (1− χ1)

(
|u2 − f |2 −

∣∣u1+u2

2 − f
∣∣2 − µ

4 |∇u1|
2 + 3µ

4 |∇u2|
2 − µ

2∇u1 · ∇u2
)}

with the following boundary conditions:

{
χj

∂uj

∂n + 1
4χ0

∂
∂n (u1 + u2) = 0

χ3

|∇φ|
∂φ
∂n = 0

and the initial conditions: uj(0, x) = u0j (x), φ(0, x) = φ0(x) , and ψ(0, x) = ψ0(x). For simplicity, the
boundary condition can be reduced to the standard Neumann boundary condition, which we will show in
Section 4. The system of PDEs include diffusion equations for u1 and u2, mean curvature flow for φ and
the area minimizing ODE for ψ. As before, the level set functions’ PDE can be rescaled by the magnitudes
of their gradients.
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Remark 1 Although not always necessary, in practice, extra regularization on the level set functions may
ensure a smoother evolution. For example, the following regularized PDEs give a smoother flow for the
system above:
∂φ
∂t = δ(φ)

{
λdiv

(
(χ3 + ε1) ∇φ|∇φ|

)
− |u1 − f |2 + χ3|u2 − f |2 + (1− χ3)

∣∣u1+u2

2 − f
∣∣2

−µ|∇u1|2
(
3
4 + χ3

4

)
+ µ|∇u2|2

(
1
4 + 3χ3

4

)
+ 1

2µ∇u1 · ∇u2(1− χ3)
}

∂ψ
∂t = δ(ψ)

{
ε2∆∞ψ − λ|∇χ1|+ (1− χ1)

(
|u2 − f |2 −

∣∣u1+u2

2 − f
∣∣2 − µ

4 |∇u1|
2 + 3µ

4 |∇u2|
2 − µ

2∇u1 · ∇u2
)}

where ε1 and ε2 are (small) parameters and ∆∞ψ =
〈
∇ψ
|∇ψ| , D

2ψ ∇ψ|∇ψ|

〉
is the renormalized infinity Lapla-

cian. In terms of energy minimization, this is equivalent to adding a length regularizer on the zero level
curve of φ and an (rescaled) infinity norm regularizer for |∇ψ|. For more details of related to the theory of
the infinity Laplacian, see [8, 11,19] and for discretizations see [26].

2.3 Sobolev Gradient

In order to minimize the proposed energy, a gradient descent method is used. The first variation (or Euler-
Lagrange equation) is imbedded in a dynamic scheme as follows: given an energy E(φ) with Euler-Lagrange
equations that are denoted as ∇L2E(φ), the gradient descent is ∂φ

∂t = −∇L2E(φ). For a general energy,
this PDE may not be well-posed and could lead to many issues. To better pose the equation, the Sobolev
Gradient, denoted as ∇H1E(φ) can be used. Here we provide a short derivation, following Neuberger [24]
and Renka [28]. Assume that the energy can be written with a potential V as E(φ) =

∫
Ω
V (Dφ)dx and it

is to be minimized over H1(Ω), where D : H1(Ω)→ H1(Ω)× L2(Ω) is the operator Dφ = (φ,∇φ)T .
For all φ ∈ H1(Ω) and for any h ∈ H1

0 (Ω), the directional derivative is:

(E′(φ), h) =

∫
Ω

V ′(Dφ)Dhdx = 〈∇V (Dφ), Dh〉L2 = 〈D∗∇V (Dφ), h〉L2

where D∗ is the adjoint of D. Assuming that all the terms above are in L2(Ω), the L2 gradient is defined
as ∇L2E(φ) := D∗∇V (Dφ) (which is the standard Euler-Lagrange equation). On the other hand, we can
equate the L2 inner product with the H1 inner product in terms of the Sobolev gradient:

(E′(φ), h) = 〈∇L2E(φ), h〉L2 = 〈∇H1E(φ), h〉H1 .

Using the operator D:

〈∇H1E(φ), h〉H1 = 〈D(∇H1E(φ)), Dh〉L2 = 〈D∗D(∇H1E(φ)), h〉L2

which yields: ∇H1E(φ) = (D∗D)−1(∇L2E(φ)) = (I − ∆)−1(∇L2E(φ)) (the Sobolev gradient). This is
interpreted as a gradient descent with respect to a more appropriate inner product space. This can also be
seen as a preconditioned descent, with the smoothing operator (I −∆)−1.

This smoothing allows the Euler-Lagrange equations to reside in a large function class. Recall that
the dual of H1(Ω), denoted H−1(Ω) := (H1(Ω))∗ (assuming Neumann boundary conditions), is larger
than L2, since it contains weaker functions. The operator (I − ∆)−1 can be considered as a map from
H−1(Ω) → H1(Ω) such that for G ∈ H−1(Ω), there exists (by Lax-Milgram) a unique v ∈ H1(Ω) which
solves the weak problem:

v −∆v = G (6)

with Neumann boundary conditions. Thus for all ∇L2E(φ) ∈ H−1(Ω), we can find a ∇H1E(φ) ∈ H1(Ω).
Now lets examine this in terms of the evolution equations, which define an iterative process. In the semi-
discrete case, we construct the sequence φn by φn+1 = φn −∆t∇L2E(φn), with φ0 ∈ H1(Ω) and ∆t > 0,
such that E(φn+1) < E(φn). In order to have φn+1 ∈ H1(Ω), this would require that∇L2E(φn) ∈ H1(Ω) ⊂
L2(Ω), in other words, we would assume too strong regularity for the solution φ, which may not hold. This
is one of the reasons for the small time-steps necessary for stability when using the L2 gradient descent. In
terms of the energy minimization, the following theorem provides further benefits of the Sobolev gradient.
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Theorem 1 For all t > 0, let φ and φs be the solution of the L2 gradient descent (∂φ∂t = −∇L2E(φ)) and

Sobolev gradient descent equation (∂φs

∂t = −∇H1E(φs)), respectively; then:

dE(φ)

dt
= −||∇L2E(φ)||2L2

dE(φs)

dt
= −||∇H1E(φs)||2H1

Proof Assume that E(φ) =
∫
Ω
V (Dφ) then we can formally take the time derivative as follows:

dE(φ)

dt
=

∫
Ω

∇L2E(φ)
∂φ

∂t
dx

= −
∫
Ω

|∇L2E(φ)|2 dx

= −||∇L2E(φ)||2L2

The equations above hold if ∇L2E(φ) ∈ L2(Ω). Next, taking the Sobolev gradient descent:

dE(φs)

dt
=

∫
Ω

∇L2E(φs)
∂φs
∂t

dx

= −
∫
Ω

(
(I −∆)

∂φs
∂t

)
∂φs
∂t

dx

= −
∫
Ω

(∣∣∣∣∂φs∂t
∣∣∣∣2 +

∣∣∣∣∇∂φs∂t
∣∣∣∣2
)
dx

= −
∣∣∣∣∣∣∣∣∂φs∂t

∣∣∣∣∣∣∣∣2
H1

= −||∇H1E(φs)||2H1

assuming that all terms satisfy Neumann boundary conditions. The equation above holds if ∇L2E(φs) ∈
H−1(Ω).

In terms of our model, applying this to our system of equations yields:



∂uj

∂t = (I −∆)−1
{
µ div

(
2χj∇uj + χ0

2 ∇(u1 + u2)
)
− 2(uj − f)χj −

(
u1+u2

2 − f
)
χ0

}
∂φ
∂t = (I −∆)−1

{
δ(φ)

(
λdiv

(
χ3
∇φ
|∇φ|

)
− |u1 − f |2 + χ3|u2 − f |2 + (1− χ3)

∣∣u1+u2

2 − f
∣∣2

−µ|∇u1|2
(
3
4 + χ3

4

)
+ µ|∇u2|2

(
1
4 + 3χ3

4

)
+ 1

2µ∇u1 · ∇u2(1− χ3)
)}

∂ψ
∂t = −(I −∆)−1

{
δ(ψ)

(
λ|∇χ1|+ (1− χ1)

(
|u2 − f |2 −

∣∣u1+u2

2 − f
∣∣2 − µ

4 |∇u1|
2 + 3µ

4 |∇u2|
2 − µ

2∇u1 · ∇u2
))}

The versions above are used in practice. In terms of the equation in uj , the Sobolev gradient’s application is
clear. For the other two equations, this may not be the case. In the case of φ, since the Dirac delta function
and the characteristic functions are smooth and strictly positive and (for many applications) |∇φ| = 1 a.e.,
the equation resembles a typical anisotropic diffusion equation, which exists in H−1. Another interpretation
is that, in terms of the level set functions, the delta function acts to concentrate the motion around the zero
level sets, whose width is dependent on the smoothness of the approximations. The operator, (I −∆)−1 in
turn, continues to smooth the main area of influence of the delta function. With respect to equation ( 6),
it is easy to show that the equation can be re-written as an optimization problem:

inf
v
E(v) =

∫
|∇v|2dx+

∫
|v −G|2dx

For a simple example, take G to be a smooth and strictly positive version of the Dirac delta function. Then
it can be shown that v ≥ 0,

∫
vdx =

∫
Gdx, and ||v||∞ ≤ ||G||∞. In this way, v is a smoother and more

“spread out” than the original G. Like rescaling by the magnitude to the derivative, this operator can be
viewed as a rescaling.
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Remark 2 Using the inner product 〈u, v〉H1,A = 〈Du,ADv〉L2 for positive definite matrices A, a more

general H1 gradient can be defined. For example, a simple rescaling 〈u, v〉H1,α,β = α 〈u, v〉L2 +β 〈∇u,∇v〉L2

yields the following gradient: ∇H1,α,βE = (αI − β∆)−1(∇L2E), for α, β > 0. In our problem, it would be
appropriate to choose α = 1 and β = µ, since that norm naturally appears in the energy, but for consistency
between results, we set both to 1.

For further applications of Sobolev gradients to imaging problems, see [2, 13,29,32].

3 Analytical Remarks

In this section, we will analyze our approximation by showing that our model is consistent with the MS
functional, via point-wise convergence, and discuss its relation to the other level set based segmentation
models by looking at degenerate cases.

3.1 Consistency with the Mumford-Shah Functional

To derive our proposed energy, recall that we defined the subregions Ωj 0 ≤ j ≤ 2, where Ω \Γ = ∪jΩj , by
the following characteristic functions: χ1 = H(φ), χ2 = H(ψ)(1−H(φ)), and χ0 = (1−H(ψ))(1−H(φ)).
Using these regions, the reconstructed function is defined by two auxiliary functions, u1 and u2, as follows:
u = u1χ1 + u2χ2 +

(
u1+u2

2

)
χ0. Using these definitions, the L2 norm in equation (1) becomes:

∫
Ω

|u− f |2dx =

∫
Ω1

|u− f |2dx+

∫
Ω2

|u− f |2dx
∫
Ω0

|u− f |2dx

=

∫
Ω1

|u1 − f |2dx+

∫
Ω2

|u2 − f |2dx+

∫
Ω0

∣∣∣u1 + u2
2

− f
∣∣∣2 χ0dx

=

∫
Ω

(
|u1 − f |2χ1 + |u2 − f |2χ2 +

∣∣∣u1 + u2
2

− f
∣∣∣2 χ0

)
dx

and the H1 semi-norm on Ω \ Γ in equation(1) becomes:

∫
Ω\Γ
|∇u|2dx =

∫
Ω1

|∇u|2dx+

∫
Ω2

|∇u|2dx+

∫
Ω0

|∇u|2dx

=

∫
Ω1

|∇u1|2dx+

∫
Ω2

|∇u2|2dx+

∫
Ω0

∣∣∣∇(u1 + u2
2

)∣∣∣2 dx
=

∫
Ω

|∇u1|2χ1dx+

∫
Ω

|∇u2|2χ2dx+

∫
Ω

∣∣∣∇(u1 + u2
2

)∣∣∣2 χ0dx

=

∫
Ω

(
|∇u1|2(χ1 +

χ0

4
) + µ|∇u2|2(χ2 +

χ0

4
) +

µ

2
∇u1 · ∇u2χ0

)
dx

ignoring measure zero terms. Lastly, the length term in equation(1) becomes:

Length(Γ ) =

∫
Γ

ds =

∫
φ=0

H(ψ)ds =

∫
Ω

|∇H(φ)|H(ψ) =

∫
Ω

χ3 |∇χ1|

where the equation above is in the sense of measures and H ′ = δ, the Dirac delta function. All together,
these three terms make up our proposed energy. In order to formally take the Euler-Lagrange equations,
each Heaviside function is replaced with a smooth approximation, also yielding a continuous approximation
to the delta function.

There is much freedom in the choice of approximations. In general, given any function δ1 ∈ C0 such that∫
R δ1(x)dx = 1, one can construct an approximation to the Dirac delta function by setting δε(x) := 1

ε δ1
(
x
ε

)
and an approximation to the Heaviside function by setting Hε(x) :=

∫
δε(x)dx. This yields the following

properties:

1. Hε(x)→ H(x) point-wise everywhere except at x = 0
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2. δε = H ′ε
3. Hε ∈ C1

These conditions are easily satisfied by our particular choice of approximations: Hε(x) = 1
2 + 1

πarctan
(
x
ε

)
and δε(x) = 1

π
ε

ε2+x2 .

As ε goes to zero, the approximations to the L2 error term and H1 regularity term converge to their
un-regularized forms (by Lebesgue Dominated Convergence). For the length term, the following theorem is
provided, see also [6].

Theorem 2 Let Lε(φ, ψ) =
∫
Ω
|∇Hε(φ)|Hε(ψ) with Hε satisfying the properties above and let φ and ψ be

Lipschitz continuous; then

lim
ε→0

Lε(φ, ψ) =

∫
{φ=0}

H(ψ)ds = Length(Γ )

where Γ := {x ∈ Ω
∣∣∣ φ(x) = 0, ψ(x) > 0}.

Proof Using the co-area formula (see [10]) and the fact that Hε is smooth, the regularized length becomes:

Lε(φ, ψ) =

∫
R

(∫
φ=ρ

δε(φ)Hε(ψ)ds

)
dρ

=

∫
R
δε(ρ)

(∫
φ=ρ

Hε(ψ)ds

)
dρ.

Define Sε(ρ) :=
∫
φ=ρ

Hε(ψ)ds. By the scalability property of the delta function,

Lε(φ, ψ) =

∫
R
δε(ρ)Sε(ρ)dρ

=

∫
R

1

ε
δ1
(ρ
ε

)
Sε(ρ)dρ

By the change of variable p = ρ
ε , we obtain

lim
ε→0

Lε(φ, ψ) = lim
ε→0

∫
R
δ1(p)Sε(εp)dp

= S0(0)

∫
R
δ1(p)dp = S0(0)

=

∫
φ=0

H(ψ)ds = Length(Γ ),

It is clear that S0(0) =
∫
φ=0

H(ψ)ds, since

Sε(εp)− S0(0) =

∫
φ=εp

Hε(ψ)ds−
∫
φ=0

H(ψ)ds

=

(∫
φ=εp

Hε(ψ)ds−
∫
φ=εp

H(ψ)ds

)
−
(∫

φ=εp

H(ψ)ds−
∫
φ=0

H(ψ)ds

)
=

(∫
φ=εp

(Hε(ψ)−H(ψ)) ds

)
−
(∫

φ=εp

H(ψ)ds−
∫
φ=0

H(ψ)ds

)

Since Hε(x)→ H(x) in R \ {0} and since the length of the level sets are finite, the first term goes to zero,
while the second term goes to zero by continuity of the integral.
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3.2 Relation to Other Models

In practice, the curve Γ can change its topology freely. Even if it is initialized with free endpoints, it may
become an endpoint free curve, or vice versa. The standard splitting and merging behavior now includes
breaking (or cracking) where, during its evolution, the curve can crack itself to develop endpoints. With this
addition, our model can be viewed as a natural extension to other level set based methods for segmentation.
Here we briefly examine the degeneration of the energy (and thus the curve evolution) into the classical
models.

Firstly, the model can completely degenerate to the endpoint free structure when the indicator level set
function has fixed sign, i.e. ψ > 0. The characteristic functions become:

χ1 = H(φ)

χ2 = H(ψ)(1−H(φ)) = 1−H(φ)

χ3 = H(ψ) = 1

χ0 = (1−H(ψ))(1−H(φ)) = 0

and the reconstruction function takes the form:

u = u1χ1 + u2χ2 +
(u1 + u2

2

)
χ0

= u1H(φ) + u2(1−H(φ))

Thus the function is smooth in each of the two regions defined by the sign of φ. The energy becomes:

E(u1, u2, φ,−) = µ

∫
Ω

|∇u1|2H(φ) + |∇u2|2(1−H(φ))dx+ λ

∫
Ω

|∇H(φ)|

+

∫
Ω

(
|u1 − f |2H(φ) + |u2 − f |2(1−H(φ))

)
dx

which is the two-phase piece-wise smooth Chan-Vese model. Furthermore, if the regularization parameter
is set to a large value, µ >> 1, or if u is restricted to the set of piece-wise constant solutions, and where
u1 = c1 and u2 = c2, where c1, c2 ∈ R, then the reconstruction function becomes u = c1H(φ)+c2(1−H(φ))
and the energy becomes:

E(c1, c2, φ,−) = λ

∫
Ω

|∇H(φ)|+
∫
Ω

(
|c1 − f |2H(φ) + |c2 − f |2(1−H(φ))

)
dx

which recovers the two-phase piecewise constant Chan-Vese model.

4 Numerical Method

Since the model is non-convex and highly non-linear, an alternating minimization is used, where the energy
is minimized with respect to each variable separately. During each minimization, three steps are done:
calculate the Euler-Lagrange equation, find the Sobolev gradient, and step forward in time.

To calculate the Euler-Lagrange equations, the PDEs are discretized using forward differences for the
gradient and backwards differences for the divergence, in order to retain their adjoint relationship. The
magnitudes of the gradient are replaced with a regularized version to avoid dividing by zero. With respect
to the time discretization, the Euler-Lagrange equation is completely explicit and the inversion of the
preconditioning operator (Sobolev gradient) is done using a semi-implicit method. Specifically, let G =
−∇L2E be the Euler-Lagrange equation and v equals the Sobolev gradient. Then we have the relationship
from before: v −∆v = G, which we solve using a Gauss-Seidel sweep of the following discretization:
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vn+1
i,j −

(
vni+1,j − 2vn+1

i,j + vni−1,j

)
−
(
vni,j+1 − 2vn+1

i,j + vni,j−1

)
= Gi,j

In practice, a few iterations are sufficient. Alternatively, v can be found using the Fourier transform:

v = F−1
(
F(G)
1+|ξ|2

)
. Once v is found, a forward Euler step is used to update the variable (recall that the

time derivative of the variable is equal to the Sobolev gradient of the energy).
Next, with respect to the boundary conditions for the reconstructed image, if the auxiliary functions

u1 and u2 are initialized to have Neumann boundary conditions at t = 0, then in semi-discrete terms the
future boundary conditions are:

χ1
∂

∂N
un+1
1 +

χ0

4

∂

∂N
(un+1

1 + un2 ) = 0

χ2
∂

∂N
∇un+1

2 +
χ0

4

∂

∂N
(un+1

1 + un+1
2 ) = 0

Since the characteristic functions are assumed to be nonzero everywhere (based on our choice of approxi-
mations):

∂

∂N
un+1
1 = − χ0

4χ1 + χ0

∂

∂N
un2

∂

∂N
un+1
2 = − χ2

4χ2 + χ0

∂

∂N
un+1
1

Since ∂
∂N u

0
1 = ∂

∂N u
0
2 = 0, they stay that way for all n > 0.

This process is iterated until convergence with respect to one variable is achieved, and then each of
these alternating steps are repeated until total convergence. In terms of the level set functions, φ and ψ,
only partial convergence is needed.

Lastly, once the updates for u1 and u2 are found in order to calculate the various differences across the
curve Γ for the level set equations, each function needs to be extended. In general, any C1 extension is
approriate; in particular, we solve ∆u1 = 0 in region 2 and ∆u2 = 0 in region 1 with prescribed boundary
conditions (Dirchelet), and the extensions are labelled Eu1 and Eu2. Altogether the algorithm is given
below.

Algorithm

Initialize u01, u
0
2, φ

0, ψ0

while Not Converged do

Substep 1: Compute Gu1(un1 , u
n
2 , φ

n, ψn), Solve for vnu1
, Iterate Forward to un+1

1

Substep 2: Compute Gu2(un+1
1 , un2 , φ

n, ψn), Solve for vnu2
, Iterate Forward to un+1

2

Substep 3: Extend un+1
1 and un+1

2 to Eun+1
1 and Eun+1

2

Substep 4: Compute Gφ(Eun+1
1 , Eun+1

2 , φn, ψn), Solve for vnφ , Iterate Forward to φn+1

Substep 5: Compute Gψ(Eun+1
1 , Eun+1

2 , φn+1, ψn), Solve for vnψ, Iterate Forward to ψn+1

end while

The convergence is typically measured by the difference in energy between the two iterations. Compared
to the general level set based segmentation methods, this algorithm is more sensitive to initialization. In the
standard methods, if the curve were to be initialized as a large circle that encloses all the objects, then it
would shrink inward until it captured all the edges. In our case, if the curve was initialized as a large arc, it
may shrink along the curve more quickly than inward (shrinking along the tangents rather than the normal
vectors). In general, this can be controlled by the number of iterations in Substeps 4 and 5 or by initializing
the curve to intersect the desired edges. This can be done in practice by over-segmenting the image using
classical edge-detectors and then using the result to provide regions of interest for initializations.
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4.1 Further Remarks

In terms of the forward Euler step in our method, starting from the same data, the Sobolev gradient
decreases the energy more than the L2 descent.

Theorem 3 Let ∆ES and ∆EL2 be the discrete changes in energy using Sobolev and L2 gradient descent,
receptively. Starting at the same value, if ∆tS and ∆tL2 are the time steps for the discretization of the
Sobolev and L2 gradient descent algorithm, repectively, then ∆ES = ∆EL2

∆tS
∆tL2

.

Proof Let v = ∇H1E(φ) and G := ∇L2E(φ) then we have (I −∆)v = G in a weak sense with Neumann
conditions. This equation is the weak formulation of the problem: for all h ∈ H1(Ω)∫

Ω

[vh+∇v · ∇h] dx =

∫
Ω

Gh dx

which is equivalent to

〈v, h〉H1(Ω) = G(h) (7)

where G(h) is the linear form from the right hand side of the weak equation. Assuming that G ∈ H−1(Ω),
by the Riesz Representation theorem, there exists a unique g ∈ H1(Ω) such that G(h) = 〈g, h〉H1(Ω) for all

h ∈ H1(Ω) (or equivalently by the Lax-Milgram theorem) and ||G||H−1 = ||g||H1 . Combing this with the
equation above yields 〈v −G, h〉H1 = 0. Therefore we can see that v = g a.e. and ||G||H−1 = ||v||H1

If we look at the ratio of changes in energy at a given iteration with Euler time steps then we have

∆ES
∆EL2

=
∆tS ||s||2H1

∆tL2 ||r||2L2

=
∆tS
∆tL2

Note that since we assumed r ∈ L2, we have that the H−1 norm is just the L2 norm of r.

In general, the preconditioned PDEs are more stable, which lets ∆tS ≥ ∆tL2 , so that we will almost
always get ∆ES ≥ ∆EL2 . We see that not only is the Sobolev descent method better posed theoretically,
it is also preferred numerically.

5 Experimental Results

Fig. 2 Plot of Energy verse Iteration using Sobolev Gradient descent

We use time steps ∆t ∈ [.01, .1], space steps ∆x = 1, and ε = ∆x. Without the Sobolev gradient, ∆t
must be very small to guarantee stability, which in many cases incurs other numerical issues. The number
of iterations in each minimization step for u1 and u2 is set to a maximum of about 150 (although they
converges before reaching the maximal amount of iterations), while the level set minimization steps are set
to a maximum of about 2-5 iterations. The algorithm converges between several seconds and a few minutes
depending on the size of the image. In these examples, no re-initialization is used for the level set function.
In Figure 2, the energy for the edge case is plotted against the number of iteration and is strictly decreasing.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3 Segmentation and Restoration of a Synthetic Image with Two Free Edge Sets: the curve evolution (a-d) and the
restoration (e-h) with µ = 4 and λ = .02 ∗ 2552.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4 Segmentation and Restoration of a Synthetic Image with a Half Edge: µ = 17 and λ = .01 ∗ 2552.

In Figure 3, the method is applied to a noisy synthetic image with an edge set comprised of two free
curves. The initial curve is made up of one segment, which first locates the edges and then separates into
two segments (taking only a few iterations to break topology). In Figure 4, the method is applied to a
very noisy synthetic image with an edge that has one endpoint which terminates at the boundary of the
image and one endpoint that is free. The curve is initialized near the edge and the algorithm converges
in seconds. In Figure 5, the method is applied to a noisy synthetic image comprised of one segment with
endpoints and one without endpoints. The curve is initialized as two circles, but one breaks its topology in
order to capture the free endpoint structure. From these examples, the results depict the robustness of the
algorithm to the varying edge structures.
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(a) (b) (c) (d)

(e) (f) (g)

(h)

Fig. 5 Segmentation and Restoration of a Synthetic Image with Different Topologies: µ = 5 and λ = .05 ∗ 2552.

The method is also applied to two real images: one of a comet and the other of a plasma. In Figure 6, the
curve locates the front of the comet, and the restored image sharpens the contrast between the comet and
the background and removes noise from the comet, while preserving large stars (point structures) in the
background. The final segmentation is compared to other techniques in Figure 7. The Chan-Vese method
locates the correct front, but over segments the comet, since it must be a loop. The Canny edge detector
over-segments the white interior region of the comet, missing the faint boundary which defines the comet
front. Similarly, the Ambrosio-Tortorelli method mainly locates the white region, where the gradient is
sharpest.

Lastly, we test our algorithm on a real plasma image. In Figure 8, the curve locates the plasma front and
the restored image sharpens the contrast between the plasma front and the background, while removing
the small amount of noise present in the image. This particular segmentation is made difficult by the light
region in the top left quadrant near the plasma front. Region based methods would try to group the lighter
intensities together, avoiding the actual edge. The final segmentation is compared to other techniques in
Figure 9. The Chan-Vese method does not properly locate the edge, since it does not enclose a region.
The Canny edge detector does not locate the correct edge – locating places of high gradient inside of the
plasma. Similarly, the Ambrosio-Tortorelli method does locate the front correctly but also includes excess
edges, which cannot be removed by thresholding.

6 Acknowledgments

This research was made possible with Government support under and awarded by the Department of
Defense (DoD) through the National Defense Science and Engineering Graduate Fellowship (NDSEG)

14



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6 Segmentation and Restoration of a Comet with Noise: µ = .5 and λ = .01 ∗ 2552

(a) Our Method (b) Chan-Vese (c) Canny Edge Detector
Edge Image

(d) Ambrosio-Tortorelli

(e) Ambrosio-Tortorelli Edge
Image after thresholding

Fig. 7 Comparison

Program and in part by the National Science Foundation Grant DMS 0714945 and CCF/ITR Expeditions
Grant 0926127.

7 Conclusion

We have proposed an extension to the level set based image segmentation method that detects free endpoint
structures. By generalizing the curve representation used in the Active Contour model to also include free
endpoint structures, we are able to segment a larger class of images with a variety of edge structures. This
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8 Segmentation and Restoration of a Plasma at UCLA [25]: µ = 25 and λ = .8 ∗ 2552

(a) Our Method (b) Chan-Vese (c) Canny Edge Detector
Edge Image

(d) Ambrosio-Tortorelli Edge
Image

(e) Ambrosio-Tortorelli Edge
Image after thresholding

Fig. 9 Comparison

proposed method is able to change its topology by splitting, merging, and now breaking curves without
endpoints into free curves and vice versa. The results were tested on both synthetic and real images and in
the examples presented in this work, were more successful in locating the correct edge set as compared to
standard methods.
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