
AN MBO SCHEME ON GRAPHS FOR SEGMENTATION AND
IMAGE PROCESSING

EKATERINA MERKURJEV, TIJANA KOSTIĆ, ANDREA L. BERTOZZI∗

Abstract. In this paper we present a computationally efficient algorithm utilizing a fully or semi
nonlocal graph Laplacian for solving a wide range of learning problems in data clustering and image
processing. Combining ideas from L1 compressive sensing, image processing and graph methods,
the diffuse interface model based on the Ginzburg-Landau functional was recently introduced to the
graph community for solving problems in data classification. Here, we propose an adaptation of the
classic numerical Merriman-Bence-Osher (MBO) scheme for graph-based methods and also make use
of fast numerical solvers for finding eigenvalues and eigenvectors of the graph Laplacian. We present
various computational examples to demonstrate the performance of our model, which is successful
on images with texture and repetitive structure due to its nonlocal nature.

Key words. Image processing, Nyström extension, Ginzburg-Landau functional, MBO scheme

1. Introduction. This work develops a fast algorithm for a recent vari-
ational method in a graph setting. The method is inspired by diffuse interface models
that have been used in a variety of problems, such as those in fluid dynamics and
materials science. We consider data represented as nodes in a weighted graph, and
each edge is assigned a numerical value describing the similarity between the nodes.
In spectral graph theory, this approach is successfully used to perform various learn-
ing tasks in imaging and data clustering. The standard techniques of the theory are
thoroughly described in [12, 37], and the graph Laplacian, which is discussed in more
detail in section 1.2, is introduced as one of the fundamental concepts. In imag-
ing, spectral methods are often used in image segmentation applications as shown in
[43, 29, 13].

We are particulary interested in nonlocal total variation methods, as they are a
link between spectral graph theory and diffuse interface models, and thus can be used
as a motivation for our algorithm. These methods are used in numerous image pro-
cessing applications. They were initially developed as methods for image denoising
[9, 26], but were successfully applied to many other image processing problems such
as inpainting and reconstruction in [27, 51, 39], image deblurring in [32] and manifold
processing in [16].

As an alternative to L1 compressed sensing methods, Bertozzi and Flenner in-
troduce a graph-based model based on the Ginzburg-Landau functional in their work
[8]. To define the functional on a graph, the spatial gradient is replaced by a more
general graph gradient operator. Analogous to the continuous case, the first variation
of the model yields a gradient descent equation with the graph Laplacian, which is
then solved by a numerical scheme with convex splitting. To reduce the dimension of
the graph Laplacian and make the computation more efficient, the authors propose
the Nyström extension method [23] to approximate eigenvalues and the corresponding
eigenvectors of the graph Laplacian.

Many applications suggest that the MBO scheme of Merriman, Bence and Osher
[35] for approximating the motion by mean curvature performs very well in mini-
mizing functionals built around the Ginzburg-Landau functional. For example, the
authors of [20] propose an adaptation of the scheme to solve the piecewise constant
Mumford-Shah functional. This inspired us to adapt the MBO scheme [35] for solv-

∗Mathematics Department, UCLA, Box 951555, Los Angeles 90095-1555, USA

1

2

ing graph based equations to create an algorithm that achieves faster convergence
through a small number of computationally inexpensive iterations. In this paper, we
apply our algorithm to solve various problems in data clustering, segmentation, object
recognition and inpainting.

This paper is organized as follows. In section 1, we review the motivation for our
method as well as some relevant background such as diffuse interfaces, the Ginzburg-
Landau functional, graphs, nonlocal operators and the MBO scheme. We then intro-
duce our algorithm, which is applied to segmentation and inpainting in sections 2 and
3, respectively, show results and include comparisons to some of the recent methods.
The advantage of this new method is its speed and its ability to recover texture and
repetitive structure in an image.

1.1. The Motivation for the New Algorithm.

1.1.1. Ginzburg-Landau Functional.
Many papers, such as [26], show that the total variation (TV) semi-norm

||u||TV =

∫
Ω

|∇u|dx (1.1)

has been used successfully in many image processing applications. It has also been
applied to numerical analysis of differential equations [30].

A proof in [31] shows that the TV semi-norm is the limit in the sense of Γ-
convergence of the following Ginzburg-Landau functional

GL(u) =
ε

2

∫
|∇u|2dx+

1

ε

∫
W (u)dx (1.2)

where W (u) is a double well potential. In this work, W (u) = (u2 − 1)2 is used. Note
that due to the nature of the potential, the functional is used for binary data.

Therefore, one can write

GL(u)→Γ C|u|TV . (1.3)

This convergence allows the two functionals to be interchanged in some cases. One
might prefer to use the GL functional instead of the TV semi-norm since its highest
order term is purely quadratic which allows for efficient minimization procedures. In
contrast, minimization of the TV semi-norm leads to a nonlinear curvature term,
making it less trivial to solve numerically. However, recent advances, such as the split
Bregman method described in [28], have made progress in such problems.

Due to its connection to the TV semi-norm, the Ginzburg-Landau functional has
also often been used in image processing and in various image processing applications,
such as inpainting [14, 7] and segmentation [17, 20]. In practice, one would minimize

E(u) = GL(u) + F (u, u0) (1.4)

where F is the fidelity term. In the case of inpainting, the fidelity term is C
∫

(u−u0)2,
where one integrates over the known region only. For denoising, the term is an L2

fit, C
∫

(u− u0)2. In the case of deblurring, it is C
∫

(K ∗ u− u0)2, where K is some
kernel. Of course, a different norm, such as the L1 norm, can be used.

When one minimizes the Ginzburg-Landau functional, the function u approaches
either one of the two minimizers, 1 and −1, of the double well potential. However,

3

the presence of the gradient term will force u to be somewhat smooth, i.e. without
any sharp transitions between 1 and −1. Therefore, the function that minimizes the
functional will have regions where it is close to −1, close to 1 and a thin region of
scale O(ε) where it is somewhere in between. Since the minimizer appears to have
two phases with an interface between them, models involving the Ginzburg-Landau
functional are typically referred to as “diffuse interface models”.

1.1.2. Bertozzi/Flenner Algorithm. In their work [8], Bertozzi and
Flenner propose a segmentation algorithm by minimizing the Ginzburg-Landau func-
tional with a fidelity term

E(u) =
ε

2

∫
|∇u|2dx+

1

ε

∫
W (u)dx+ F (u, u0). (1.5)

They replace the ε
2

∫
|5u|2dx term with a more general graph operator term εu ·Lsu,

to be discussed in detail in sections 1.2 and 1.3, so that

E(u) = εu · Lsu+
1

ε

∫
W (u)dx+

∫
F (u, u0). (1.6)

The functional is minimized using the method of gradient descent resulting in the
following equation:

∂u

∂t
= −εLsu−

1

ε
W ′(u)− ∂F

∂u
. (1.7)

Note that this is just the Allen-Cahn equation with fidelity term with ∆u replaced
by a graph operator term −Ls, to be explained in sections 1.2 and 1.3. Taking F to
be 1

2Cλ(x)(u− u0)2 for some constant C, one obtains

∂u

∂t
= −εLsu−

1

ε
W ′(u)− Cλ(x)(u− u0). (1.8)

The authors then describe a numerical scheme involving convex splitting to evolve
equation (1.8) to steady state.

The main purpose of this paper is to develop a fast and simple method for min-
imizing (1.6) in the small ε limit. The algorithm is discussed in section 2, after the
sections 1.2 - 1.4 on the relevant background.

1.2. Background on graphs. In this paper, to create a nonlocal method,
we generalize to the theory of graphs, described in [12]. Consider an undirected graph
G = (V,E), where V and E are the sets of vertices and edges, respectively. In the
tests done in this paper, the vertices are, for example, points in Rn or pixels in an
image. Let w be the weight function where w(i, j) represents the weight (often mea-
sured between 0 and 1) between vertices i and j, and w(i, i) is set to zero. The weight
represents a measure of similarity between the vertices; thus, two vertices having a
weight close to 1 are very similar to each other, and two vertices having a weight close
to 0 are dissimilar.

Now let the degree of a vertex i ∈ V be defined as

d(i) =
∑
j∈V

w(i, j) (1.9)

4

Using the above, one defines the graph Laplacian to be the matrix L such that

L(i, j) =

{
d(i), if i = j

−w(i, j), otherwise

If we define the degree matrix D to be the N ×N diagonal matrix with diagonal
elements d(i), then the graph Laplacian can be written in matrix form as L = D−W ,
where W is the matrix w(i, j). The matrix W is sometimes referred to as the “affinity
matrix”.

Note that the graph Laplacian satisfies the equations

Lu(i) =
∑
j

w(i, j)(u(i)− u(j)) (1.10)

u · Lu =
1

2

∑
i,j

w(i, j)(u(i)− u(j))2 (1.11)

for all u ∈ Rn and has nonnegative, real valued eigenvalues, including 0.
When working with the graph Laplacian, one must consider the behavior that

arises as the sample size grows larger. Increasing sample size leads to decreasing grid
size; thus, the operator must be scaled to converge to the differential Laplacian as
N →∞, where N is the number of vertices. Although several versions that have been
shown to have the correct scaling in the limit exist, the one used in this paper is the
symmetric Laplacian

Ls = D−
1
2LD−

1
2 = I −D− 1

2WD−
1
2 (1.12)

that satisfies

u · Lsu =
1

2

∑
i,j

w(i, j)(u(i)− u(j))2√
d(i)d(j)

∀u ∈ Rn. (1.13)

It is also a symmetric matrix.
Another version that is commonly used is the random walk Laplacian

Lw = D−1L = I −D−1W (1.14)

which is related to Markov processes. More detail about normalized Laplacians is
given in [12] and [47].

1.2.1. Graph clustering and the graph Laplacian. The goal of
graph clustering is to partition the graph so that the weights between vertices of
different groups are small and the weights between vertices within the same group are
large. In this section, we deal with a binary problem only. A mincut approach to the
above problem is to partition a set of vertices V into sets A and Ā in such a way so
that

cut(A, Ā) =
∑

x∈A,y∈Ā

w(x, y) (1.15)

is minimized. This mincut problem is solved using an efficient algorithm in [44].

5

However, this problem leads to poor classification in many cases since the resulting
“bad” partition often isolates one vertex from the rest of the set [36]. One way to
overcome this problem is to use correct normalization, i.e. to force the sets A and Ā
to be “large”. Let

vol(A) =
∑
x∈A

d(x). (1.16)

Then the modified problem is to find a subset A of V such that

Ncut(A, Ā) =
cut(A, Ā)

vol(A)
+
cut(A, Ā)

vol(Ā)
(1.17)

is minimized. This is a NP hard discrete problem [48]. One way to simplify it would
be to allow the solution to take arbitrary values in R. This leads to the following
relaxed Ncut problem:

minA⊂Y 〈u, Lsu〉, u ⊥ D 1
2 1, ||u||2 = vol(Y). (1.18)

The fact that the above problem obtains a real-valued solution instead of a discrete-
valued solution, like problem (1.17), is emphasized.

The relaxed problem (1.18) has been applied to many segmentation problems; for
example, appealing results are shown in [43]. To solve the above problem, one can
apply the Raleigh-Ritz theorem, and the solution is given by the second eigenvector
of the symmetric graph Laplacian Ls [47].

The theory shown above justifies the use of the (thresholded) second eigenvector
of Ls as an initialization when applying our segmentation algorithm to the two-moons
data set, which will be described in section 2.3.1.

1.3. Nonlocal Operators. In general, image processing methods that
are local fail to produce satisfactory results on images with repetitive structures and
textures because they only operate on small neighborhoods, without using any infor-
mation about the whole domain. The advantage of nonlocal operators is that they
contain data about the whole vertex set and are thus more successful with those types
of images.

Zhou and Schölkopf in their papers [55, 52, 54, 53] formulated a theory of nonlocal
operators that is related to the discrete graph Laplacian described in section 1.2.
Buades, Coll and Morel applied this nonlocal theory to denoising algorithms in their
work [9]. Osher and Gilboa proposed using nonlocal operators to define functionals
involving the TV semi-norm for various image processing applications in their work
[26].

We review nonlocal calculus below, where all definitions are continuous. Let
Ω ∈ Rn, u(x) be a function u : Ω→ R and the nonlocal derivative be defined as

∂u

∂y
(x) =

u(y)− u(x)

d(x, y)
, x, y ∈ Ω (1.19)

where d is some positive distance defined on the space and 0 < d(x, y) ≤ ∞ ∀x, y. If
the (symmetric) weight function is defined as

w(x, y) =
1

d(x, y)2
, (1.20)

6

the nonlocal derivative can be written as

∂u

∂y
(x) = (u(y)− u(x))

√
w(x, y). (1.21)

We now consider vectors and denote them as ~v = v(x, y) ∈ Ω×Ω. Let ~v1 and ~v2

be two such vectors. We define the dot product and the inner product as

(~v1 · ~v2)(x) =

∫
Ω

v1(x, y)v2(x, y)dy (1.22)

〈~v1, ~v2〉 = 〈~v1 · ~v2, 1〉 =

∫
Ω×Ω

v1(x, y)v2(x, y)dxdy (1.23)

The magnitude of a vector can be defined as

|v|(x) =
√
~v · ~v =

√∫
Ω

v(x, y)2dy. (1.24)

while the nonlocal gradient5wu(x) : Ω→ Ω×Ω is the vector of all partial derivatives:

(∇wu)(x, y) = (u(y)− u(x))
√
w(x, y), x, y ∈ Ω. (1.25)

With the above definitions, the nonlocal divergence divw~v(x) : Ω × Ω → Ω is
defined as the adjoint of the nonlocal gradient:

(divw~v)(x) =

∫
Ω

(v(x, y)− v(y, x))
√
w(x, y)dy. (1.26)

The Laplacian is now defined as

∆wu(x) =
1

2
divw(∇wu(x)) =

∫
Ω

(u(y)− u(x))w(x, y)dy. (1.27)

Since the graph Laplacian was defined in section 1.2 as

Lu(x) =
∑
y

w(x, y)(u(x)− u(y)) (1.28)

one can interpret −Lu(x) as a discrete approximation of ∆wu. Note that a constant
of 1

2 was needed here to relate the two Laplacians.
According to the nonlocal calculus described above,∫

Ω

|∇u|2dx =

∫
Ω×Ω

(u(y)− u(x))2w(x, y)dxdy. (1.29)

Since

u · Lu =
1

2

∑
x,y

w(x, y)(u(x)− u(y))2 (1.30)

one can consider 2u · Lu to be the discrete graph version of
∫
|∇u|2dx.

7

In their paper [8], Bertozzi and Flenner replace the ε
2

∫
|∇u|2dx term of the

Ginzburg-Landau function by εu · Lu(x). However, normalization of the Laplacian is
necessary, so instead they use

εu · Lsu =
ε

2

∑
x,y

wx, y)(u(x)− u(y))2√
d(x)d(y)

. (1.31)

When the variational solution u takes the values −1 or 1,

u ·Lsu = C + 4
∑

x∈A,y∈Ā

w(x, y)√
d(x)d(y)

− 2

 ∑
x∈A,y∈A

w(x, y)√
d(x)d(y)

+
∑

x∈Ā,y∈Ā

w(x, y)√
d(x)d(y)


(1.32)

In this case, C is a constant that varies with the graph but not with the partition.
The representation shows that the above is minimized when the normalized weights
between vertices of different groups are small, but the normalized weights between
vertices within a group are large. This is precisely the goal of graph clustering.
Therefore, by replacing the ε

2

∫
|5u|2dx term in the Ginzburg-Landau functional with

εu · Lsu, thus creating a graph based version of the functional, and then minimizing
the resulting equation, one achieves the desired segmentation.

The Γ-convergence of the graph based Ginzburg-Landau functional is investigated
in [46]. The authors prove that as ε → 0, the limit is related to the total variation
semi-norm and cut from (1.15).

1.4. Review of MBO scheme for differential operators. The idea
to approximate mean curvature flow using threshold dynamics is introduced in the
paper [35] by Merriman, Bence, and Osher. To explain the intuition behind the
numerical scheme they propose, the authors analyze the mean curvature flow of the
curve C using diffusion of the characteristic function χ of the set Σ, where ∂Σ = C.
If one imagines an interface, such as χ, and then applies the heat equation χt = ∆χ,
then the diffusion blunts the sharp points on the boundary, but has little impact on
the flatter parts, thus leaving the χ = 1

2 level set invariant to diffusion. By changing
the coordinates to polar form, the authors of [35] show that the 1

2 -level set also
moves according to some curvature dependent motion. Therefore, if one diffuses the
characteristic function of a set with boundary C for a short time and then identifies
the boundary of the “new set” with the 1

2 -level set, the curve C moves with a normal
velocity that is at any given point equal to the mean curvature at that point. The
above analysis is local so the timestep needs to be short enough so that it is valid,
but long enough so that the curve is moving.

From the previous discussion follows the MBO numerical scheme for approxima-
tion of the motion of u by mean curvature at discrete times:

- Step 1. Let v(x) = S(δt)un(x) where S(δt) is the propagator (by time δt) of

∂v

∂t
= ∆v (1.33)

- Step 2. Set

un+1(x) =

{
1, if v(x) ≥ 1

2

0, if v(x) < 1
2

8

We are interested in motion by mean curvature because it is closely related to the
Allen-Cahn equation

∂u

∂t
= 2ε∆u− 1

ε
W ′(u) (1.34)

obtained by applying the method of gradient descent to the Ginzburg-Landau func-
tional. Here W is the double well potential W (u) = (u2 − 1)2. It is proven in [40]
that as ε→ 0+, the rescaled solutions uε(x, t/ε) of the above equation move according
to mean curvature of the interface between the −1 and 1 phases of the solutions. In
addition, [3] and [21] present rigorous proofs that the MBO algorithm approximates
motion by mean curvature. This implies that for the small values of ε, the MBO
thresholding scheme can be used to numerically solve the Allen-Cahn equation. Note
that if one uses a time splitting scheme to solve the equation, the second step is
propagation using

∂u

∂t
= −1

ε
W ′(u) (1.35)

which turns into thresholding (second step of the MBO scheme) as ε→∞.
Multiple extensions, adaptations and applications of the MBO scheme are present

in literature. In their work [20], Esedoglu and Tsai propose a thresholding scheme for
minimizing the piecewise constant Mumford-Shah functional of image segmentation.
The authors also propose a generalization of their binary segmentation method that
successfully solves a multi-phase segmentation problem. Some other extensions of the
MBO scheme appeared in [18, 19, 34]. An efficient algorithm for motion by mean
curvature using adaptive grids was proposed in [41].

2. Segmentation Algorithm. We construct a new segmentation algo-
rithm by proposing a different approach to minimize (1.6) than the one in [8] to obtain
a more simple and efficient method that eliminates the diffuse interface parameter ε.
Our scheme is based on a variation of the MBO scheme.

As was shown in section 1.4, for small ε, the MBO thresholding scheme can be
used to evolve the Allen-Cahn equation to steady state. The scheme consists of two
steps: a heat equation propagation step and a thresholding step.

A candidate for the threshold dynamics of (1.6) is found by splitting equation
(1.8), which is the Allen-Cahn equation plus an extra fidelity term. There are several
options, including splitting the equation into three steps, but we choose the possibility
in which equation (1.8) is split so that the thresholding step resembles the one in the
original MBO scheme, as is done in [20].

Therefore, our algorithm consists of alternating between the following two steps
to obtain approximate solutions un(x) at discrete times:

- Step 1. (heat equation with forcing term) Let y(x)= S(δt)un(x) where S(δt) is
the propagator (by time δt) of

∂z

∂t
= −Lsz − C1λ(x)(z − z0) (2.1)

Note that C1 can be different from the original C.
- Step 2. (thresholding) Set

un+1(x) =

{
1, if y(x) ≥ 0

−1, if y(x) < 0

9

Note that we now use 0 as the thresholding value (instead of 1
2 as in the original

MBO scheme) since the values of u are concentrated at −1 and 1, not 0 and 1.
We have decided to discretize (2.1) above in the following manner:

un+1 − un

dt
= −Lsun+1 − C1λ(x)(un − u0). (2.2)

Note that the symmetric Laplacian is calculated implicitly. This is due to the stiffness
of the operator, which is caused by a wide range of its eigenvalues. An implicit term
is needed, since an explicit scheme requires all the scales of the eigenvalues to be
resolved numerically.

The scheme is solved using the spectral decomposition of the symmetric graph
Laplacian. Let un =

∑
k a

n
kφk(x) and C1λ(un − u0) =

∑
k d

n
kφk(x), where φ(x) are

the eigenfunctions of the symmetric Laplacian. Using the obtained representations
and equation (2.2), we obtain

an+1
k =

ank − dtdnk
1 + dtλk

(2.3)

where λk are the eigenvalues of the symmetric graph Laplacian.

Therefore, the new algorithm consists of the following:
- Step 1. Create a graph from the data, choose a similarity function and then calcu-
late the symmetric graph Laplacian.
- Step 2. Calculate the eigenvectors and eigenvalues of the symmetric graph Lapla-
cian. It is only necessary to calculate a portion of the eigenvectors.
- Step 3. Initialize u.
- Step 4. Apply the two-step scheme (to minimize the Ginzburg-Landau functional)
described above for a certain number of iterations until a stopping criterion is satisfied.
Use the following method:

1. Let a0
k =

∑
x u0(x)φk(x) and d0

k(x) = 0 for all x.
2. Until a stopping criterion is satisfied, do the following:

a. Repeat for some number s of steps:

1. ank ←
ank−δtd

n
k

1+δtλk

2. y(x) =
∑
k a

n
kφk(x)

3. dnk =
∑
x C1(y − u0)(x)φk(x)

b. (thresholding part)

un+1(x) =

{
1, if y > 0

−1, otherwise

c. Let an+1
k =

∑
x un+1(x)φk(x) and dn+1

k =
∑
x C1(y − u0)(x)φk(x)

The parameter δt is chosen using trial and error. The stopping criteria we use in

our work is
||unew−uold||22
||unew||22

< α = 0.0000001.

2.1. Choice of Similarity Function. As mentioned in previous sec-
tions, the weight function w(i, j) is a function that measures the degree of similarity
between vertices i and j. Therefore, it is necessary to choose the function in such a
way so that two vertices that are heavily weighted by w, i .e. w(i, j) is large, are also

10

closely related in the data. Although, several options for w are discussed in [47], the
choice depends on the problem, so no general theory can be formulated.

One popular choice for the similarity function is the Gaussian function

w(i, j) = e−
d(i,j)2

σ2 (2.4)

where D(i, j) is some distance measure between the two vertices i and j, and σ is a
parameter to be chosen. Von Luxburg in [47] explains that σ can be chosen to be on
the order of log(n) + 1, where n is the number of vertices. This similarity function is
an appropriate choice when vertices are, for example, points in Rn, since two points
that are close together are more likely to belong to the same cluster than two points
that are far apart.

Another choice for the similarity function used in this work is the Zelnik-Manor
and Perona weight function for sparse matrices described in [49]:

w(i, j) = e
− d(i,j)2√

τ(i)τ(j) (2.5)

where the local parameter
√
τ(i) = d(i, k) and k is the M th closest vertex to vertex i.

As noted in [8], one should use this similarity function for segmentation when there
exist multiple scales to be segmented. In [49], M is chosen to be 7, while in [45], it is
10. Depending on the data set, we use either (2.4) or (2.5).

The choice of d(i, j) varies with the data set. If one wants to cluster points in Rn,
a reasonable choice for d(i, j) is the Euclidean distance between points i and j. In the
case of image processing, where the vertices are the pixels in the image, to construct
d(i, j), we use the concept of feature vectors, as in [8]. Each vertex i is assigned a
n-dimenstional feature vector, and d(i, j) is then the weighted 2-norm (where each
coordinate of the vector is assigned a weight) of the difference of the feature vectors
of pixels i and j. More details on d(i, j) in this case are given in sections 3.1 and 3.2.

2.2. Computation of Eigenvectors. Our method involves the compu-
tation of eigenvalues and associated eigenvectors of the symmetric graph Laplacian.
In practice, one computes only a fraction of the eigenvalues and eigenvectors, and
different methods of doing so are used depending on the size of the domain.

When the graph is sparse and is of moderate size, around 5000× 5000 or less, we
use a Rayleigh-Chebyshev procedure outlined in [1]. It is a modification of an inverse
subspace iteration method that uses adaptively determined Chebyshev polynomials.
The procedure is also a robust method that converges rapidly and that can handle
cases when there are eigenvalues of multiplicity greater than one.

When the graph is very large, such as in the case of image segmentation, the
Nyström extension method, to be described in the next section, is used.

2.2.1. Nyström extension for fully connected graphs. Nyström
extension [8, 24, 23, 4] is a matrix completion method often used in many image
processing applications, such as kernel principle component analysis [15] and spectral
clustering [38]. This procedure performs much faster than many alternate techniques
because it uses approximations based on calculations on small submatrices of the
original large matrix. When the size of the matrix becomes very large, this method
is especially valuable.

Note that if λ is an eigenvalue of Ŵ = D−
1
2WD−

1
2 , then 1 − λ is an eigenvalue

of Ls, and the two matrices have the same eigenvectors. We formulate a method to
calculate the eigenvectors and eigenvalues of Ŵ and thus of Ls.

11

Let w be the similarity function, λ be an eigenvalue of W , and φ its associated
eigenvector. The Nyström method approximates the eigenvalue equation

∫
Ω

w(y, x)φ(x)dx = λφ(x) (2.6)

using a quadrature rule, a technique to find weights cj(y) and a set of L interpolation
points X = {xj} such that

L∑
j=1

cj(y)φ(xj) =

∫
Ω

w(y, x)φ(x)dx+ E(y) (2.7)

where E(y) represents the error in the approximation.
We use cj(y) = w(y, xj) and choose the L interpolation points randomly from

the vertex set V . Denote the set of L randomly chosen points by X = {xi}Li=1 and
its complement by Y . Partioning Z into Z = X ∪ Y and letting φk(x) be the the kth

eigenvector of W and λk its associated eigenvalue, we obtain the system of equations

∑
xj∈X

w(yi, xj)φk(xj) = λkφk(yi) ∀yi ∈ Y, ∀k ∈ 1, ..., L. (2.8)

This system of equations cannot be solved directly since the eigenvectors are not
known. To overcome this problem, the L eigenvectors of W are approximated using
calculations involving submatrices of W .

Let WXY be defined as

 w(x1, y1) . . . w(x1, yN−L)
...

. . .
...

w(xL, y1) . . . w(xL, yN−L)


where W has dimension N ×N . The matrices WY X , WXX and WY Y can be defined
similarly. Notice that WXY = WY X

T . Then the matrix W can be written as

[
WXX WXY

WY X WY Y

]
To calculate the eigenvalues and eigenvalues of Ŵ , one must correctly normalize

the above weight matrix. The correct normalization is achieved by the following
calculations, where we denote by 1K the K-dimensional unit vector.

Let the matrices dX and dY be defined as

dX = WXX1L +WXY 1N−L

dY = WY X1L + (WY XW
−1
XXWXY)1N−L

(2.9)

If A./B denotes componentwise division between matrices A and B, and vT de-
notes the transpose of vector v, then define the matrices ŴXX and ŴXY as

ŴXX = WXX ./(sXs
T
X)

ŴXY = WXY ./(sXs
Y
X)

(2.10)

12

where sX =
√
dX and sY =

√
dY .

It is shown in [8] that if ŴXX = BXDB
T
X , and if A and Γ are matrices such that

ATΓA = ŴXX + Ŵ
− 1

2

XXŴXY ŴY XŴ
− 1

2

XX (2.11)

then the eigenvector matrix V consisting of L eigenvectors of Ŵ and thus of Ls is
given by

[
BXD

1
2BTXAΓ−

1
2

ŴY XBXD
− 1

2BTXAΓ−
1
2

]
while I − Γ contains the corresponding eigenvalues of Ls in its diagonal entries.

Therefore, the efficiency of the Nyström extension method lies with the fact that
when computing the eigenvalues and eigenvectors of an N × N matrix, where N is
large, it approximates them using calculations involving only much smaller matrices,
the largest of which has dimension N × L, where L is small.

Although this method is very efficient, there are problems when it is applied to
binary image inpainting, especially when the image has a repetitive structure. This
occurs because of singular or nearly singular matrices that arise in the calculations
of the Nyström extension method. Therefore, in this case, we use the Rayleigh-
Chebyshev procedure of [1] to calculate the eigenvalues and associated eigenvectors.

2.3. Results for Segmentation. We applied our segmentation algo-
rithm on three data sets: the two moons data set, an image and the House of Represen-
tatives voting records from 1984. A comparison of the results to those of the method
of Bertozzi and Flenner in [8] is displayed in tables 2.1 and 2.2. The tables show that
our method significantly reduces the number of iterations and the minimization time.

2.3.1. Two Moons. This data set was used by Bühler et al. in [10]
in relation to spectral clusering using the p-Laplacian. It is constructed from the
following two half circles in R2 with radius one. The first half circle is centered at the
origin and is in the upper half plane. The second half circle is formed by taking the
lower half of the circle centered at (1, 0.5). A thousand points are chosen uniformly
from each of the two half circles. The two thousand points are then embedded in R100,
and i.d.d. Gaussian noise with standard deviation 0.02 is added to each coordinate.
The goal is to segment those two half circles.

An affinity matrix W is created using the weight function w(i, j) = e
− d(i,j)2√

(τ(i)τ(j)) ,
a weight function introduced by Zelnik-Manor and Perona in [49], where τ(i) is the
Euclidean distance between point i and the Mth closest point to it, and d(i, j) is the
Euclidean distance between points i and j. The matrix W (i, j) is made sparse by
setting W (i, j) equal to zero if point j is not among the Mth closest points to point
i. It is then “symmetrized” by setting W (i, j) = max(W (i, j),W (j, i)).

To calculate the eigenvectors, the Rayleigh-Chebyshev procedure [1] is used, since
the graph is not large and Nyström extension is inefficient for sparse graphs [8].

In step IV of the algorithm, there is no fidelity term so λ(x) = 0 for all x. Thus,
dnk = 0 for all k and n. In addition, there is a zero mass constaint

∫
u(x)dx = 0 due

to the nature of the problem. Therefore, in the algorithm, before thresholding, one
applies the mean constraint to y by subtracting its mean from each element of y. For
initialization of u, we use the sign of the second eigenvector of the symmetric Laplacian

13

after the mean constraint has been applied to it. The use of such initialization was
justified in section 1.2.1.

We compared our results to the method of Bertozzi and Flenner in [8] by running
simulations on 35 different randomly generated two moons data sets. The average
accuracy was 96.0520% and 96.0460% for our method and the method in [8], respec-
tively. However, 40 iterations in the minimization procedure were used, compared to
300 needed using the method in [8]. Therefore, our method resulted in a significant
decrease in the number of iterations.

We also compared our results to a spectral clustering method of thresholding the
second eigenvector of Ls. The results are displayed in Figure 2.1. Clearly, clustering
using the second eigenvector does not result in an accurate segmentation.

(a) second eigenvector segmentation- 83.75% (b) our method’s segmentation- 97.7%

Fig. 2.1: Segmentation by thresholding the second eigenvector and our method, re-
spectively. The four parameters s (in step IV of our algorithm), number of eigenvec-
tors, dt, and M (parameter in the Zelnik-Manor and Perona weight function) are set
to 3, 25, 0.725 and 13, respectively.

2.3.2. Image Segmentation. We also applied our algorithm to seg-
ment objects in images of cows from the Microsoft image database. The goal was
semi-supervised image segmentation, where two images are inputted into the algo-
rithm, one of which has been hand segmented into the two classes. The algorithm
segments the second image based on the segmentation of the first.

A fully connected graph is constructed in this case, and the entries in the affinity
matrix are calculated using feature vectors. Every pixel in the image is assigned
a feature vector consisting of intensity values of pixels in its neighborhood, which

was of size 7 × 7 in our segmentation tests. We use the formula w(i, j) = e−
d(i,j)2

σ2 ,
where d(i, j) is the weighted 2-norm of the difference of the feature vectors of pixels
i and j, and we add along the three RGB channels of the image. The weighted 2-
norm modifies the components of the entered vector by giving more weight to the
pixels close to the original pixel and less weight to those farther away. We use a
linearly decreasing kernel, where the weight decreases linearly. This construction can
be used to segment different types of objects using, for example, their color and texture
features. Note that the weight function can be modified according to the image. For

14

(a) Original Labeled Image (b) Unlabeled Image

(c) Regions with Grass Label (d) Grass Label Transferred

(e) Regions with Cow Label (f) Cow Label Transferred

(g) Regions with Sky Label (h) Sky Label Transferred

Fig. 2.2: The grass, cow and sky labels were transferred to another image using
our algorithm. The number of eigenvectors, C1 and σ were set to 200, 30 and 22,
respectively. The parameter dt was 0.03, 0.003 and 0.17 for the grass, cow and sky
label, respectively.

15

Minimization time Minimization time
in method in [8] in our method

grass label 8 s 3.5 s
cow label 18 s 3.5 s
sky label 6 s 1.8 s

Table 2.1: Comparison of minimization time of the two methods

example, a weight function calculated using the spectral angle may be more effective
in the segmentation of hyperspectral images.

To obtain eigenvalues and eigenvectors of Ls, the Nyström extension method is
used, since the size of the graph is very large (70, 000× 70, 000).

For the problem, in the fidelity term, λ(x) was set to 1 on the hand labeled image
and 0 on the unlabeled image. On the hand labeled image, we initialized u to be 1
for one class and −1 for the other class. On the unlabeled image, u0 was set to zero.

The results are displayed in Figure 2.2, where it is shown that our algorithm is
robust to mislabeling in the hand labeled image. To transfer the label for the grass,
cows and sky, our method needed about 29, 29, 27 seconds, respectively.

The number of iterations in the minimization procedure (step 4 of the algorithm)
and minimization time as compared to the method in [8] are displayed in Tables 2.1
and 2.2. The calculations show that our method significantly reduces the minimization
time and the number of iterations.

2.3.3. House voting records from 1984. We applied our algorithm
to the US House of Representatives voting records data set, which consists of 16
different votes from each of the 435 individuals. The goal was to assign each individual
to either the Republican or the Democrat party using the prior knowledge of the party
affiliation of only five individuals, two Democrats and three Republicans. The votes
were taken in 1984 from the 98th United States Congress, 2nd session.

An affinity matrix is constructed using calculations involving feature vectors. A
16-dimensional feature vector is assigned to each individual consisting of his/her 16
votes. A “yes” vote is set to 1, a “no” vote is set to−1, while a “did not vote” recording

is set to 0. The weight function used is w(i, j) = e−
d(i,j)2

σ2 where d(i, j) is the 2-norm of
the difference between the feature vectors of points i and j. The graph is made sparse
by setting W (i, j) equal to zero if point j is not among the M th closest points to point
i. The graph is then “symmetrized” by setting W (i, j) = max(W (i, j),W (j, i)).

To calculate the eigenvectors, a SVD solver is used. In step IV of the algorithm,
the function u is initialized to 1 for the two Democrats, −1 for the three Republicans
and 0 for the rest of the Representatives. The three Republicans were chosen to be
the first, second and eighth person in the list. The Democrats were chosen to be the
third and fourth person in the list. In the fidelity term, λ(x) was set to 1 for each of
five known individuals and 0 for the rest.

The parameters C1 (fidelity term parameter), s (in step IV of our algorithm),
number of eigenvectors, dt, σ and M are set to 9.25, 3, 45, 4.675,

√
5 and 10, respec-

tively.
We obtained an accuracy of 94.023%. Only 5 iterations in the minimization

procedure were needed compared to 450 iterations needed by the method in [8].
Some of the votes predicted the party affiliation very well, i .e. above 85%. We

16

investigated the accuracy of our algorithm when these votes were removed. With top
two, top six and top eight most predictive votes removed, our method obtained an
accuracy of 90.1149%, 88.34448% and 81.1494%, respectively. The order of the top
eight predictive votes from the most predictive to least predictive is vote 4, 14, 1, 2,
15, 6, 3 and 8.

of iterations # of iterations
in method in [8] in our method

two moons 300 40
grass label 130 22
cow label 274 29
sky label 84 11
voting data set 400 5

Table 2.2: Comparison of # of iterations of the two methods

3. Image Inpainting Algorithm. The problem of fitting information
in the missing pixels of an image is an important inverse problem in image processing
with various applications. Obviously, the goal is to produce a modified image that
will look natural to an observer. The problem of inpainting may also be seen as the
problem of removing occlusive objects from an image. Sparse reconstruction refers to
the problem of recovering randomly distributed missing pixels.

There are numerous approaches to solve these problems in the current litera-
ture. Local TV methods became state-of-the-art techniques for image impainting.
However, since they do not perform well on images with high texture, methods that
decompose images into cartoon and texture and simultaneously inpaint both are de-
veloped [5, 42]. The problem is also solved with nonlocal inpainting methods. We are
particularly interested in the nonlocal inpainting algorithm from [27] as we develop
a computationally efficient nonlocal method. Some very successful nonlocal methods
for inpainting and sparse reconstruction are given in [2] and [22]. Recently, the class
of methods that use dictionaries of small patches that commonly appear in natural
images became increasingly popular. Those methods, besides inpainting, are also
successful in denoising as shown in [33]. In addition, a method for image inpainting
using Navier-Stokes fluid dynamics is proposed in [6]. The authors use Navier-Stokes
dynamics to propagate isophotes into the inpainting region, thus simulating the way
painting restoration is done. Wavelets and framelets are also successfully applied to
solve inpainting problems [14, 11].

We modify our segmentation algorithm slightly for the purpose of binary and
grayscale image inpainting. The algorithm consists of the same 4 steps:

• Create a graph from the data using pixels as vertices, choose a similarity
function and then create the symmetric graph Laplacian.

• Calculate the eigenvectors and eigenvalues of the symmetric graph Laplacian.
It is only necessary to calculate a fraction of the eigenvectors.

• Initialize u.
• Apply the two-step scheme (to minimize the Ginzburg-Landau functional) de-

tailed in Section 2 for a certain number of iterations until a stopping criterion
is satisfied.

17

However, there some important differences to be discussed in sections 3.1 and 3.2.
Our algorithm is an efficient image inpainting algorithm that is able to correct

images with repetitive structure or those with high texture content.

3.1. Binary Image Inpainting. Although the key steps of the seg-
mentation algorithm remain the same when it is modified for image inpainting, there
are key differences to be noted. For example, it is clear that if a damaged image is
used to construct the adjacency matrix W , the results might not be accurate, so we
first apply a fast and simple H1 inpainting algorithm on the image and then use the
result to create W . Although the latter algorithm is very fast, it does not perform
well on images with high textures and repetitive structures nor does it preserve edges
[25], something that is achieved by our algorithm.

The matrix W is built by using a window of a certain size around each pixel.
We set W (i, j) = 0 for all pixels j that are not in the window of pixel i. Inside the
window, W (i, j) = w(i, j), where the weight function is calculated in the same way
as in section 2.3.2,i .e, . using feature vectors and the Gaussian weight function. No
updating of the matrix W is necessary in the case of binary image inpainting.

The Rayleigh-Chebyshev procedure is used to calculate the eigenvectors and
eigenvalues of the graph Laplacian for binary inpainting. As mentioned before, the
Nyström extension method encounters some problems when dealing with binary im-
ages.

In step IV of the algorithm, λ(x) in the fidelity term is set to 0 on the inpainting
region (which is given the value 0.5 on a 0 to 1 intensity scale) and to 1 on the rest of
the image, while u0 is set to 0 on the inpainting region, 1 on the white area and −1
on the black area. The same stopping criterion is used.

3.2. Grayscale Image Inpainting. To generalize to graycale inpain-
ing, we split the signal bit-wise into channels, as in [14]:

u(x) =

K−1∑
m=0

um(x)2−m (3.1)

where um denotes the mth combonent or digit in the binary representation of the
signal, and um ∈ {0, 1} for ∀x.

A fully connected graph is created in the same way as in section 2.3.2. Again, we
first apply the H1 inpainting algorithm on the image, and use the result to build the
matrix W .

The Nyström extension method is used to calculate the eigenvalues and corre-
sponding eigenvectors since the size of the graph is very large.

In step IV of the algorithm, λ(x) in the fidelity term is set to 0 on the inpainting
region (which is either black or white) and to 1 on the rest of the image. The initial-
ization of u varies with the bit. In the inpainting region, u0 is 0, while in the rest of
the image, it is 1 on the area where the bit is 1 and −1 on area where the bit is 0.
The same stopping criterion is used, except α = 0.0001. For some images, step IV is
performed for a certain number of iterations.

Updating the matrix W is often necessary for grayscale inpainting, since the
adjacency matrix formed from the damaged image is usually not good enough to
restore texture and complex patterns, as it contains “bad” regions whose values lie
far from the true value. In our tests, every few iterations, the matrix is updated using
the result from the last iteration as the “new image”.

18

3.3. Binary Image Inpainting Results. We applied our algorithm on
an image of Barbara and one of stripes. The results and their PSNR are displayed in
Figure 3.1. In both cases, the algorithm was able to recover the texture and repetitive
structure present in the image, something that is unfeasible for simple algorithms, such
as local TV inpainting.

3.4. Grayscale Image Inpainting Results. We applied our algo-
rithm on an image of Barbara and a chessboard-like pattern. The goals ranged from
removing occlusive objects, such as a flower, text or a rectangle, to sparse reconstruc-
tion. The results along with their PSNR are displayed in Figures 3.2-3.7. Figure 3.7
is a reconstruction of the original image 3.3a. In all cases, repetitive structure and
texture were recovered.

We compare our results to local and nonlocal TV inpainting. Local TV inpaint-
ing fails to recover texture and repetitive structure. While the results of nonlocal
TV inpainting are comparable to those of our method, our method is more efficient.
Timing results are displayed in Table 3.1. We also show our method and nonlocal
TV inpainting at certain iterations in Figure 3.8. To implement the nonlocal TV
inpainting algorithm, we used the Bregmanized version detailed in [50] and modified
it for inpainting. The stopping condition was the same as in our inpainting algorithm,
and a quick H1 inpainting algorithm was run on the image before the weights were
calculated.

Total time for Total time for
nonlocal TV our method

chessboard-like pattern 266 s 48 s
text inpainting 410 s 67 s
small rectangle inpainting 1882 s 443 s
large rectangle inpainting 3397 s 832 s
50% inpainting 1402 s 333 s

Table 3.1: Timing Comparison

4. Conclusion.
This work presents an algorithm, derived from graph methods and the MBO

scheme [35], that links together ideas of L1 compressed sensing, graphs and image
processing. The results show that using threshold dynamics in combination with
an efficient eigenvalue solver, such as Nyström extension or the Raleigh-Chebyshev
procedure of [1], develops an efficient method that can be applied to clustering or
image processing. In addition, the nonlocal nature of our method allows it to be
successful on images with high texture and repetitive structure.

4.1. Acknowledgements. The authors would like to thank Yanina
Landa for providing a Matlab version of the code of the algorithm in [8] and Chris An-
derson for providing a code for the Raleigh-Chebyshev procedure of [1]. In addition,
we thank Arjuna Flenner, Yves van Gennip, and Blake Hunter for useful discus-
sions regarding this work. This work was supported by ONR grants N000141210040,
N000141010472, N00014120838 and AFOSR MURI grant FA9550-10-1-0569. Ekate-
rina Merkurjev is also supported by the NSF graduate fellowship.

19

(a) original image- Barbara(b) damaged image- Barbara(c) our method’s result-
PSNR 20.6896

(d) original image- stripes(e) damaged image- stripes(f) our method’s result-
PSNR 25.0687

Fig. 3.1: Binary Inpainting. For the Barbara image, the simulation took 113 seconds,
and there were 6 iterations in the two-step scheme. We used C1 = 700, dt = 0.003,
σ = 45, 31 × 31 neighborhood for feature vector calculation, 21 × 21 window and
calculated 400 eigenvectors. For the image of stripes, the simulation took 66 seconds,
and there were 4 iterations in the two-step scheme. We used C1 = 700, dt = 0.002,
σ = 45, 17 × 17 neighborhood for feature vector calculation, 21 × 21 window and
calculated 200 eigenvectors.

20

(a) original image- pattern (b) damaged image- pattern (c) local TV inpainting- PSNR
16.5520

(d) nonlocal TV inpainting-
PSNR 41.3891

(e) our method’s result- perfect
reconstruction

Fig. 3.2: Pattern. The simulation took 48 seconds, and there were 2 iterations in the
two-step scheme. We used C1 = 700, dt = 0.005, σ = 20, 41 × 41 neighborhood for
feature vector calculation, and calculated 600 eigenvectors. No updating of W was
necessary. The nonlocal inpainting took 266 seconds.

21

(a) original image- Barbara (b) damaged image- Barbara (c) local TV inpainting- PSNR
29.1508

(d) nonlocal TV inpainting-
PSNR 35.6896

(e) our method’s result- PSNR
34.0688

Fig. 3.3: Text Inpainting. The simulation took 67 seconds, and there were 4 iterations
in the two-step scheme. We used C1 = 700, dt = 0.005, σ = 5, 21× 21 neighborhood
for feature vector calculation, and calculated 500 eigenvectors. We update W every
other iteration. The nonlocal inpainting took 410 seconds.

22

(a) original image- Barbara (b) damaged image- Barbara (c) local TV inpainting- PSNR
32.8517

(d) nonlocal TV inpainting-
PSNR 44.1469

(e) our method’s result- PSNR
41.2848

Fig. 3.4: Small Rectangle Inpainting. The simulation took 443 seconds, and there
were 13 iterations in the two-step scheme. We used C1 = 700, dt = 0.01, σ = 4,
31× 31 neighborhood for feature vector calculation, and calculated 500 eigenvectors.
We update W every iteration. The nonlocal TV inpainting took 1882 seconds.

23

(a) original image- Barbara (b) damaged image- Barbara (c) local TV inpainting- PSNR
31.3673

(d) nonlocal TV inpainting-
PSNR 35.0663

(e) our method’s result- PSNR
37.0315

Fig. 3.5: Large Rectangle Inpainting. The simulation took 832 seconds, and there
were 13 iterations in the two-step scheme. We used C1 = 700, dt = 0.014, σ = 4,
45× 45 neighborhood for feature vector calculation, and calculated 500 eigenvectors.
We update W every iteration. The nonlocal inpainting took 3397 seconds.

24

(a) original image- Barbara (b) damaged image- Barbara (c) local TV inpainting- PSNR
23.6049

(d) nonlocal TV inpainting-
PSNR 27.8196

(e) our method’s result- PSNR
27.1651

Fig. 3.6: 50% Random Inpainting. The simulation took 333 seconds, and there were
50 iterations in the two-step scheme. We used C1 = 700, dt = 0.005, σ = 4, 7 × 7
neighborhood for feature vector calculation, and calculated 400 eigenvectors. We
update W every iteration. The nonlocal inpainting took 1402 seconds.

25

(a) damaged image- 35% of the
pixels removed

(b) local TV inpainting- PSNR
22.6530

(c) our method’s result- PSNR
24.1266

Fig. 3.7: 35% Random Inpainting. The simulation took 1200 seconds, and there
were 150 iterations in the two-step scheme. We used C1 = 700, dt = 0.012, σ = 4,
7 × 7 neighborhood for feature vector calculation, and calculated 500 eigenvectors.
We update W every other iteration.

26

(a) nonlocal TV- after 2
iter.- PSNR 25.7101

(b) nonlocal TV- after 5
iter.- PSNR 30.7031

(c) nonlocal TV- after 8
iter.- PSNR 33.2284

(d) nonlocal TV- after
13 iter.- PSNR 35.0663

(e) our method- after 2
iter.- PSNR 30.4406

(f) our method- after 5
iter.- PSNR 31.8993

(g) our method- after 8
iter.- PSNR 34.4851

(h) our method- after 13
iter.- PSNR 37.0315

Fig. 3.8: Nonlocal TV inpainting and our method at certain iterations.

27

REFERENCES

[1] C. Anderson, A Raleigh-Chebyshev procedure for finding the smallest eigenvalues and associated
eigenvectors of large sparse Hermitian matrices, J. Comput. Phys. 229 (2010), pp. 7477-7487.

[2] P. Arias, V. Caselles, and G. Sapiro, A variational framework for nonlocal image inpainting,
EMMCVPR 2009, Bonn, Germany, August 2009 Proceedings (2009).

[3] G. Barles and C. Georgelin, A simple proof of convergence for an approximation scheme for
computing motions by mean curvature, SIAM J. Numer. Anal., 32 (1995), pp. 484-500.

[4] S. Belongie, C. Fowles, F. Chung, and J. Malik, Partitioning with indefinite kernels using
the Nyström extension, ECCV Copenhagen (2002).

[5] M. Bertalmio, L. Vese, G. Sapiro, and S. Osher, Simultaneous structure and texture inpaint-
ing, IEEE Trans. Image Process., 12 (2003), pp. 882-889.

[6] A. Bertozzi, M. Bertalmio, and G. Sapiro, Navier-Stokes fluid dynamics and image and
video inpainting, Proceedings of the International Conference Computer Vision and Pattern
Recognition, IEEE (2001).

[7] A. Bertozzi, S. Esedoḡlu, and A. Gillette, Inpainting by the Cahn-Hilliard equation, IEEE
Trans. Image Process., 16 (2007), pp. 285-291.

[8] A. Bertozzi and A. Flenner, Diffuse interface models of graphs for classification of high dimen-
sional data, to appear in Multiscale Model. and Simul. (2012).

[9] A. Buades, B. Coll, and J.-M. Morel, A non-local algorithm for image denoising, Proc. IEEE
Computer Society on Computer Vision and Pattern Recognition, 2 (2005), pp. 60-65.

[10] T. Bühler and M. Hein, Spectral clustering based on the graph p-Laplacian, Proceedings of
the 26th International Conference on Machine Learning (2009), pp. 81-88.

[11] J.-F. Cai, R. Chan, and Z. Shen, A framelet based image inpainting algorithm, Appl. Comput.
Harmon. Anal., 24 (2008), pp. 131-149.

[12] F. Chung, Spectral graph theory, CBMS Reg. Conf. Ser. Math. 92, Providence, RI (1997).
[13] T. Cour, F. Benezit, and J. Shi, Spectral segmentation with multiscale graph decomposition,

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2 (2005),
pp. 1124-1131.

[14] J. Dobrosotskaya and A. Bertozzi, A wavelet-Laplace variational technique for image de-
convolution and inpainting, IEEE Trans. Image Process, 17 (2008), pp. 657-663.

[15] P. Drineas and M.W. Mahoney, On the Nyström method for approximating a Gram matrix
for improved kernel-based learning, J. Mach. Learn. Res., 6 (2005), pp. 2153-2175.

[16] A. Elmoataz, O. Lezoray, and S. Bougleux, Nonlocal discrete regularization on weighted
graphs: a framework for image and manifold processing, IEEE Trans. Image Process., 17
(2008), pp. 1047-1060.

[17] S. Esedoḡlu and R. March, Segmentation with depth but without detecting junctions, J. Math.
Imaging Vision, 18 (2003), pp. 7-15.

[18] S. Esedoḡlu, S.J. Ruuth,and R. Tsai, Diffusion generated motion using signed distance func-
tions, J. Comput. Phys., 229 (2010), pp. 1017-1042.

[19] S. Esedoḡlu, S.J. Ruuth, and R. Tsai, Threshold dynamics for high order geometric motions,
Interfaces Free Bound., 10 (2008), pp. 263-282.

[20] S. Esedoḡlu and Y.R. Tsai, Threshold dynamics for the piecewise constant Mumford-Shah
functional, J. Comput. Phys., 26 (2004), pp. 367–384.

[21] L.C. Evans, Convergence of an algorithm for mean curvature motion, Indiana Univ. Math. J.,
42 (1993), pp. 553-557.

[22] G. Facciolo, P. Arias, V. Caselles, and G. Sapiro, Exemplar-based interpolation of sparsely
sampled images, EMMCVPR, Bonn, Germany, August Proceedings (2009).

[23] C. Fowlkes, S. Belongie,and J. Malik, Spectral grouping using the Nyström method, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 28 (2006), pp. 469-475.

[24] C. Fowlkes, S. Belongie, F. Chung, and J. Malik, Efficient spatiotemporal grouping using
the Nyström method, CVPR, Hawaii (2001).

[25] C. Frohn-Schauf, S. Henn, and K. Witsch, Nonlinear multigrid methods for total variation
image denoising, Comput. Vis. Sci., 7 (2004), pp. 199-206.

[26] G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale
Model. Simul., 7 (2008), pp. 1005-1028.

[27] G. Gilboa amd S. Osher, Nonlocal linear image regularization and supervised segmentation,
Multiscale Model. Simul., 6 (2007), pp. 595-630.

[28] T. Goldstein and S. Osher, The split Bregman method for L1-regularized problems, SIAM J.
Imaging Sci., 2 (2009), pp. 323-343.

[29] L. Grady and E. L. Schwartz, Isoperimetric graph partitioning for image segmentation, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 28 (2006), pp. 469-475.

28

[30] A. Harten, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49
(1983), pp. 357-393.

[31] R.V. Kohn and P. Sternberg, Local minimizers and singular perturbations, Proc. Roy. Soc.
Edinburgh Set. A, 11 (1989), pp. 69-84.

[32] Y. Lou, X. Zhang, S. Osher, and A. Bertozzi, Image recovery via nonlocal operators, J. Sci.
Comput., 42 (2010), pp. 185-197.

[33] J. Mairal, M. Elad, and G. Sapiro, Sparse representation for color image restoration, IEEE
Trans. Image Process., 17 (2008), pp. 53-69.

[34] B. Merriman and S.J. Ruuth, Diffusion generated motion of curves on surfaces, J. Comput.
Phys., 225 (2007), pp. 2267-2282.

[35] B. Merriman, J. Bence, and S. Osher, Diffusion generated motion by mean curvature, Pro-
ceedings of the Computational Crystal Growers Workshop, Providence, Rhode Island (1992),
pp. 73-83.

[36] E. Mezuman and Y. Weiss, Globally optimizing graph partioning problems using message pass-
ing, Proceedings of the 15th International Conference on Artificial Intelligence and Statistics,
XX (2012).

[37] B. Mohar, The Laplacian spectrum of graphs, Graph Theory, Combinatorics and Applications,
2 (1991), pp. 871-898.

[38] M.M. Naeini, G. Dutton, K. Rothley, and G. Mori, Action recognition of insects using
spectral clustering, Proceedings of the IAPR Conference on Machine Vision Applications
(2007).

[39] G. Peyre, S. Bougleux, and L. Cohen, Non-local regularization of inverse problems, Euro-
pean Conference on Computer Vision (ECCV 2008), Springer, Berlin (2008), pp. 57-68.

[40] J. Rubinstein, P. Sternberg, and J. B. Keller, Fast reaction, slow diffusion, and curve
shortening, SIAM J. Appl. Math., 49 (1989), 116-133.

[41] S.J. Ruuth, Efficient algorithms for diffusion-generated motion by mean curvature, J. Comput.
Phys., 144 (1998), pp. 603-625.

[42] H. Schaeffer and S. Osher, A low patch-rank interpretation of texture, CAM report 11-75
(2011).

[43] J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22 (2000), pp. 888-905.

[44] M. Stoer and F. Wagner, A simple min-cut algorithm, J. ACM, 44 (1997), pp. 585-591.
[45] A. Szlam and X. Bresson, Total variation-based graph clustering algorithm for Cheeger ratio

cuts, Proceedings fo the 27th International Conference on Machine Learning (2010), pp. 1039-
1046.

[46] Y. van Gennip and A. Bertozzi, Γ-convergence of graph Ginzburg-Landau functionals, to
appear in Advances in Differential Equations (2012).

[47] U. von Luxburg, A Tutorial on Spectral Clustering, Statist Comput., 17 (2007), pp. 395-416.
[48] D. Wagner and F. Wagner, Between min cut and graph bisection, Mathematical Foundations

of Computer Science: Lecture Notes in Computer Science, 711 (1993), pp. 744-750.
[49] L. Zelnik-Manor and P. Perona, Self-tuning spectral clustering, Adv. Neutral Inf. Process.

Syst., 17 (2004), pp. 1601-1608.
[50] X. Zhang, M. Burger, X. Bresson and S. Osher, Bregmanized nonlocal regularization for

deconvolution and sparse reconstruction, SIAM J. on Imaging Sci., 3 (2010), pp. 253-276.
[51] X. Zhang and T. Chan, Wavelet inpainting by nonlocal total variation, Inverse Probl. Imaging,

4 (2010), pp. 1-XX.
[52] D. Zhou and B. Schölkopf, Regularization on discrete spaces, Springer, Berlin, Germany,

pp. 361-368.
[53] D. Zhou and B. Schölkopf, Discrete regularization, MIT Press, Cambridge, MA, pp. 221-232.
[54] D. Zhou, J. Huang, and B. Schölkopf, Learning from labeled and unlabeled data on a di-

rected graph, Proceedings of the 22nd International Conference on Machine Learning (2005),
pp. 1041-1048.

[55] D. Zhou, B. Schölkopf, and T. Hofmann, Semi-supervised learning on directed graphs, Adv.
Neutral Inf. Process. Syst., 17 (2005), pp. 1633-1640.

