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We demonstrate in both laboratory and numerical experiments that ion bombardment of a modestly sloped
surface can create knife-edge like ridges with extremely high slopes. Small pre-fabricated pits expand under
ion bombardment, and the collision of two such pits creates knife-edge ridges. Both laboratory and numerical
experiments show that the pit propagation speed and the precise shape of the knife edge ridges are universal,
independent of initial conditions, as has been predicted theoretically. These observations suggest a novel
method of fabrication in which a surface is pre-patterned so that it dynamically evolves to a desired target
pattern made of knife-edge ridges.

The efficient fabrication of ever-smaller structures is
one of the major challenges of 21st century science and
engineering. Ion bombardment has emerged as a promis-
ing candidate to create patterns on surfaces1–4. One
method uses a focused ion beam to micro-machine sharp
features directly5–8 – this allows for detailed control of
the shape of the features but, as a serial writing process,
is too time-consuming to pattern large areas. Another
method is to bombard a surface uniformly, which can
excite linear instabilities that grow into patterns such as
quantum dots9–11. This is less costly, but can only create
structures as small as the smallest linearly unstable wave-
length, with steepnesses limited due to saturation of the
linear modes. To overcome these limitations one would
like to create steep, sharp structures spontaneously, by
exploiting the dynamical processes that underlie surface
evolution under ion bombardment12.

Recently we proposed a scenario for creating very
sharp features on ion bombarded surfaces, by starting
with a surface that is pre-patterned to have modest
slopes on the macroscale13. Under ion bombardment,
our theoretical calculations demonstrated that if the ini-
tial slope is in the right range, the structures would spon-
taneously evolve to knife-edge-like ridges, with extremely
high slopes, and high radius of curvature. Both the final
slope and radius of curvature are independent of initial
conditions, and depend only on the shape of the curve
describing sputter yield (atoms out per incident ion) vs.
incidence angle. Here we demonstrate the formation of
knife edge ridges in experiments. Our experiments show
that uniformly irradiated small pits expand outward, de-
veloping steep sides with uniform slopes. When two pits
collide, the front evolves to a sharp, knife-edge-like struc-
ture with features on a scale much smaller than any con-
tained in the initial conditions. Numerical simulations
of the classical macroscopic equations show remarkably
similar dynamics. Both experiment and simulations show
that the pit propagation speed and the precise shape of
the knife edge ridges are universal, independent of ini-
tial conditions, as predicted theoretically. These dynam-

FIG. 1. Surface evolution of a magnesium alloy under uniform
irradiation by a focused ion beam, after 5, 12, 19 minutes.
The surface initially contained small holes that grew from
scratches. The imaged region is 30µm, viewed at 52◦.

ics can be understood by a theoretical analysis of the
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FIG. 2. Diameter of pits in experiment (left) and simulations
(right), as a function of time. Each marker represents a dif-
ferent pit (expts) or initial condition (sims); experiments are
accurate to ±0.15µm. Best-fit lines are dashed and legend
indicates their slopes. The initial conditions for the simula-

tions were: (cross) h(x, y) = −6e−(x2+y2), (circle) h(x, y) =

−10e−(x2+y2)/4, (triangle) h(x, y) = −6e−(x2+y2)/r(θ)2 with
r(θ) = 1 + 0.5 sin(4θ), tan θ = x/y.

FIG. 3. Numerical simulations of Eq. (1) with yield function
Eq. (3), B0 = 1/100, at times t = 0, 11, 19. The initial

condition was h(x, y) = h0e
−(x2+y2)

2σ2 .

equations in which the knife-edge structure arises as a
particular traveling wave solution with a large basin of
attraction. Because there is only one such solution, the
dynamics are relatively insensitive to the initial condi-
tions and a pre-patterned surface will evolve to uniform
knife-edge ridges with the same slopes and radii of cur-
vature. If one can learn to control the location of the
ridges by solving an inverse problem, one could poten-
tially make a desired target pattern out of the knife-edge
ridges.

FIG. 4. Top: slope hx through a horizontal cross-section
y = 0, at the center of the simulations in Figure 3, at time
t = 11 (left), t = 15.5 (right). The ordinate axis indicates
slopes b0 = 2.3, b∗ = 4.7 that act as dynamical attractors for
the one-dimensional traveling wave equation. Bottom: maxi-
mum slope |hx| as a function of time. An initial transient pe-
riod during which the narrow initial condition adjusts to the
undercompressive shock b0, is followed by collision of shocks
where the maximum slope jumps to b∗.

Our experiments were performed on an ingot of a mag-
nesium AZ91D alloy, with nominal alloying element con-
tent 9 wt.% Al and 1 wt.% Zn; however, the experiments
were confined to the alpha (aluminum-poor) phase of a
two-phase mixture. The surfaces were uniformly irradi-
ated using a FEI dual beam Focused Ion Beam (FIB) -
Scanning Electron Microscope (SEM) delivering 30 keV
Ga+ to the surface in a background pressure of 1.4×10−6

mbar at room temperature. The incident ion beam was
parallel to the surface normal and the ion beam current
was 3 nA. The beam was rastered in a boustrophedonical
scan across a pre-defined region of the sample surface,
during which time the beam would dwell at each discrete
location for 0.1 µs and then move rapidly to an adjacent
location. Separation between adjacent locations was set
to nominally 50% overlap, which in this case meant a
75 nm center-to-center spacing for a 150 nm diameter
beam. The current profile within the beam is believed
to be roughly Gaussian. The irradiation was interrupted
periodically so that the irradiated surfaces could be ob-
served using in-situ SEM from both normal incidence and
tilted 52 degrees.

The surface topography was initially irregular due to
metallographic polishing scratches, and some of these ir-
regularities initiated small holes in the surface (Figure 1,
top.) Most of the holes then decayed to a flat surface,
but certain holes developed into pits that continuously
expanded. What is notable is the pits appear to be iden-
tical: they expand at the same rate, and have sides of the
same slope. We measured the diameters of five different
pits as a function of time from a normal view of the sur-
face. These changed at an average rate of 0.24µm/min,
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with all rates lying within 0.02µm/min of the average,
well within the resolution of our measurement of the di-
ameter (Figure 2, left). We are not able to quantitatively
compare the slopes, but qualitative examination of Fig-
ure 1 middle, bottom suggests they are also very similar.

When two pits collided they created very steep, sharp
ridge-like structures. There are three examples of such
ridges in Figure 1 (bottom). These are notable because
the length scale that is created by the collision is much
smaller than any contained in the initial condition. Qual-
itatively, the steep ridges have similar slopes in each of
the three cases.

We now turn to numerical simulation of these struc-
tures, using a partial differential equation governing
the evolution of the surface height h(x, y, t) on the
macroscale:

ht +R(b) +B0∇ ·
(

1√
1 + b2

∇κ
)

= 0. (1)

This equation is derived from the widely-used Sigmund
theory of sputter erosion2, by expanding the sputter
integral for surfaces whose curvature is much smaller
than the lateral scale over which an ion deposite its ki-
netic energy14,15. Here R(b) = R0

√
1 + b2Y (b) is the

the average velocity of erosion of the surface as a func-
tion of its slope b = |∇h| (or equivalently the angle of
the incoming ion beam), obtained from the yield func-
tion Y (b) by multiplying by a dimensional factor R0

and a geometrical factor. The fourth-order term with
magnitude B0 is a function of the surface curvature
κ = ∇·

(
1√

1+b2
∇h
)

, and models additional smoothing ef-

fects such as Mullins-Herring surface diffusion16,17 or ion-
enhanced viscous flow confined to a thin surface layer18.
We neglect the second-order (curvature) terms that are
often included3,19, as the dynamics we are interested in
occur when these are small.

We have developed an efficient, stable method to solve
Eq. (1) in two dimensions. Solving such higher-order
nonlinear equations in multiple dimensions is a generally
a challenge – explicit methods impose severe restrictions
on the time step ∆t for the scheme to be stable (∆t <
O(∆x)4, where ∆x is the grid spacing20,21), while fully
implicit schemes, that are unconditionally stable, require
solving a difficult nonlinear problem at each time step.
We overcome these difficulties by adding a fourth-order
linear term to the equation that we treat implicitly, while
treating the nonlinear parts of the equation explicitly22.
Specifically, our scheme takes the form

hj+1 +M∆t∆2hj+1 =

hj −∆t
(
R(|∇hj |)−N(|∇hj |) +M∆2hj

)
(2)

where hj(x, y) is the solution at time j∆t, N(b) is the
fourth-order nonlinear term, and M > 0 is a con-
stant that we are free to choose. Analysis for similar
equations23–25 has shown the scheme is stable irrespec-
tive of the grid spacing provided M is large enough. How-
ever, with fixed timestep the accuracy decreases if M is

too large. We found a good balance between stability
and accuracy with M = 1.

To apply (2), the right-hand side is evaluated explic-
itly using centered finite differences for the spatial deriva-
tives, the result is converted to Fourier space using peri-
odic boundary conditions, and hj+1 is found in Fourier
space by solving the linear inversion problem.

We perform simulations using a yield function of the
Yamamura form26

Y (θ)
Y (0)

= (cos θopt)−f exp{−Σ((cos θopt)−1 − 1)}, (3)

where the parameters are f = 2.36, θopt = 69.5, and
Σ = f cos θopt. Yamamura has shown that a great many
experimentally measured yield functions can be repre-
sented in this form, by fitting for f , θopt. Our theory (to
be described) shows that the qualitative features of the
dynamics are robust to changes in these parameters so
we chose these for numerical convenience; we do not at-
tempt quantitative comparison as the yield function for
the experiments is unknown.

We ran two kinds of simulations. First we looked at the
formation of pits, by initiating the surface with individ-
ual small holes. For small perturbations the pits expand
slowly and decay without creating smaller length scales.
However, for large enough perturbations, the pits evolve
to a circular crater whose sides have a uniform, steep
slope, that expands outwards with a constant velocity.
The slopes of the sides, and the speed of propagation,
are fixed numbers, independent of the form of the initial
perturbation. Figure 2 (right) illustrates the constant
speed for three different initial conditions.

Next, to investigate how pits collide, we initiated the
surface with two nearby pits. These expand, and when
they collide, they form a ridge whose sides are very steep
– much steeper than the sides of the crater. The slope
of the sides is always the same, regardless of the initial
conditions. Figure 3 shows the surface evolution for one
choice of initial condition, and Figure 4 (bottom) shows
the maximum slope as a function of time for this simu-
lation. The plateau from time 13–20 corresponds to the
slope of the ridge, and is the same height for a broad
class of initial conditions.

The simulations are striking because of their remark-
able resemblance to the experiments. Two notable fea-
tures occur in both: (1) Craters expand with a constant
slope and velocity; (2) When craters collide, they create a
very sharp knife-edge-like ridge, with steeper slopes than
those originally on the surface. In both cases the slopes
are universal, independent of the initial condition.

These features were predicted by a recently-developed
theory13,14, as the consequence of the unusual type of
traveling wave solutions that occur in the governing equa-
tions (1). When a pit is large enough, the crater rim is
locally nearly straight, and can be well approximated by
a traveling wave that is invariant in one horizontal di-
rection. Therefore we look for traveling wave solutions
to the one-dimensional equation. As shown in Holmes-
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Cerfon et. al13, the slope b = hx can propagate as a
traveling wave provided the slopes in the far-field are
held constant, so we look for solutions b = S(x− ct) to

c(S−br)−(R(S)−R(br)) = B0

(
1√

1 + S2

(
S′

(1 + S2)3/2

)′)′
,

(4)
with boundary conditions S(+∞) = br, S(−∞) = −bl,
S′(±∞) = 0. This equation is obtained from (1) by
differentiating once, and then integrating from +∞ to
x − ct, while the speed c is determined by conservation
of mass to be c = R(br)−R(bl)

br−bl
. Only certain pairs (bl, br)

yield a solution, and this fact is crucial for determining
the dynamics.

Ahead of the crater rim the surface is flat, so we look
for solutions with boundary condition br = 0. The the-
ory shows that there are solutions (bl, 0) for all bl less
than a critical slope bc0 depending on the yield function.
Above this critical slope there is exactly one boundary
value yielding a solution: bl = b0, where b0 is a number
that again depends on the yield function. This solution
is isolated and serves as an attractor for the dynamics in
the following sense: if a one-dimensional surface is pat-
terned initially to contain slopes greater than bc0, then
these slopes will evolve spontaneously to the traveling
wave connecting b0 to 0 as the sloped region propagates
into the flat far-field13.

This explains the first observation. When the ini-
tial perturbation is large enough, it evolves to a crater
whose rim propagates outwards with speed c correspond-
ing to the discrete traveling wave (b0, 0), and whose sides
therefore have slope b0. Figure 4 (left) shows the slope
b through a horizontal cross-section of the simulated
craters just before they collide, which clearly shows the
slope of the sides is a constant, uniform value b0.

What happens when pits collide? The simulations sug-
gest a symmetry so we look for solutions with bound-
ary conditions (bl,−bl). Again there is a threshhold de-
termining the behaviour: when bl < bc∗ for some yield-
function-dependent number bc∗, there is always a solution,
but when bl > bc∗, there is exactly one solution: bl = b∗.
This solution corresponds to a ridge with very steep sides
and a small radius of curvature at the tip. Simulations13
showed that this solution will evolve from two nearby re-
gions with slopes of opposite signs, provided both have
(not necessarily equal) magnitudes > bc∗. Since b0 > bc∗,
we predict that colliding pits will evolve to the knife-edge
ridge.

Indeed, our numerical simulations confirm this – Fig-
ure 4 (right) plots the slope b through a cross-section in
the center of the colliding pits. The step-like appearance
captures both of these traveling waves: the first step at
b0 is the slope of the original crater sides, and the second
step at b∗ is the knife-edge ridge. At later times (not
shown) there is only one step, at b∗, as the crater sides
have entirely evolved to the knife-edge.

For the yield function in our simulations the numerical
values are bc0 = 1.26, b0 = 2.3, bc∗ = 1.28, b∗ = 4.7 – but

the values of the dynamical attractors increase with θopt,
and for certain materials we predict ridges with slopes of
b∗ = 30 or more13. Therefore we can create very sharp
features by choosing an energy level or material that gives
the desired values.

We have shown that the sharp, small-scale structures
observed in our experiments and numerical simulations
can be explained through the set of traveling wave solu-
tions to the governing macroscopic equations. It is no-
table that only the macroscopic mechanisms of erosion
and smoothing are required to instigate the observed fea-
tures. Of course, additional small-scale physics may help
to explain some of the qualitative differences between the
experiments and simulations, such as the curvatures of
the pit bottoms. Indeed, we hypothesize that the experi-
mental geometry may be significantly influenced here by
multiple scattering effects, where ions incident on the pit
wall and forward-scattered, as well as forward-sputtered
atoms from the pit wall, may contribute to enhanced ero-
sion along the perimeter of the pit bottom.

The theory predicts that two traveling wave solutions,
both with steep slopes, control the dynamics over a wide
range of initial conditions. What is potentially useful
about these solutions is that they arise spontaneously
from smaller slopes – therefore we don’t need to start
with steep, small-scale structures in order to create them;
these are created by the dynamics. This suggests a po-
tential self-organizing principle for fabricating small-scale
features on a surface, by pre-patterning the surface on
the macroscale so that it evolves to a structure built of
small-scale ridges. One is then interested in the inverse
problem: to find an easily-achievable initial patterning of
the surface, so that it evolves under uniform irradiation
to a target small-scale pattern.

ACKNOWLEDGMENTS

The research of W.Z. was supported by grant RG79/98
provided by Nanyang Technological University. The re-
search of M.J.A. was supported by DOE grant DE-FG-
02-06ER46335. MPB, MHC were funded by the National
Science Foundation through the Harvard Materials Re-
search Science and Engineering Center (DMR-0820484),
the Division of Mathematical Sciences (DMS-0907985)
and the Kavli Institute for Bionano Science and Techol-
ogy at Harvard University. AB, MHC were supported
by NSF grant DMS-1048840 and UC Lab Fees Research
Grant 09-LR-04-116741-BERA

1P. Sigmund, Phys. Rev. 184, 383 (1969)
2P. Sigmund, J. Mater. Sci. 8, 1545 (1973)
3R. M. Bradley and J. M. E. Harper, J. Vac. Sci. Technol. A 6,
2390 (1988)

4W. L. Chan and Chason, J. Appl. Phys. 101, 121301 (2007)
5M. J. Vasile, Z. Niu, R. Nassar, W. Zhang, and S. Liu, J. Vac.
Sci. Technol. B 15, 2350 (1997)

6D. Adams, M. Vasile, T. Mayer, and V. Hodges, J. Vac. Sci.
Technol. B 21, 2334 (2003)



5

7J. Li, D. Stein, C. McMullan, D. Branton, M. J. Aziz, and J. A.
Golovchenko, Nature 412, 166 (2001)

8D. Stein, J. Li, and J. A. Golovchenko, Phys. Rev. Lett. 89,
276106 (2002)

9S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt,
and H. L. Hartnagel, Science 285, 1551 (1999)

10F. Frost, A. Schindler, and F. Bigl, Phys. Rev. Lett. 85, 4116
(2000)

11A. Cuenat, H. B. George, K.-C. Chang, J. Blakely, and M. J.
Aziz, Adv. Mater. 17, 2845 (2005)

12G. Whitesides and B. Grzybowski, Science 295, 2418 (2002)
13M. Holmes-Cerfon, M. Aziz, and M. P. Brenner, Phy. Rev. B 85

(2012)
14H. Chen, O. Urquidez, S. Ichim, L. Rodriguez, M. Brenner, and

M. Aziz, Science 310, 294 (2005)
15P. Sigmund, ed., Matematisk-Fysiske Meddelelser / udg. af Det

Kongelige Danske Videnskabernes Selskab, Ion’06 Proceedings,
Vol. 52 (2006)

16W. Mullins, J. Appl. Phys. 30 (1959)
17C. Herring, J. Appl. Phys. 21 (1950)
18C. Umbach, R. Headrick, and K. Chang, Phys. Rev. Lett. 87

(2001)
19B. Davidovitch, M. J. Aziz, and M. P. Brenner, J. Phys.: Con-

dens. Matter 21 (2009)
20J. Strikwerda, Finite difference schemes and partial differential

equations, 2nd ed. (SIAM, 2004)
21A. Bertozzi, M. Brenner, T. Dupont, and L. Kadanoff, in Trends

and Perspectives in Applied Mathematics, Vol. 100, edited by
L. Sirovich (Springer-Verlag, 1993) pp. 155–208

22B. Vollmary-Lee and A. Rutenberg, Phys. Rev. E 68 (2003)
23W. Gao and A. Bertozzi, SIAM J. Imag. Sci. 4, 597 (2011)
24C.-B. Schonlieb and A. Bertozzi, Comm. Math. Sci. 9, 413 (2011)
25A. Bertozzi, N. Ju, and H. Lu, Discrete Contin. Dyn. S. 29, 1367

(2011)
26Y. Yamamura, Y. Itikawa, and N. Itoh, “Angular dependence of

sputtering yields of monatomic solids,” Report No. IPPJ-AM-26
(1983)


