
A primal-dual fixed point algorithm for convex separable

minimization with applications to image restoration

Peijun Chen1,2, Jianguo Huang1,3, Xiaoqun Zhang1,4

1
Department of Mathematics, Shanghai Jiao Tong University,

Shanghai 200240, China

2
Department of Mathematics, Taiyuan University of Science and Technology,

Taiyuan 030024, China

3
Division of Computational Science, E-Institute of Shanghai Universities,

Shanghai Normal University, China

4
Institute of Natural Sciences, Shanghai Jiao Tong University,

Shanghai 200240, China

Email: chenpeijun@sjtu.edu.cn, jghuang@sjtu.edu.cn and xqzhang@sjtu.edu.cn

Abstract

Recently, minimization of a sum of two convex functions has received considerable interests in

variational image restoration model. In this paper, we propose a general algorithmic framework for

solving separable convex minimization problem from the point of view of fixed point algorithms based

on proximity operators [23]. Motivated from proximal forward-backward splitting (PFBS) proposed

in [13] and fixed point algorithms based on the proximity operator (FP2O) for image denoising [21],

we design a primal-dual fixed point algorithm based on proximity operator (PDFP2Oκ for κ ∈ [0, 1))

and obtain a scheme with close form for each iteration. Using the firmly nonexpansive properties

of the proximity operator and with the help of a special norm over a product space, we achieve

the convergence of the proposed PDFP2Oκ algorithm. Moreover, under some stronger assumptions,

we can prove the global linear convergence of the proposed algorithm. We also give the connection

of the proposed algorithm with other existing first order methods. Finally, we illustrate the effi-

ciency of PDFP2Oκ through some numerical examples on image supperresolution and computerized

tomographic reconstruction.

Keywords: proximity operator, fixed point algorithm, primal-dual form, image restoration.

1 Introduction

This paper is devoted to designing and discussing an efficient algorithmic framework for minimizing

the sum of two proper lower semicontinuous convex functions, i.e.

x∗ = arg min
x∈Rn

(f1 ◦B)(x) + f2(x), (1.1)

where f1 ∈ Γ0(R
m), f2 ∈ Γ0(R

n) and f2 is differentiable on R
n with a 1/β-Lipschitz continuous gradient

for some β ∈ (0,+∞) and B : Rn → R
m a linear transform. Here and in what follows, for a real Hilbert
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space X , Γ0(X ) denotes the collection of all proper lower semicontinuous convex functions from X to

(−∞,+∞]. Despite its simplicity, many problems in image processing can be formulated in the form

of (1.1). For instance, the following variational sparse recovery models are often considered in image

restoration and medical image reconstruction:

x∗ = arg min
x∈Rn

µ‖Bx‖1 +
1

2
‖Ax− b‖22, (1.2)

where ‖ · ‖2 denotes the usual Euclidean norm for a vector, A is a p × n matrix representing a linear

transform, b ∈ R
p and µ > 0 is the regularization parameter. The term‖Bx‖1 is the usual ℓ1 based

regularization in order to promote sparsity under the transform B. For example, for the well-known

Rudin-Osher-Fatemi model (ROF) [30] ‖Bx‖1 represents the total variation seminorm which aims to

recover piecewise constant images, with B a 2n × n discrete differential matrix (cf. [16, 21]). More

precisely, ‖Bx‖1 and ‖Bx‖1,2 are for anisotropic total-variation and isotropic total-variation, respectively,

and here we simply write them as ‖Bx‖1. The problem (1.2) can be expressed in the form of (1.1) by

setting f1 = µ‖ · ‖1 and f2(x) = 1
2‖Ax − b‖22. One of the main difficulty in solving it is that f1 is

nondifferentiable. The case often occurs in many problems we are interested.

Another general problem often considered in the literature takes the following form:

x∗ = arg min
x∈X

f(x) + h(x), (1.3)

where f, h ∈ Γ0(X ) and h is differentiable on X with a 1/β-Lipschitz continuous gradient for some

β ∈ (0,+∞). The problem (1.1) that we are interested in this paper can be viewed as a special case of

problem (1.3) for X = R
n and f = f1 ◦ B, h = f2. On the other hand, we can also consider that the

problem (1.3) is a special case of problem (1.1) for X = R
n, f2 = h, f1 = f and B = I, where I denotes

the usual identity operator. For problem (1.3), Combettes and Wajs proposed in [13] a proximal forward

backward splitting (PFBS) algorithm, i.e.

xk+1 = proxγf(xk − γ∇h(xk)), (1.4)

where 0 < γ < 2β is a stepsize parameter, and the operator proxf is defined by

proxf : X → X
x 7→ arg min

y∈X
f(y) + 1

2‖x− y‖22,

called the proximity operator of f . Note that this type of splitting method was originally studied

in [20, 28] for solving partial differential equations, and the notion of proximity operators was first

introduced by Moreau in [23] as a generalization of projection operators. The iteration (1.4) consists

of two sequential steps. First one performs a forward (explicit) step involving the evaluation of the

gradient of h; then one performs a backward (implicit) step involving f . This numerical scheme is very

simple and efficient when the proximity operator used in the second step can be carried out efficiently.

For example when f = ‖ · ‖1 for sparse regularization, the proximity operator proxγf(x) can be written

as the famous component-wise soft-thresholding (also known as a shrinkage) operation. However, the

proximity operators for the general form f = f1◦B as in (1.1) do not have an explicit expression, leading

to numerical solution of a difficult subproblem. In fact, the subproblem of (1.2) is proxµ‖·‖1◦B(b) and

often formulated as the ROF denoising problem:

x∗ = arg min
x∈Rn

µ‖Bx‖1 +
1

2
‖x− b‖22,

where b ∈ R
n denotes a corrupted image to be denoised.
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In recent years, many splitting methods have been designed to solve the last subproblem in order to

take advantage of the efficiency of soft-thresholding operator. For example, Goldstein-Osher proposed

in [18] a splitting algorithm based on Bregman iteration, namely split Bregman, to implement the

action of proxf1◦B, in particular for total variation minimization. This algorithm has shown to be very

efficient and useful for a large class of convex separable programming problems. Theoretically, it is

shown to be equivalent to Douglas-Rachford splitting algorithm (DRS, see [31, 14]) and alternating

direction of multiplier method (ADMM, see [15, 5]), and the convergence was then analyzed based on

such equivalence. The split Bregman proposed in [18] is also designed to solve the convex separable

problem (1.1). In particular, for the variational model (1.2), the subproblem involves solving a quadratic

minimization, which sometimes can be time consuming. To overcome this, a primal-dual inexact split

Uzawa methods was proposed in [37] to maximally decouple the subproblems so that each iteration

step is precise and explicit. In [16, 9], more theoretical analysis on the variants of the primal-dual type

method and the connection with existing methods were examined to bridge the gap between different

types of methods. Also, the convergence of ADMM was further analyzed in [19] based on proximal point

algorithm (PPA) formulation.

In this paper, we will follow a different point of view. In [21], Micchelli-Shen-Xu designed an

algorithm called (FP2O) to solve proxf1◦B(x). We aim to extend FP2O to solve the general problem

(1.1) with maximally decoupled iteration scheme. One obvious advantage of the proposed scheme is very

easy for parallel implementation. Furthermore, we will show that the proposed algorithm is convergent

in general setting. Under some assumptions of the convex function f2 and the linear transform B, we

can further prove the linear convergence rate of the method under the framework of fixed point iteration.

Note that most of the existing works based on ADMM have shown a sub-linear convergence rate O(1/k)

on the objective function and O(1/k2) on the accelerated version, where k is the iteration number.

Recently in [19], the ergodic and non-ergodic convergence on the difference of two sequential primal-dual

sequences were analyzed. In this paper, we will prove the convergence rate of the iterations directly from

the point of view of fixed point theory under some common assumptions. During the preparation of this

paper, we notice that Yin and Peng [35] also considered the global linear convergence of the ADMM

and its variants based on similar assumptions. Furthermore, we will reformulate the fixed point type of

methods and show the connections with some existing first order methods for (1.1) and (1.2) for better

understanding.

The rest of the paper is organized as follows. In Section 2, we recall the fixed point algorithm FP2O

and some related works and then deduce the proposed PDFP2O algorithm and its extension PDFP2Oκ

from our intuitions. In Section 3, we first deduce PDFP2Oκ again in the setting of fixed point iteration;

we then establish its convergence under general setting and the convergence rate under some stronger

assumptions on f2 and B. In Section 4, we give the equivalent form of PDFP2O, the relationships and

differences with other first order algorithms. In the final section, we will show the numerical performance

and efficiency of PDFP2Oκ through image superresolution and CT image reconstruction examples.

2 Fixed point algorithms

Similar to the fixed point algorithm on the dual for ROF denoising model proposed by Chambolle [8],

Micchelli et al. proposed an algorithm called (FP2O) in [21] to solve the proximity operator proxf1◦B(b)

for b ∈ R
n, especially for total variation based image denoising. Let λmax(BBT ) be the largest eigenvalue

of BBT . For 0 < λ < 2/λmax(BBT ), we define the operator

H(v) = (I − prox f1
λ

)(Bb + (I − λBBT )v) for all v ∈ R
m, (2.1)
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then FP2O algorithm is described as Algorithm 1, where Hκ is the κ-averaged operator of H , i.e.

Hκ = κI + (1− κ)H for κ ∈ (0, 1) , see definition 3.3 in the next section.

Algorithm 1 Fixed point algorithm based on proximity operator, FP2O [21].

Step 1: Set v0 ∈ R
m, 0 < λ < 2/λmax(BBT ), κ ∈ (0, 1).

Step 2: Calculate v∗, which is the fixed point of H , with iteration vk+1 = Hκ(vk).

Step 3: proxf1◦B(b) = b− λBT v∗.

The key technique to obtain FP2O scheme relies on the relation of the subdifferential of a convex

function and its proximity operator, as described in the result (3.1). An advantage of FP2O is that its

iteration does not require subproblem solving and the convergence is analyzed in the classical framework

of fixed point iteration. This algorithm has been extended in [1, 10] to solve

x∗ = arg min
x∈Rn

(f1 ◦B)(x) +
1

2
xTQx− bTx,

where Q ∈ Mn, with Mn the collection of all symmetric positive definite n× n matrices, b ∈ R
n. Define

H̃(v) = (I − proxf1
λ

)(BQ−1b+ (I − λBQ−1BT )v) for all v ∈ R
m.

Then, the corresponding algorithm is given below, called Algorithm 2, which can be viewed as a

fixed point algorithm based on inverse matrix and proximity operator or FP2O based on inverse matrix

(IFP2O). Here the matrix Q is assumed to be invertible and the inverse can be easily calculated, which is

unfortunately not the case in most of applications in imaging science. Moreover, there is no theoretical

guarantee of convergence if the linear system is only solved approximately.

Algorithm 2 FP2O based on inverse matrix, IFP2O [1].

Step 1: Set v0 ∈ R
m and 0 < λ < 2/λmax(BQ−1BT ), κ ∈ (0, 1).

Step 2: Calculate ṽ∗, which is the fixed point of H̃ , with iteration ṽk+1 = H̃κ(ṽk).

Step 3: x∗ = Q−1(b − λBT ṽ∗).

Further, the authors in [1] combined PFBS and FP2O for solving problem (1.1), for which we call

proximal forward-backward splitting based on FP2O (PFBS FP2O), see Algorithm 3. The acceleration

combing with Nesterov’ method [24, 32, 33] was also considered in [1].

Algorithm 3 Proximal forward-backward splitting based on FP2O, PFBS FP2O [1].

Step 1: Set x0 ∈ R
n, 0 < γ < 2β.

Step 2: for k = 0, 1, 2, · · ·
Calculate xk+1 = proxγf1◦B(xk − γ∇f2(xk)) using FP2O (see Algorithm 1)

end for

At step k of Algorithm 3, after one forward iteration xk+1/2 = xk − γ∇f2(xk), we need to solve

proxγf1◦B(xk+1/2). So Algorithm 3 involves inner and outer iterations, and it is often problematic to

set the appropriate inner stopping conditions to balance computational time and precision. We intend

to propose an algorithm which does not involve any inner iterations. Instead of using many number of

inner fixed point iterations for solving proxf1◦B(x), we can use only one inner fixed point iteration. For

this, define

Hk+1(v) = (I − proxγ

λ
f1)(Bxk+1/2 + (I − λBBT )v) for all v ∈ R

m.

4



Suppose κ = 0 in FP2O. A very natural idea is to take the numerical solution vk for Hk as the initial

value, and only do one iteration for solving the fixed point of Hk+1, then we can get the following

iteration scheme:

(PDFP2O)

{
vk+1 = (I − proxγ

λ
f1)(B(xk − γ∇f2(xk)) + (I − λBBT )vk), (2.2a)

xk+1 = xk − γ∇f2(xk)− λBT vk+1, (2.2b)

which produces our proposed method Algorithm 4, described below. This algorithm can also be

deduced from the fixed point formulation, which we will give the detail in the next section. On the other

hand, since x is the primal variable related to (1.1), it is very natural to ask what role the variable v

plays in our algorithm. After a thorough study, we find out as given in Section 4.1 that v is actually the

dual variable of the primal-dual form related to (1.1). Based on these observations, we call our method a

primal-dual fixed point algorithm based on proximity operator, and abbreviate it as PDFP2O inheriting

the notion of “FP2O”. If B = I, λ = 1, then form (2.2) is equivalent to form (1.4). So PFPS can be

seen as a special case of PDFP2O. Also, when f2(x) =
1
2‖x− b‖22 and γ = 1, then PDFP2O reduces to

FP2O for solving proxf1◦B(b) with κ = 0. For general B and f2, each step of the proposed algorithm is

explicit when prox γ
λ
f1 is easy to compute. Note that the technique of approximating the subproblem by

only one iteration is also proposed in a primal-dual inexact Uzawa framework in [37]. We will show the

connection to this algorithm and other ones in Section 4.

Algorithm 4 Primal-dual fixed points algorithm based on proximity operator, PDFP2O.

Step 1: Set x0 ∈ R
n, v0 ∈ R

m, 0 < λ ≤ 1/λmax(BBT ), 0 < γ < 2β.

Step 2: for k = 0, 1, 2, · · ·
xk+1/2 = xk − γ∇f2(xk),

vk+1 = (I − proxγ

λ
f1)(Bxk+1/2 + (I − λBBT )vk),

xk+1 = xk+1/2 − λBT vk+1.

end for

Borrowing the fixed point formulation of PDFP2O, we can introduce a relaxation parameter κ ∈
[0, 1) to get Algorithm 5, which is exactly a Picard method with parameters. If κ = 0, PDFP2Oκ

reduces to PDFP2O. Our theoretical analysis for PDFP2Oκ given in the next section is mainly based on

this fixed point setting.

Algorithm 5 PDFP2Oκ.

Step 1: Set x0 ∈ R
n, v0 ∈ R

m, 0 < λ ≤ 1/λmax(BBT ), 0 < γ < 2β, κ ∈ [0, 1).

Step 2: for k = 0, 1, 2, · · ·
xk+1/2 = xk − γ∇f2(xk),

ṽk+1 = Hk+1(vk),

x̃k+1 = xk+1/2 − λBT ṽk+1,

vk+1 = κvk + (1 − κ)ṽk+1,

xk+1 = κxk + (1− κ)x̃k+1.

end for

5



3 Convergence analysis

3.1 General convergence

First of all, let us mention some related definitions and lemmas for later requirements. From now on,

we use X to denote a finite-dimensional real Hilbert space. Moreover, we always assume that problem

(1.1) has at least one solution. As shown in [13], if the objective function (f1 ◦B)(x) + f2(x) is coercive,

i.e.

lim
‖x‖→+∞

((f1 ◦B)(x) + f2(x)) = +∞,

then the existence of solution can be ensured for (1.1).

Definition 3.1 (Subdifferential [29]) Let f be a function in Γ0(X ). The subdifferential of f is the

set-valued operator ∂f : X → 2X , the value of which at x ∈ X is

∂f(x) = {v ∈ X | 〈v, y − x〉+ f(x) ≤ f(y) for all y ∈ X},

where 〈·, ·〉 denotes the inner-product over X .

Definition 3.2 (Nonexpansive operators and firmly nonexpansive operators [29]) An operator

T : X → X is nonexpansive if and only if it satisfies:

‖Tx− Ty‖2 ≤ ‖x− y‖2 for all (x, y) ∈ X 2.

T is firmly nonexpansive if and only if it satisfies one of the following equivalent conditions:

(i) ‖Tx− Ty‖22 ≤ 〈Tx− Ty, x− y〉 for all (x, y) ∈ X 2.

(ii) ‖Tx− Ty‖22 ≤ ‖x− y‖22 − ‖(I − T )x− (I − T )y‖22 for all (x, y) ∈ X 2.

It is easy to show from the above definitions that a firmly nonexpansive operator T is nonexpansive.

Definition 3.3 (Picard sequence, κ-averaged operator [25]) Let T : X → X be an operator. For

a given initial point u0 ∈ X , the Picard sequence of the operator T is defined by uk+1 = T (uk), for k ∈ N.

For a real number κ ∈ (0, 1), the κ-averaged operator Tκ of T is defined by Tκ = κI +(1− κ)T . We also

write T0 = T .

Lemma 3.1 Suppose f ∈ Γ0(R
m) and x ∈ R

m. Then there holds

y ∈ ∂f(x) ⇔ x = proxf (x+ y). (3.1)

Furthermore, if f has 1/β-Lipschitz continuous gradient, then

〈∇f(x)−∇f(y), x− y〉 ≥ β‖∇f(x)−∇f(y)‖2 for all (x, y) ∈ X 2. (3.2)

Proof. The first result is nothing but Proposition 2.6 of [21]. If f has 1/β-Lipschitz continuous

gradient, we have from [13] that β∇f is firmly nonexpansive, which implies (3.2) readily.

Lemma 3.2 (Lemma 2.4 of [13]) Let f be a function in Γ0(R
m). Then proxf and I−proxf are both

firmly nonexpansive operators.

Lemma 3.3 (Opial κ-averaged theorem, Theorem 3 of [25]) If S is a closed and convex set in X
and T : S → S is a nonexpansive mapping having at least one fixed point, then for κ ∈ (0, 1), Tκ is

nonexpansive, maps S to itself, and has the same set of the fixed points as T . Furthermore, for any

u0 ∈ S and κ ∈ (0, 1), the Picard sequence of Tκ converges to a fixed point of T .
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Now, we are ready to get a fixed point formulation for the solution of problem (1.1) and discuss the

convergence of PDFP2Oκ. To this end, for any two positive numbers λ and γ, define T1 : Rm×R
n → R

m

as

T1(v, x) = (I − proxγ
λ
f1)(B(x− γ∇f2(x)) + (I − λBBT )v) (3.3)

and T2 : Rm × R
n → R

n as

T2(v, x) = x− γ∇f2(x) − λBT ◦ T1. (3.4)

Denote T : Rm × R
n → R

m × R
n as

T (v, x) = (T1(v, x), T2(v, x)) . (3.5)

Theorem 3.1 Let λ and γ be two positive numbers. Suppose that x∗ is a solution of (1.1). Then there

exists v∗ ∈ R
m such that

{
v∗ = T1(v

∗, x∗),

x∗ = T2(v
∗, x∗).

In other words, u∗ = (v∗, x∗) is a fixed point of T . Conversely, if u∗ ∈ R
m × R

n is a fixed point of T ,

with u∗ = (v∗, x∗), v∗ ∈ R
m, x∗ ∈ R

n, then x∗ is a solution of (1.1).

Proof. By the first order optimality condition of the problem (1.1), we have

x∗ = arg min
x∈Rn

(f1 ◦B)(x) + f2(x)

⇔0 ∈ −∇f2(x
∗)− ∂(f1 ◦B)(x∗)

⇔0 ∈ −γ∇f2(x
∗)− γ∂(f1 ◦B)(x∗)

⇔x∗ ∈ x∗ − γ∇f2(x
∗)− λ(BT ◦ γ

λ
∂f1 ◦B)(x∗).

Let

v∗ ∈ (
γ

λ
∂f1 ◦B)(x∗) = ∂(

γ

λ
f1)(Bx∗). (3.7)

Then

x∗ = x∗ − γ∇f2(x
∗)− λBT v∗. (3.8)

Moreover, it follows from result (3.1) that (3.7) is equivalent to

Bx∗ = proxγ
λ
f1(Bx∗ + v∗)

⇔(Bx∗ + v∗)− v∗ = proxγ

λ
f1(Bx∗ + v∗)

⇔v∗ = (I − proxγ
λ
f1)(Bx∗ + v∗). (3.9)

Inserting (3.8) into (3.9) gives

v∗ = (I − proxγ
λ
f1)(B(x∗ − γ∇f2(x

∗)) + (I − λBBT )v∗).

This shows v∗ = T1(v
∗, x∗). Next, replacing v∗ in (3.8) by T1(v

∗, x∗), we readily have x∗ = T2(v
∗, x∗).

Therefore, for u∗ = (v∗, x∗), u∗ = T (u∗).

On the other hand, if u∗ = T (u∗), we can derive that x∗ satisfies the first order optimality condition

of (1.1). Therefore we conclude that x∗ is a minimizer of (1.1).

In the following, we will show the algorithm PDFP2Oκ is a Picard method related to the operator

Tκ.
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Theorem 3.2 Suppose κ ∈ [0, 1). Set Tκ = κI + (1 − κ)T . Then the Picard sequence {uk} of Tκ is

exactly the one obtained by algorithm PDFP2Oκ.

Proof. According to the definitions in (3.3)-(3.5), the component form of uk+1 = T (uk) can be

expressed as

{
vk+1 = T1(vk, xk) = (I − proxγ

λ
f1)(B(xk − γ∇f2(xk)) + (I − λBBT )vk)

xk+1 = T2(vk, xk) = xk − γ∇f2(xk)− λBT ◦ T1(vk, xk) = xk − γ∇f2(xk)− λBT vk+1.

Therefore, the iteration uk+1 = T (uk) is equivalent to (2.2). Employing the similar argument we can get

the conclusion for general Tκ with κ ∈ [0, 1).

Remark 3.1 From the last result, we find out that algorithm PDFP2Oκ can also be obtained in the

setting of fixed point iteration immediately.

For the convergence analysis for PDFP2Oκ, we will first prove a key inequality for general cases (cf.

equation (3.14)). Denote

g(x) = x− γ∇f2(x) for all x ∈ R
n, (3.10)

M = I − λBBT . (3.11)

When 0 < λ ≤ 1/λmax(BBT ), M is a symmetric positive semi-definite matrix, so we can define semi-

norm:

‖v‖M =
√
〈v,Mv〉 for all v ∈ R

m. (3.12)

For an element u = (v, x) ∈ R
m × R

n, with v ∈ R
m and x ∈ R

n, let

‖u‖λ =
√
‖x‖22 + λ‖v‖22. (3.13)

We can easily see that ‖ · ‖λ is a norm over the produce space R
m × R

n whenever λ > 0.

Lemma 3.4 For any two elements u1 = (v1, x1), u2 = (v2, x2) in R
m × R

n, there holds

‖T (u1)− T (u2)‖2λ ≤‖u1 − u2‖2λ − γ(2β − γ)‖∇f2(x1)−∇f2(x2)‖22
− ‖λBT (v1 − v2)‖22 − λ‖(T1(u1)− T1(u2))− (v1 − v2)‖2M . (3.14)

Proof. By Lemma 3.2, I − proxγ
λ
f1 is a firmly nonexpensive operator. This together with (3.3),

(3.10) and (3.11) yields

‖T1(u1)− T1(u2)‖22
≤〈T1(u1)− T1(u2), B(g(x1)− g(x2)) +M(v1 − v2)〉
=〈T1(u1)− T1(u2), B(g(x1)− g(x2))〉+ 〈T1(u1)− T1(u2),M(v1 − v2)〉. (3.15)

It follows from (3.4), (3.10), (3.11) and (3.12) that

‖T2(u1)− T2(u2)‖22
=‖(g(x1)− g(x2))− λBT ◦ (T1(u1)− T1(u2))‖22
=‖g(x1)− g(x2)‖22 − 2λ〈BT ◦ (T1(u1)− T1(u2)), g(x1)− g(x2)〉
+ ‖λBT ◦ (T1(u1)− T1(u2))‖22

=‖g(x1)− g(x2)‖22 − 2λ〈T1(u1)− T1(u2), B(g(x1)− g(x2))〉
− λ‖T1(u1)− T1(u2)‖2M + λ‖T1(u1)− T1(u2)‖22. (3.16)
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Observing the definitions in (3.5) and (3.10)-(3.13), we have by (3.15)-(3.16) that

‖T (u1)− T (u2)‖2λ
=‖T2(u1)− T2(u2)‖22 + λ‖T1(u1)− T1(u2)‖22
=‖g(x1)− g(x2)‖22 − 2λ〈T1(u1)− T1(u2), B(g(x1)− g(x2))〉
− λ‖T1(u1)− T1(u2)‖2M + 2λ‖T1(u1)− T1(u2)‖22

≤‖g(x1)− g(x2)‖22 − λ‖T1(u1)− T1(u2)‖2M + 2λ〈T1(u1)− T1(u2),M(v1 − v2)〉
=‖g(x1)− g(x2)‖22 + λ‖v1 − v2‖2M − λ‖(T1(u1)− T1(u2))− (v1 − v2)‖2M . (3.17)

Using the definition in (3.10) and estimate (3.2), we know

‖g(x1)− g(x2)‖22
=‖x1 − x2‖22 − 2γ〈∇f2(x1)−∇f2(x2), x1 − x2〉+ γ2‖∇f2(x1)−∇f2(x2)‖22
≤‖x1 − x2‖22 − γ(2β − γ)‖∇f2(x1)−∇f2(x2)‖22. (3.18)

By the definitions in (3.11) and (3.12),

λ‖v1 − v2‖2M = λ‖v1 − v2‖22 − ‖λBT (v1 − v2)‖22. (3.19)

Recalling the definition in (3.13), we easily know (3.14) is a direct consequence of (3.17)-(3.19).

From Lemma 3.4, we can derive the following result.

Corollary 3.3 If 0 < γ < 2β, 0 < λ ≤ 1/λmax(BBT ), then T is nonexpensive under the norm of ‖ · ‖λ.

Since T is nonexpensive, we are able to show the convergency of PDFP2Oκ for κ ∈ (0, 1), in view

of Lemma 3.3.

Theorem 3.4 Suppose 0 < γ < 2β, 0 < λ ≤ 1/λmax(BBT ) and κ ∈ (0, 1). Let uk = (vk, xk) be a

sequence generated by PDFP2Oκ. Then {uk} converges to a fixed point of T and {xk} converges to a

solution of problem (1.1).

Proof. In view of Theorem 3.2, we know uk+1 = Tκ(uk), so {uk} is the Picard sequence of Tκ. By

assumption, problem (1.1) has a solution, and hence operator T has a fixed point from Theorem 3.1.

According to Corollary 3.3, T is nonexpensive. Therefore, by letting S = R
m, we find from Lemma 3.3

that {uk} converges to a fixed point of T for κ ∈ (0, 1). With this result in mind, {xk} converges to a

solution of problem (1.1) from Theorem 3.1.

Now, let us proceed with the convergence analysis of PDFP2O using some novel technique.

Theorem 3.5 Suppose 0 < γ < 2β and 0 < λ ≤ 1/λmax(BBT ). Let uk = (vk, xk) be the sequence

generated by PDFP2O. Then the sequence {uk} converges to a fixed point of T, and the sequence {xk}
converges to a solution of problem (1.1).

Proof. Let u∗ = (v∗, x∗) ∈ R
m × R

n be a fixed point of T . Using Lemma 3.4, we have

‖uk+1 − u∗‖2λ ≤‖uk − u∗‖2λ − γ(2β − γ)‖∇f2(xk)−∇f2(x
∗)‖22

− ‖λBT (vk − v∗)‖22 − λ‖vk+1 − vk‖2M . (3.20)

Summing (3.20) over k from 0 to +∞ gives

+∞∑

k=1

{
γ(2β − γ)‖∇f2(xk)−∇f2(x

∗)‖22 + ‖λBT (vk − v∗)‖22 + λ‖vk+1 − vk‖2M
}

≤ ‖u1 − u∗‖2λ.
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So

lim
k→+∞

{
γ(2β − γ)‖∇f2(xk)−∇f2(x

∗)‖22 + ‖λBT (vk − v∗)‖22 + λ‖vk+1 − vk‖2M
}

= 0,

which together with 0 < γ < 2β implies

lim
k→+∞

‖∇f2(xk)−∇f2(x
∗)‖2 = 0, (3.21)

lim
k→+∞

‖BT (vk − v∗)‖2 = 0, (3.22)

lim
k→+∞

‖vk+1 − vk‖M = 0. (3.23)

By the definitions in (3.11) and (3.12),

‖vk+1 − vk‖22 = ‖vk+1 − vk‖2M + λ‖BT (vk+1 − vk)‖22,

which combined with (3.22) and (3.23) gives

lim
k→+∞

‖vk+1 − vk‖2 = 0. (3.24)

On the other hand, from (3.8) we have

−γ∇f2(x
∗)− λBT v∗ = 0,

and from (2.2b)

xk+1 − xk = −γ∇f2(xk)− λBT vk+1.

Hence,

xk+1 − xk = −γ(∇f2(xk)−∇f2(x
∗))− λ(BT vk+1 −BT v∗).

Now, using (3.21) and (3.22) we immediately get

lim
k→+∞

‖xk+1 − xk‖2 = 0. (3.25)

By the definition in (3.13) and (3.24)-(3.25),

lim
k→+∞

‖uk+1 − uk‖λ = 0. (3.26)

From (3.20), we know that the sequence {‖uk − u∗‖λ} is non-increasing, so the sequence {uk} is

bounded and there exists a convergent subsequence {ukj
} such that

lim
j→+∞

‖ukj
− u∗‖λ = 0 (3.27)

for some u∗ ∈ R
m × R

n. Next, let us show that u∗ is a fixed point of T . In fact,

‖T (ukj
)− u∗‖λ = ‖(ukj+1 − ukj

)− (ukj
− u∗)‖λ ≤ ‖ukj+1 − ukj

‖λ + ‖ukj
− u∗‖λ, (3.28)

which, in conjunction with (3.26) and (3.27), leads to

lim
j→+∞

‖T (ukj
)− u∗‖λ = 0. (3.29)

The operator T is continuous since it is nonexpansive, so it follows from (3.27) and (3.29) that u∗ is a

fixed point of T . Moreover, we have known that {‖uk − u∗‖λ} is non-increasing for any fixed point u∗

of T . In particular, by choosing u∗ = u∗, we see that {‖uk − u∗‖λ} is non-increasing. Combining this

and (3.27) yields

lim
k→+∞

uk = u∗.
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Writing u∗ = (v∗, x∗) with v∗ ∈ R
m, x∗ ∈ R

n, we find from Theorem 3.1 that x∗ is the solution of

problem (1.1).

Note that if f2(x) = 1
2‖x − b‖22 and γ = 1, then PDFP2O reduces to FP2O for κ = 0. As a

consequence of the above theorem, we can achieve the convergence of FP2O for κ = 0 even when BBT

is singular, for which no convergence is available from Theorem 3.12 of [21].

Corollary 3.6 Suppose 0 < λ ≤ 1/λmax(BBT ). Let {vk} be the sequence generated by FP2O for κ = 0.

Set xk = b − λBT vk. Then the sequence {vk} converges to the fixed point of H(see (2.1)), the sequence

{xk} converges to the solution of problem (1.1) with f2(x) =
1
2‖x− b‖22.

3.2 Linear convergence rate for special cases

In this section, we will give some stronger theoretical results about the convergence rate in some

special cases. For this, we present the following condition.

Condition 3.1 For any two real numbers λ and γ satisfying that 0 < γ < 2β and 0 < λ ≤ 1/λmax(BBT ),

there exist η1, η2 ∈ [0, 1) such that ‖I − λBBT ‖2 ≤ η21 and

‖g(x)− g(y)‖2 ≤ η2‖x− y‖2 for all x, y ∈ R
n, (3.30)

where g(x) is given in (3.10).

Remark 3.2 If B has full row rank, f2 is strongly convex, i.e. there exists some σ > 0 such that

〈∇f2(x) −∇f2(y), x− y〉 ≥ σ‖x− y‖22 for all x, y ∈ R
n, (3.31)

then this condition can be satisfied. In fact, when B has full row rank, we can choose

η21 = 1− λλmin(BBT ),

where λmin(BBT ) denotes the smallest eigenvalue of BBT . In this case, η21 takes its minimum

(η21)min = 1− λmin(BBT )

λmax(BBT )

at λ = 1/λmax(BBT ). On the other hand, since f2 has 1/β-Lipschitz continuous gradient and is strongly

convex, it follows from (3.2) and (3.31) that

‖g(x)− g(y)‖22
=‖x− y‖22 − 2γ〈∇f2(x)−∇f2(y), x− y〉+ γ2‖∇f2(x) −∇f2(y)‖22

≤‖x− y‖22 −
γ(2β − γ)

β
〈∇f2(x)−∇f2(y), x− y〉

≤(1− σγ(2β − γ)

β
)‖x− y‖22. (3.32)

Hence we can choose

η22 = 1− σγ(2β − γ)

β
.

In particular, if we choose γ = β, then η2 takes its minimum in the present form:

(η22)min = 1− σβ.

As a typical example, consider f2(x) = 1
2‖Ax − b‖22 with ATA full rank. Then we can find out that

β = 1/λmax(A
TA) and σ = λmin(A

TA), and hence

(η22)min = 1− λmin(A
TA)

λmax(A
TA)

.
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Despite most of our interesting problems do not belong to these special cases, and there will be more

efficient algorithms if the condition 3.1 is satisfied, the following results still have some theoretical values

where the best performance of PDFP2Oκ can be achieved. First of all, we show that Tκ is contractive

under condition 3.1.

Lemma 3.5 Suppose condition 3.1 holds true. Let the operator T be given in (3.5) and Tκ = κI+(1−κ)T

for κ ∈ [0, 1). Then Tκ is contractive under the norm ‖ · ‖λ.

Proof. Let η = max{η1, η2}. It is clear that 0 < η < 1. Then, owing to the condition 3.1, for all

u1 = (v1, x1), u2 = (v2, x2) ∈ R
m × R

n, there holds

‖g(x1)− g(x2)‖2 ≤η‖x1 − x2‖2,
‖v1 − v2‖M ≤η‖v1 − v2‖2,

from which, (3.13) and (3.17) it follows that

‖T (u1)− T (u2)‖2λ
≤‖g(x1)− g(x2)‖22 + λ‖v1 − v2‖2M − λ‖(T1(u1)− T1(u2))− (v1 − v2)‖2M
≤η2(‖x1 − x2‖22 + λ‖v1 − v2‖22)
=η2‖u1 − u2‖2λ.

On the other hand, it is easy to check from the last estimate and the triangle inequality that

‖Tκ(u1)− Tκ(u2)‖λ ≤ κ‖u1 − u2‖λ + (1− κ)‖T (u1)− T (u2)‖λ ≤ θ‖u1 − u2‖λ,

with θ = κ+ (1− κ)η ∈ (0, 1). So operator Tκ is contractive.

Now, we are ready to analyze the convergence rate of PDFP2Oκ.

Theorem 3.7 Suppose condition 3.1 holds true. Let the operator T be given in (3.5) and Tκ = κI +

(1−κ)T for κ ∈ [0, 1). Let uk = (vk, xk) be a Picard sequence of operator Tκ (or equivalently, a sequence

obtained by algorithm PDFP2Oκ). Then the sequence {uk} must converge to the unique fixed point

u∗ = (v∗, x∗) ∈ R
m × R

n of T , with x∗ the unique solution of problem (1.1). Furthermore, there holds

the estimate

‖xk − x∗‖2 ≤ cθk

1− θ
, (3.33)

where c = ‖u1 − u0‖λ, θ = κ+ (1− κ)η ∈ (0, 1) and η = max{η1, η2}, with η1 and η2 given in condition

3.1.

Proof. Since the operator Tκ is contractive, by the Banach contraction mapping theorem, it has a

unique fixed point, denoted by u∗ = (v∗, x∗). It is obvious that Tκ has same fixed points as T , so x∗ is

the unique solution of problem (1.1) from Theorem 3.1. Moreover, it is routine that the sequence {uk}
converges to u∗. On the other hand, it follows from Lemma 3.5 that

‖uk+1 − uk‖λ ≤ θ‖uk − uk−1‖λ ≤ · · · ≤ θk‖u1 − u0‖λ = cθk.

So for all 0 < l ∈ N,

‖uk+l − uk‖λ ≤
l∑

i=1

‖uk+i − uk+i−1‖λ = cθk
l∑

i=1

θi−1 <
cθk

1− θ
,
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which immediately implies

‖xk − x∗‖2 ≤ ‖uk − u∗‖λ ≤ cθk

1− θ

by letting l → +∞. The desired estimate (3.33) is then obtained.

If B = I, λ = 1, then form (2.2) is equivalent to form (1.4), so as a special case of Theorem 3.7, we

can get the convergence rate for PFBS.

Corollary 3.8 Suppose 0 < γ < 2β and there exists η ∈ (0, 1) such that

‖g(x)− g(y)‖2 ≤ η‖x− y‖2 for all x, y ∈ R
n.

Let {xk} be a sequence generated by PFBS and x∗ the solution of problem (1.3) for X = R
n. Set

c = ‖x1 − x0‖2. Then

‖xk − x∗‖2 ≤ cηk

1− η
.

As a conclusion of Theorem 3.7, we can also get the convergence rate of FP2O for κ = 0 under the

assumption ‖I − λBBT ‖ < 1.

Corollary 3.9 Suppose 0 < λ ≤ 1/λmax(BBT ), the matrix B has full row rank, and η1 is given in

condition 3.1. Let v∗ be the fixed point of H(cf. (2.1)). Let {vk} be a sequence generated by FP2O for

κ = 0, with xk = b− λBT vk. Set

c =
√
‖λBT (v1 − v0)‖22 + λ‖v1 − v0‖22.

Then

‖vk − v∗‖2 ≤
cηk1√

λ(1− η1)
, ‖xk − x∗‖2 ≤ cηk1

1− η1
.

4 Connections to other algorithms

We will further investigate the proposed algorithm PDFP2O from the perspective of primal-dual

forms and establish the connections to other existing methods.

4.1 Primal-dual and proximal point algorithms

For the problem (1.1), we can write its primal-dual form using Fenchel duality [29] as

min
x

max
v

L(x, v) := f2(x) + 〈Bx, v〉 − f∗
1 (v), (4.1)

where f∗
1 is the convex conjugate function of f1 defined by

f∗
1 (v) = sup

w∈Rm

〈v, w〉 − f1(w).

By introducing new intermediate variable yk+1, equation (2.2) are reformulated as





yk+1 = xk − γ∇f2(xk)− λBT vk, (4.2a)

vk+1 = (I − proxγ
λ
f1)(Byk+1 + vk), (4.2b)

xk+1 = xk − γ∇f2(xk)− λBT vk+1. (4.2c)

According to Moreau decomposition (see equation (2.21) in [13]), for all v ∈ R
m, we have

v = v⊕γ
λ

+ v⊖γ
λ

, where v⊕γ
λ

= prox γ
λ
f1v, v⊖γ

λ

=
γ

λ
proxλ

γ
f∗

1

(
λ

γ
v),

13



from which we know

(I − proxγ
λ
f1)(Byk+1 + vk) =

γ

λ
proxλ

γ
f∗

1

(
λ

γ
Byk+1 +

λ

γ
vk).

Let vk = λ
γ vk. Then (4.2) can be reformulated as





yk+1 = xk − γ∇f2(xk)− γBT vk, (4.3a)

vk+1 = proxλ
γ
f∗

1

(
λ

γ
Byk+1 + vk), (4.3b)

xk+1 = xk − γ∇f2(xk)− γBT vk+1. (4.3c)

In terms of the saddle point formulation (4.1), we have by a direct manipulation that

∇f2(xk) +BT vk = ∇xL(xk, vk),

proxλ
γ
f∗

1

(
λ

γ
Byk+1 + vk) = arg min

v∈Rm

− L(yk+1, v) +
γ

2λ
‖v − vk‖22,

∇f2(xk) +BT vk+1 = ∇xL(xk, vk+1).

Hence, (4.3) can be expressed as





yk+1 = xk − γ∇xL(xk, vk), (4.4a)

vk+1 = arg min
v∈Rm

− L(yk+1, v) +
γ

2λ
‖v − vk‖22, (4.4b)

xk+1 = xk − γ∇xL(xk, vk+1). (4.4c)

From (4.3a) and (4.3c), we can find out that

yk+1 = xk+1 + γBT (vk+1 − vk).

Then the equation (4.4b) becomes

vk+1 = arg min
v∈Rm

− L(xk+1, v) +
γ

2λ
‖v − vk‖2M ,

where M = 1− λBBT . Together with the (4.4c), the iterations (4.4) are





vk+1 = arg max

v∈Rm

L(xk+1, v)−
γ

2λ
‖v − vk‖2M ,

xk+1 = xk − γ∇xL(xk, vk+1).

Thus the proposed algorithm can be interpreted as an inexact Uzawa method [2] applied on the dual

formulation. Compared to classical Uzawa method, this proposed method is more implicit since the

update of vk+1 involves xk+1 and a proximal point iteration matrix M is used.

This leads to a close connection to a class of primal-dual method studied in [37, 16, 9, 19]. For

example, in [9], Chambolle and Pock proposed the following scheme for solving (4.1):

(CP)






vk+1 = (I + σ∂f∗
1 )

−1(vk + σByk), (4.6a)

xk+1 = (I + τ∇f2)
−1(xk − τBT vk+1), (4.6b)

yk+1 = xk+1 + θ(xk+1 − xk), (4.6c)

where σ, τ > 0, θ ∈ [0, 1] is a parameter. For θ = 0, we can get the classical Arrow-Hurwicz-Uzawa

(AHU) method in [2]. The convergence of AHU with very small step length is shown in [16]. Under

some assumptions on f∗
1 or strongly convexity of f2, global convergence of the primal-dual gap can also

be shown with specific chosen adaptive steplength [9]. Note that in the case of ROF model, Chan and
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Zhu proposed in [38] a clever adaptive step lengths σ and τ for acceleration, and recently the convergence

is shown in [4].

According to equation (4.3), using the relation proxλ
γ
f∗

1

= (I + λ
γ ∂f

∗
1 )

−1, and changing the order of

these equations, we know that PDFP2O is equivalent to





vk+1 = (I +
λ

γ
∂f∗

1 )
−1(

λ

γ
Byk + vk), (4.7a)

xk+1 = xk − γ∇f2(xk)− γBT vk+1, (4.7b)

yk+1 = xk+1 − γ∇f2(xk+1)− γBT vk+1. (4.7c)

Let σ = λ/γ, τ = γ, we can see that equations (4.6b) and (4.6c) are approximated by two explicit steps

(4.7b)-(4.7c). In summary, we list the comparisons of CP for θ = 1 with fixed step length and PDFP2O

in Table 4.1.

Table 4.1: The comparison between CP (θ = 1) and PDFP2O.

CP (θ = 1) PDFP2O

Form

vk+1 = (I + σ∂f∗

1 )
−1(vk + σByk) vk+1 = (I + λ

γ
∂f∗

1 )
−1(λ

γ
vk +Byk)

xk+1 = (I + τ∇f2)
−1(xk − τBT vk+1) xk+1 = xk − γ∇f2(xk)− γBT vk+1

yk+1 = 2xk+1 − xk yk+1 = xk+1 − γ∇f2(xk+1)− γBT vk+1

Convergence 0 < στ < 1/λmax(BBT ) 0 < γ < 2β, 0 < λ ≤ 1/λmax(BBT )

Relation σ = λ/γ, τ = γ

For f2(x) =
1
2‖Ax− b‖22, (4.4) can be further expressed as






yk+1 = arg min
x∈Rn

L(x, vk) +
1

2γ
‖x− xk‖2(I−γATA), (4.8a)

vk+1 = arg min
v∈Rm

− L(yk+1, v) +
γ

2λ
‖v − vk‖22, (4.8b)

xk+1 = arg min
x∈Rn

L(x, vk+1) +
1

2γ
‖x− xk‖2(I−γATA). (4.8c)

Note that by introducing the proximal iteration norm through the matrix I − γATA ∈ Mn for 0 <

γ < β with β = λmax(A
TA), (4.8a) and (4.8c) become explicit. This is particularly useful when

the inverse of ATA is not easy to obtain in most of imaging applications, such as superresolution,

tomographic reconstruction and parallel MRI [12]. Meanwhile, it worths to point out that the condition

on γ by this formulation is stricter than Theorem 3.5, where γ is required as 0 < γ < 2β for the

convergence. Furthermore, if we denote ûk =
(
vk

T , xk
T
)T

and F (ûk) =

(
∂f∗

1 (vk)−Bxk

BT vk +∇f2(xk)

)
and P =

(
γ
λ (I − λBBT ) 0

0 1
γ (I − γATA)

)
, we can also easily write the algorithm in the proximal point algorithm

(PPA) framework [19] as

0 ∈ F (ûk+1) + P (ûk+1 − ûk). (4.9)

We note that in [19], Chambolle-Pock algorithm (4.6) for θ = 1 was also rewritten in PPA structure as

(4.9) with the same F while

P =

(
1
σ I B

BT 1
τ I

)
.

In [19, 9], more general class of algorithms taking this form are studied. In particular, extra extrapolation

step can be applied to the algorithm (4.9) for acceleration.
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4.2 Splitting type of methods

There are other types of methods which are designed to solve the problem (1.1) based on the notion

of augmented Lagrangian. For simplicity, we only list these algorithms for f2(x) =
1
2‖Ax− b‖2. Among

them, the alternating split Bregman (ASB) method proposed by Goldstein and Osher [18] is very popular

for imaging applications. This method has been proved to be equivalent to Douglas-Rachford method

and alternating direction of multiplier method (ADMM). In [36, 37], based on PFBS and Bregman

iteration, a split inexact Uzawa (SIU) method is proposed to maximally decouple the iterations so that

each iteration is explicit. Further analysis and connections to primal-dual methods algorithm are given

in [16, 37]. In particular, it is shown that the primal-dual algorithm scheme (4.6) with θ = 1 can be

interpreted as SIU.

In the following, we study the connections and differences to these two methods. ASB can be

described as follows:

(ASB)





xk+1 = (ATA+ νBTB)−1(AT b+ νBT (dk − vk)), (4.10a)

dk+1 = prox 1

ν
f1(Bxk+1 + vk), (4.10b)

vk+1 = vk − (dk+1 −Bxk+1), (4.10c)

where ν > 0 is a parameter. The explicit SIU method proposed in the literature [37] can be described

as

(SIU)






xk+1 = xk − δAT (Axk − b)− δνBT (Bxk − dk + vk), (4.11a)

dk+1 = prox 1

ν
f1(Bxk+1 + vk), (4.11b)

vk+1 = vk − (dk+1 −Bxk+1), (4.11c)

where δ > 0 is a parameter. We can easily see that we approximate the implicit step (4.10a) in ASB by

an explicit step (4.11a) in SIU.

From (4.2a) and (4.2c), we can find out a relation of yk and xk, given by

xk = yk − λBT (vk − vk−1).

Then eliminating xk, PDFP2O can be expressed as

{
yk+1 = yk − λBT (2vk − vk−1)− γ∇f2(yk − λBT (vk − vk−1)), (4.12a)

vk+1 = (I − proxγ
λ
f1)(Byk+1 + vk). (4.12b)

By inserting the splitting variable dk+1 in (4.12b), (4.12) can be further expressed as






yk+1 = yk − λBT (Byk − dk + vk)− γ∇f2(yk − λBT (Byk − dk)),

dk+1 = proxγ

λ
f1(Byk+1 + vk),

vk+1 = vk − (dk+1 −Byk+1).

(4.13)

For f2(x) =
1
2‖Ax − b‖22, ∇f2(x) = AT (Ax − b). By changing the order and letting γ = δ, λ = δν,

(4.13) becomes





yk+1 = yk − δAT (Ayk − b)− δνBT (Byk − dk + vk)− δ2νATABT (dk −Byk) (4.14a)

dk+1 = (prox 1

ν
f1)(Byk+1 + vk), (4.14b)

vk+1 = vk − (dk+1 −Byk+1). (4.14c)

We can easily see that equation (4.10a) in ASB is approximated by (4.14a). Although it seems that

PDFP2O requires more computation in (4.14a) than SIU in (4.11a), PDFP2O has the same computation
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cost as that of SIU if the iterations are implemented cleverly. For the reason of comparison, we can

change the variable yk to xk in (4.14). Table 4.2 gives the summarized comparisons among ASB, SIU

and PDFP2O. We can see that the only difference of SIU and PDFP2O is on the first step. As two

algorithms converges, the algorithm PDFP2O behaves asymptotically the same as SIU since dk − Bxk

converges to 0. The parameters δ and ν satisfy respectively different conditions to ensure the convergence.

Table 4.2: The comparisons among ASB, SIU and PDFP2O.

ASB SIU PDFP2O

Form

xk+1 = (ATA+ νBTB)−1 xk+1 = xk − δAT (Axk − b) xk+1 = xk − δAT (Axk − b)

(AT b+νBT (dk−vk)) −δνBT (Bxk − dk + vk) −δνBT (Bxk − dk + vk)

−δ2νATABT (dk −Bxk)

dk+1 = prox 1

ν
f1
(Bxk+1 + vk) dk+1 = prox 1

ν
f1
(Bxk+1 + vk) dk+1 = prox 1

ν
f1
(Bxk+1 + vk)

vk+1 = vk − (dk+1 −Bxk+1) vk+1 = vk − (dk+1 −Bxk+1) vk+1 = vk − (dk+1 −Bxk+1)

Conver
ν > 0

ν > 0 0 < δ < 2/λmax(A
TA)

-gence 0 < δ ≤ 1/λmax(A
TA+ νBTB) 0 < δν ≤ 1/λmax(BBT )

5 Numerical experiments

In this section, we will show the efficiency of PDFP2Oκ for κ ∈ [0, 1) through two applications: image

superresolution and computerized tomography (CT) reconstruction. These two applications can be both

described as problem (1.2), where A is a linear operator representing subsampling and tomographic

projection operator respectively. Here, we use total variation as the regularization functional, where the

operator B : Rn → R2n is a discrete gradient operator. Furthermore, the isotropic definition is adopted,

i.e. f1(w) = µ‖w‖1,2, for all w = (w1, . . . , wn, wn+1, · · · , w2n)
T ∈ R

2n,

‖w‖1,2 =
n∑

i=1

√
w2

i + w2
n+i.

Let wi = (wi, wn+i)
T , ‖wi‖2 =

√
w2

i + w2
n+i and ε =

µγ
λ
. Then proxε‖·‖1,2

(w) can be expressed as

(proxε‖·‖1,2
(w))i,n+i = max{‖wi‖2 − ε, 0} wi

‖wi‖2
, i = 1, · · · , n.

For the implementation of PDFP2O, we use the scheme presented in Algorithm 4, where we compute

directly (I − proxγ

λ
f1)(w). In fact, we can deduce that (I − proxγ

λ
f1)(w) = Projε(w), where Projε is the

projection operator from R
2n to ℓ2,∞ ball of radius ε, i.e.

(Projε(w))i,n+i = min{‖wi‖2, ε}
wi

‖wi‖2
, i = 1, · · · , n.

5.1 Image superresolution

In the numerical simulation, the subsampling operator A is implemented by taking the average of

every d×d pixels and sampling the average, if a zoom in ratio d is desired. The experiment is performed

on the test image “lena” of size 512× 512 and the subsampling ratio is d = 4. White Gaussian noise of

mean 0 and variance 1 is added to the observed low resolution image of 128× 128. The regularization

parameter µ is set as 0.1 for the best image quality.

First we show the impacts of the parameters κ, γ and λ for the proposed algorithm in Figure 5.1.

The conditions for theoretical convergence are 0 < γ < 2β, 0 < λ ≤ 1/λmax(BBT ) and κ ∈ [0, 1) (see
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Theorems 3.4 and 3.5). We can see that the maximum eigenvalue of ATA is 1/16, thus by the discussion

in Remark 3.2, we have 0 < γ < 32. It is well known in total variation application that λmax(BBT ) = 8

for B being the usual gradient operator (see [16]), then 0 < λ ≤ 1/8. From Figure 5.1 (a) and (b), we can

see that for most cases κ = 0 achieves the fastest convergence compared to other κ ∈ (0, 1) , so we choose

κ = 0 for the following comparison. In Figure 5.1 (c) and (d), the parameter λ has relatively smaller

impact on the performance of this algorithm. We compare the results for λ = 1/5, 1/6, 1/8, 1/16, 1/32.

When λ = 1/6 > 1/8, the algorithm is convergent. While for λ = 1/5, the algorithm does not appear

to converge, which shows that we can not extend the range of λ to (0, 2/λmax(BBT )) generally. Hence,

we only consider 0 < λ ≤ 1/λmax(BBT ) as indicated in Theorem 3.5, for which the upper bound

λ = 1/8 achieves the best performance. The parameter γ has larger impact for the algorithm. We test

γ = 8, 16, 24, 30, 32 for κ = 0, λ = 1/8. Numerically, larger γ leads to a faster convergence, but when

γ is very close to 2β = 32, the energy starts to oscillate (Figure 5.1 (e) and (f)). For this reason, we

choose γ = 30.

In the following, we compare the performance of ASB, SIU and PDFP2O. Both PDFP2O and SIU

only require matrix-vector multiplications (see Table 4.2). For the implementation of ASB, we solve the

inverse of the matrix ATA+ νBTB directly since fast Fourier transform can not be applied in this case.

We use the image obtained by nearest neighbor interpolation as the initial guess. The parameter ν is

crucial for the performance of ASB, and we have tested a range of ν and set ν = 0.01 for a good balance

of computational speed and image quality. For SIU, we set δ = 30 and ν = 0.001. In PDFP2O, we

choose γ = 30, λ = 1/8 as we discussed previously. The results are shown in Figure 5.2 and the images

obtained are comparable. As we point out previously, the direct inverse of the linear equation (4.10a)

in ASB might not be easy to obtain, while both PDFP2O and SIU have simple and explicit iterates.

In Figure 5.3 (a), the comparison of energy decreasing versus iterations number and computation time

are present in Figure 5.3 (a) and (b) respectively. As expected, one iteration for ASB requires more

computation time than PDFP2O and the energy by ASB decreases faster in terms of iterations number,

while slower in terms of computation time. For the two explicit methods, PDFP2O is faster than SIU

for both criteria.

5.2 CT reconstruction

In a simplified parallel tomographic problem, an observed body slice is modeled as a two dimensional

function, and projections modeled by line integrals represents the total attenuation of a beam of x-rays

when it traverses the object. The operator for this application can be represented by a discrete Radon

transform, and the tomographic reconstruction problem is then to estimate a function from a finite

number of measured line integrals( see [3]). The standard reconstruction algorithm in clinical applications

is so-called Filtered Back Projection (FBP) algorithm. In the presence of noise, this problem becomes

difficult since the inverse of Radon transform is unbounded and ill-posed. In the literature, the model

(1.2) is often used for iterative reconstruction. Here A is the Radon transform matrix, b is the measured

projections vector. Generally the size of A is huge and it is not easy to either compute the inverse

directly or estimate the eigenvalues.

Here, we use the same example tested in [37], i.e., 50 uniformly oriented projections are simulated

for a 128 × 128 Shepp-Logan phantom image and then white Gaussian noise of σ = 1 is added to the

data. As the previous example, we first test the impacts of the parameters κ, γ and λ. The impact of

κ has the same behavior as for superresolution example, i.e. κ = 0 is the best for κ ∈ [0, 1) (see Figure

5.4 (a) and (b)). Similarly, the parameter λ has little impact on the performance of the algorithm (see

Figure 5.4 (c) and (d)). On one hand, the convergence is guaranteed for 0 < λ ≤ 1/8, on the other
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Figure 5.1: PSNR and energy versus iterations with different parameters. (a) and (b) are PSNR and

energy versus iterations respectively for κ = 0.5, 0.1, 0.01, 0.001, 0(λ = 1/8, γ = 30). (c) and (d) are

PSNR and energy versus iterations for λ = 1/5, 1/6, 1/8, 1/16, 1/32 (κ = 0, γ = 30). (e) and (f) are

PSNR and energy versus iterations for γ = 8, 16, 24, 30, 32 (κ = 0, λ = 1/8).
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Figure 5.2: Super resolution results from 128×128 image to 512×512 image by ASB, SIU and PDFP2O;

noise level σ = 1.
Original ASB, PSNR=29.3519

SIU, PSNR=29.3497 PDFP2O, PSNR=29.3392

Figure 5.3: Comparisons of energy with respect to iterations (a) and time (b) for ASB, SIU and PDFP2O.

(a) Energy versus Iterations (b) Energy versus Time
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hand the convergence still holds numerically for larger λ. After zooming out the iterations, we find out

that energy decreases the fastest for λ = 1/8 , while PSNR increases the fastest for λ = 1/32. Finally,

the parameter γ has large impact on the convergence of the algorithm. Theoretically, it should satisfy

0 < γ < 2β where 1/β being the largest eigenvalue of ATA. Numerically, we test γ = 0.4, 0.7, 1, 1.2, 1.3

for κ = 0, λ = 1/8. Better performance with a larger γ is observed (see Figure 5.4 (e) and (f)) while

when γ = 1.4, the algorithm diverges.

In this example, due to the large size of the discrete Radon transform matrix, the inverse of (ATA+

νBTB) is not easy to compute, thus we do not draw ASB for comparison. Instead, we compare the

performance of PDFP2O and SIU in Figure 5.5. The parameters are set as δ = 1.3, ν = 0.1 for SIU and

γ = 1.3, λ = 1/8 for PDFP2O. The final reconstruction results are similar. Surprisedly, although the

iterative schemes are different for the two algorithms, the evolution of PSNR and energy are very close

for the two algorithms (see Figure 5.6) on this example.

6 Conclusions

In this paper, we design an efficient algorithm, called PDFP2Oκ, for solving problem (1.1). We

express it in a fixed point form to analyze its convergence for κ ∈ [0, 1) in general cases. For some special

cases, we further analyze the convergence rate of PDFP2Oκ. To highlight the nature of PDFP2O, we

present some equivalent forms of PDFP2O and reveal its connection and difference with other algorithm-

s. For the implementation of PDFP2Oκ, no linear systems are required to solve at each iteration, and

the strategies for choosing involved parameters are also very clear. Hence, the computational cost for

PDFP2Oκ is cheap and can be easily implemented in parallel, which is particulary useful for large scale

inverse problems. Finally, we illustrate the efficiency of PDFP2Oκ through some numerical examples on

image supperresolution and CT reconstruction. In conclusion, the present framework has simple itera-

tion scheme and can be easily adapted to those inverse problems involving large scale and complicated

functionals minimization.
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Figure 5.5: A tomographic reconstruction example for a 128× 128 image, with 50 projections.

Original FBP

SIU, PSNR=32.7182 PDFP2O, PSNR=32.7182

Figure 5.6: The comparisons of the performances of energy and PSNR with iterations respectively for

SIU and PDFP2O.
Energy vs. Iteration(5000) PSNR vs. Iteration(5000)
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