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Abstract—The level set method [31] is a commonly used frame-
work for image segmentation algorithms. For edge detection and
segmentation models, the standard level set method provides
a flexible curve representation and implementation. However,
one drawback has been in the types of curves that can be
represented. In the classical level set method, the curve must
enclose an open set (i.e. loops or contours without endpoints).
Thus the classical framework is limited to locating edge sets
without endpoints. Using the curve representation from [34],
[35], we propose a segmentation and edge detection method
which can locate arcs (i.e. curves with free endpoints) as well
as standard contours. Within this new framework, we propose a
variational segmentation model to detect general edge structures.
The proposed energy is composed of two terms, an edge set
regularizer and an edge attractor. The proposed energy is related
to the Mumford and Shah model [27] for joint segmentation and
restoration in terms of an asymptotic limit. Numerical results are
given on images with a variety of edge structures.

Index Terms—Edge Detection, Arcs, Free Endpoints, Level Set
Method, Active Contours, Geodesics, Energy Minimization

I. INTRODUCTION

Edge detection and image segmentation remains a largely
open problem in image processing. The focus of edge de-
tection is to locate important edges between objects within
an image or to locate features which have sharp changes in
intensity. One point of difficulty is in the large class of possible
edge structures that can occur. Much of the literature defines
the edge structure to be composed of curves without endpoints,
but in this work, we apply the curve definitions from [35]
to extend some classic models to a larger class of edges. In
particular, we propose using a level set method for curves that
may include free endpoints to locate edges. In this work we
will refer to curves that have endpoints as either arcs, curves
with free endpoints, or free curves.

The original Active Contours model (Snakes) [16] proposed
an energy minimization method for the location of the edge
set. Let f be the given (possibly degraded) image defined on a
domain 2 C R? and let I'(s) : [0, 1] — R? be a parameterized
curve representing the edge set, then the model is (essentially)
as follows:

Evnates(T) = /0 (Ml (8)[2 + Ao [T (5)[2) ds
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where A1, Ay > 0 are parameters. The first integral is defined
by two terms related to the first and second derivative of the
curve and is a regularizer, defining a particular smoothness in
the edge structure. The second integral attracts the curve to
places where the gradient of the image is large. In this way,

the Snakes model is an energy based edge detector — looking
for a smooth edge set along high values of |V f|.

A general gradient based edge detector is defined as a non-
negative function of the gradient of the image, g(|V f|), such
that g(z) — 0 as * — oo. The Geodesic Active Contours
(GAC) model defines an energy using the function g as follows
[S], [17]:

Egac(T) = /O g (VAT ()] [T'(s)lds @)

The model is formulated using the level set method, proposed
by Osher and Sethian [31]. The level set method provides an
implicit representation for curves by defining them as the zero
level set of a Lipschitz continuous function ¢ : {2 — R. Using
the level set framework allows the curve to undergo changes
in topology and allows for the formation of corners. The level
set method restricts the class of possible edge sets to curves
made up of segments without endpoints or that terminate at
the boundary of the domain.

Equation (2) is related to the problem of finding geodesics
in a Riemannian space, defined by a metric g. Therefore,
minimizers of equation (2) will have minimal lengths with
respect to the edge-based metric and reside along the points
where ¢ (|Vf]) is small, i.e. where |V f]| is large. In the
works [23] and [39], Finsler spaces were used in place of
the Riemannian spaces, thus extending GAC to Finsler Active
Contours.

Alternatively, Mumford and Shah based methods jointly
segment and restore images. The original Mumford and Shah
model (MS) [27] finds a piecewise smooth image w and an
edge set I' by minimizing the following functional:

Eps(u,T) = /

|Vu|*dz + ;LQ/ lu — f|*dx + vH(T)
Q\T Q
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The first term is a regularizer on the reconstructed image
u, while the second term encourages u to remain close to
the initial data f. The third term is a regularizer on the
edge set I' (the Hausdorff measure or length). Minimizing
curves I' of equation (3) are known to be composed of C:!
segments whose endpoints either terminate perpendicularly
to the boundary of the domain, at a triple junction, or at
points that do not connect back to the curve (arcs). For more
theoretical results on minimizers, see for example [11], [14],
[25], [26].

One approximation to the MS model, based on I'-
convergence, is the Ambrosio and Tortorelli model (AT) [2].
To represent the edge set, the model uses a function v € [0, 1],
which acts as a smooth indicator function on the edge set. The
Ambrosio and Tortorelli functional is as follows:
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where ¢ > 0 and n. = o(e). As ¢ — 0, equation (4) I'-
converges to the weak formulation of equation (3).

The third integral in equation (4) is an elliptic approximation
to the length term from equation (3). This approximation has
the advantage of capturing all types of edges theoretically
possible in the MS model. The disadvantage of the elliptic
approximation to the edge set is that the width of the edges
are a function of the parameter €, which makes the edge set
thicker than in the level set based methods.

Using the level set method, Chan and Vese proposed a
piecewise constant version of the MS model [7], where the
reconstructed image is equal to c¢; inside the region enclosed
by the curve and ¢, outside the region enclosed by the curve.
The Chan and Vese functional (CV) is as follows:
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where the curve I is approximated using one level set function.
The model fits a given image to two constants, while also
minimizing the size of the boundary between the two regions
defined by the constants. This model was also extended to
piecewise constant vector valued images in [6], to 4 regions
and to piecewise smooth solutions in [38] and [37], and to
multilayer piecewise constant images in [8].

The level set method for image segmentation has seen much
success in the literature, with a wide range of applications.
However, classical level set method is unable to capture edge
structures with free endpoints. Using the work of [34] (which
is based on [35]) for image segmentation using arcs, we
propose a level set based variational edge detector derived
from the Mumford and Shah model. The model is able to
capture all the edge structures from the MS model, but has the
advantage of doing so quickly. For more on arcs and general
curve structures see [9], [18]-[21], [24].

The paper is organized as follows. Section II describes
the proposed model and its connection to existing models.
Theoretical and analytical remarks are provided in section III.
Lastly section IV and section V present the numerical method
and experimental results, respectively.

II. PROPOSED MODEL
A. Level Set Method with Free Endpoints

From [34], [35], we can represent a curve I as the intersec-
tion of a zero level set of a Lipschitz continuous function
¢ : © — R with the positive part of a second level set
¥ : © — R. The second level set function acts as a
partitioning function on the first. With this definition for I,

I'={z¢c Q‘ #(x) = 0,9 (z) > 0}, the curve is now able

to have loops, segments terminating at the boundary of the
domain, and segments with free endpoints.

Applying this definition for the edge set to the Length func-
tional, a term which appears in many segmentation models,
yields the following [12]:

L(T) = / VH(6)H @) ®)

where H is the Heaviside function, which is 1 for positive
arguments and O otherwise. Taking a smooth approximation
H, for the Heaviside function, equation (6) becomes:

L(T) = / b.(6)H. () |V 6 |dx ™)

where 0, = H! is a smooth approximation of the Dirac
delta function. To minimize equation (7), the first variation
is embedded in the following dynamic scheme:

0 | Vo
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The partial differential equation for ¢ defines a mean curvature
flow for the zero level set of ¢ in the region defined by the
positive part of 1, while the differential equation for 1) defines
a Hamilton-Jacobi equation for the intersection of the zero
level sets of ¢ and ).

B. Description of the Model

In [27], the authors showed that the limit as y — oo (with
v inversely related to p) of the Mumford and Shah model (in
the sense described in Section III) is as follows:
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where v, > 0 is a constant. The first term penalizes the
length of the curve, while the second term encourages the
curve to align with places of high gradient (which corresponds
to the edges). Generalizing the functional above, we propose

the following energy:
2
4 > ds ()
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where g is a strictly positive function which can be a general
feature detector only based on the given image and its deriva-
tives (see [5], [17]) and T is a Lipschitz curve. Next, using the
definition from Section 2, T := {x € Q| ¢(x) = 0,¢(x) > 0},
and assuming the Dirac delta and Heaviside functions are
replaced by their smooth versions (dropping the subscripts),
we have the following level set version of equation (8):

Eo(o0) = | <g<f> . %Z”) 5(6)H()dz



Minimizing the equation above may not result in a well-
behaved curve; thus, to ensure sufficient continuity on the
curve, a Lipschitz regularizer is used:

E(¢,¢) = Eo(¢,¥) + Bil[VllLe + Bl [Vl (9)

where 1, 82 > 0. In practice, B2 can be close to or (in some
cases) equal to zero and 0 < 1 << |[|g||r~ is sufficient.
Equation (9) is non-convex, so to find minimizers we find the
Euler-Lagrange equations and embed them in a time dependent
system (the gradient descent method). The resulting system of
equations is:
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where Ao ¢ = <%, D2¢%> is the renormalized infinity
Laplacian (see Appendix for derivation of the non-regularized
system). The infinity Laplacian smoothes the level set func-
tions in the normal direction to each of its level sets, keeping
the functions Lipschitz. For theoretical results, see [10], [13],

[22], and, for a convergent discretization, see [30].

C. Relation to Active Contours

The proposed model is similar in nature to both the
Geodesic Active Contours model [5] and the Active Contours
(Snakes) model [16]. In the general form, the Snakes energy is
composed of two main terms — a curve regularizer (elasticity)
and an edge attractor (based on the L? norm of the gradient
of the original image). In the proposed model, the Lipshitz
regularizer acts as the curve regularizer, the L? norm of the
normal derivative of the original image is an edge attractor,
and the geodesic length behaves as a length regularizer and
an edge attractor.

The energy proposed in this paper can be seen as an exten-
sion to the GAC energy, with the addition of the alignment
term. One crucial difference is the GAC energy would not be
able to detect edges that contain arcs. In the case of arcs, the
second term in our energy prevents the curve from shrinking
along the tangents of the edge set, allowing for non-trivial
minimizers.

D. Relation to Mumford and Shah Model
Recall the full Mumford and Shah Energy below.

Eys(u,T) = /

|Vul*dz + p? / |u — f|*dz + vHY(T)
Q\T Q
As in the piecewise constant case, the proposed model can be
seen as a special case with a particular choice of u. Take u to
agree with the intial data f outside of a small region of the

edge set I'. Let (r, s) be the curvilinear coordinates defined by

the normals and tangents of I" and take @ to have the following
expression in the region near the edge set.

1r1 Of
or
2evs, yields the following

a(r,s) == f(r,s) + esign(r)e” (0,)

Choosing p =
expression [27]:

%andy:

Ers(us,T) = Ens(f,0) + 26Ens,00(T) 4+ O(€%)

From here we can see that the Ejrso0(I") energy is a
natural limit to the MS model. In a similiar way, the proposed
functional E(T") is a limit of the MS model with geodesic
length.

III. THEORETICAL REMARKS

In this section, several theorems and remarks present well-
posedness like conditions of the model.

A. Consistency of the Level Set Formulation

In terms of the level set formulation of the energy (equation
(9)), the approximation of the length term is consistent, in the
limit.

Theorem IIL1. Let L(¢,v) = [, |VHc(¢)|He(v) with He
satisfying the following properties

1) H.(z) — H(z) point-wise everywhere except at x =0

2) 6. = H!

3) HoeC!

and let ¢ and 1) be Lipschitz continuous, then

lim L(6,6) = [ H(0)ds = Length(r)

{¢=0}
where T := {x € Q‘ é(x) =0,¢(z) > 0}.

For the proof of the theorem above see [34]. The the-
orem above justifies the differential substitution ds =
|VH.(¢)|He(¢p)dx, which is used to transform equation (8)
to the first term in equation (9).

B. Limiting Relation to MS Functional

As mentioned in Section II D, the proposed model can be
seen as a special case of the MS model. Let v, = %°; then
the following theorem provides the relationship between the
Mumford and Shah functional and equation (8) when g = v
[27].

Theorem IIL.2. Iffis Lipschitz, T is the union of finitely many
Lipschitz curves, and neither I nor the OS) contain cusps, then
as |t — oo the following holds:

9 l
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where f, solves %Afu = fu — f with Neumann boundary
conditions.



This shows for sufficiently smooth initial conditions, that
this edge based model is more closely related to the MS
function than other edge detectors. Also, the theorem gives
one possible method for solving the full MS energy. First
locating the edges using the proposed method, then smoothing
the initial image away from the edge set.

C. Well-posedness for fixed endpoints

In the case where the endpoints are fixed, the unregularized
model provides a well behaved minimizing curve. We can
write the energy in the form of an integral of a Finsler metric
along the curve T" [27]:

E(F):/FF(m,y,dx,dy)

where dx and dy are the tangent plane coordinates and

2

F(z,y,dz,dy) == g (f) /dz? + dy? — Yady — Jyde)”
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Since for any constant A, F(z,y, Adz, Ady) =

|A|F(x,y,dx,dy), it is indeed a Finsler metric.

Minimizing the proposed energy (without the Lipschitz
regularization) with fixed endpoints is a well-posed problem.
Assuming sufficient regularity on I' and f, the existence and
uniquess of minimizers can be deduced from the Hopf-Rinow
theorem [3]. This provides some intuition on the proposed
model, in that the ill-posedness comes from the endpoint
behavior or the curve continuity. For example, in the case
of curves without endpoints, our model attains well behaved
minimizers for sufficiently large ¢ > 0, where g > c.

D. Behavior of Minimizing Curves

When the endpoints are not fixed, equation (8) is not
generally well-posed. In this unregularized model, two issues
may arise. First, if ||V f]||2, < min, g then the minimizer
is the empty set. However, if there exists a point £ such that
|V £(Z)|* > g(Z), then the minimizing curve will be composed
of an infinite number of curves in a small neighborhood of &
with inf F(T") = —oo. Thus, minimizing the original energy
for a general curve I' is ill-posed. In fact, in [27] the authors
conjectured that the problem is actually well-posed in the sense
of currents and not curves.

With the proposed regularization, intuitively both cases can
be handled. In the case when there exists a point such that
the integrand is negative, the minimizing curve is made up of
infinitely many nearly parallel curves. However, the Lipschitz
regularization prevents the creation of extraneous curves since,
as the number of components of the minimizing curve grows,
the Lipschitz norm grows also. In the case when the global
minimizer is the empty set (which is also true of the GAC
model), there is both practical and theoretical support for the
existence of an approriate edge set.

The non-convexity of the energy allows for local minimizers
and thus non-trivial solutions. This is true for curves without
endpoints, but in the case of arcs the local minimizer can
shrink tangentially (to the edge) until it becomes the empty
set. However, in practice, if the second level set function

has only partially converged, the method yields approriate edge
sets. This is essentially equivalent to detecting an approximate
location of the endpoints and fixing them. This tranforms
the problem into locating the endpoints with a few iterations
and then fixing the endpoints and minimizing a well-posed
problem (see Section III.C).

IV. NUMERICAL METHOD

The proposed model is non-convex, and the resulting sys-
tem of partial differential equations is non-linear. To ensure
a smooth flow of the system and better posed equations,
we implement a Sobolev gradient descent method. This is
done by preconditioning the Euler-Lagrange equations by the
smoothing operator (I — A)~?!, and then embedding the new
equation in a dynamic scheme. In particular, for this problem
we have the following preconditioned equations:

& =8 G
& — (1= 2)Ca(,0)

where the function G = [G1, G| is defined as

6 = sy (1) (o) g + o
(V$-Vf)* Vo
K2R )) B
G = —5(1)5(9) <g () IVé| - (VTWZ”> N

with Neumann boundary conditions for both ¢ and . In prac-
tice, with the addition of the Sobolev gradient, the regularizer
on v is not necessary, so one may take 35 = 0. For more on
Sobolev gradients, see [4], [15], [28], [32], [33], [36].

The Euler-Lagrange equations (defined as the function G)
are discretized using forward differences for the gradient
and backwards differences for the divergence. Also, the dis-
cretization is explicit in time. The terms that appear in the
denominator are replaced with a regularized version to avoid
dividing by zero.

To iterate forward in time, we introduce the auxiliary
variable v = [v1,v9] and solve v; — Av; = G, at every
time step using the Gauss-Seidel sweeping method (which
converges within a small number of iterations). Then using
v, the level sets are marched forward in time by a forward
Euler step: ¢"t! = ¢™ + At vy and Y+ = Y™ + At v,.

Although the Euler-Lagrange equations are completely ex-
plicit, the Sobolev gradient inversion is solved using a semi-
implict method, which adds stability. The table below outlines
the complete algorithm.

The method can be sensitive to the intialization, thus by
applying a simple edge detector one can locate a region of
interest. To measure convergence, the difference in the energy
between iterations or the difference in the curves’ location
can be used, both yielding similar results. In practice, this
alternating minimization scheme needs only a few iterations
to converge.



Algorithm
Initialize ¢°, ¥°
while Not Converged do

Step 1: Compute G1(¢",9¥™), Solve for vf
Step 2: Iterate Forward to ¢"*?
Step 3: Compute Gao(¢™ !, 9™), Solve for vy
Step 4: Iterate Forward to ¢!

end while

V. EXPERIMENTAL RESULTS

In this section, we present several experimental results on
both synthetic and real images. For the smooth versions of
the Heaviside and Dirac delta functions, we use H (z) = § +
Larctan (2) and dc(2) = & ==, With € = 1. In Sections V
A-C, g (f) is constant (i.e. ¢ = C). The time step At is taken
to be between 0.001 and 0.05.

A. Examples

> T €

(a) Initial Curve (b) 2 iterations

»—€ » €

(c) 3 iterations (d) Final Curve

Fig. 1. Two Arc Edge Sets. The initial curve undergoes changes in topology.

The edge set can be composed of combinations of curves
with and without endpoints. To test these cases, two noisy
synthetic images are used. Figure 1 includes two arc edge sets
and is initialized by using one arc. Within two iterations the
curve locates the edge structures. The last few iterations refine
the curve and remove non-edge components.

In Figure 2, the edge set is composed of an arc edge and
an edge without endpoints. The curve is initialized locally to
the edge structure and converges within a few iterations. Both
structures are captured using the same level set functions.

B. Edges without Endpoints

In the case where the edge set is a priori known to not
include arc edges, the energy (equation (9)) reduces to the

b €

L

(a) Initial Curve (b) 2 iterations

h € h €

(c) 3 iterations (d) Final Curve

Fig. 2. Two Edge Structures. The curve is contains both endpoints and
endpoint free components.

following equation

B0) = [ <g (f)lWl—W) 5(6)de

+811IV | L=

which is equivalent to equation (9), with v being a fixed pos-
itive function. In this case, the proposed model gives different
results than existing models. In Figure 3, using multiple curves
(same level set function) as the initial condition, the Shapes
image is segmented. The flow is qualitatively different than
those of CV [7], GAC [5], or Snakes [16] due to both the
non-Riemannian metric and the Lipschitz regularizer. These
allow the curve to form kinks and corners. Notice that in the
intermediary iterations, the curve grows along the edges (see
Figure 3 (c)).

In Figure 4, the method is applied to an illusory contour
which does not exist in the sense of sharp intensity changes.
The curve is initialized around the contour and shrinks until
capturing the shape.

(10)

C. Edge Sets with Arcs

Edge sets with arcs appear frequently in astronomical and
physical imaging. We apply our method to locating arc edges
in two real images. In Figure 5, the front of a comet is located
using an arc as the initial curve. Within a couple of iterations,
the front tip is located, while several more are needed to
capture the entire comet front.

In Figure 6, the method is applied to a plasma shock front.
The edge is of low constrast and has a long tail of decay;
however, our method is able to accurately capture the full edge
set.

In Figure 7, the results in Figure 5 are compared to solutions
from existing methods. The CV and GAC method both locate a
loop around the interior of the comet and miss both the comet
tip and the low constrast comet sides. On the other hand, the



(a) Initial Curve (b) 1 iteration
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(c) 75 iterations (d) Final Curve

Fig. 3. Segmentation of Shapes Image
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(a) Initial Curve (b) Final Curve

Fig. 4. Locating Illusory Contours

(a) Initial Curve (b) 5 iterations

(c) 35 iterations (d) Final Curve

Fig. 5. Locating the Front of a Comet (courtesy: NASA and STScI)

(a) Initial Curve (b) 10 iterations
(¢) 50 iterations (d) Final Curve

Fig. 6. Locating a Plasma Shock [29]

AT [2] edge function and Canny edge detector locate the tip
correctly and approximate the edge set by an arc. However,
both of these methods locate the high constrast interior region
of the comet and thus over-segment the image.

In Figure 8, the solution from Figure 6 is compared to the
same existing methods. The CV method locates the lighter
region in the top right corner of the images and it does not
locate the plasma shock. The GAC solution locates the region
of high constrast along one of the sides of the shock; however,
it does not locate the other side of the shock (the top part) and
undersegments the front. Once again, the AT edge function
and Canny edge detector both over-segment the solution and
do not locate the low constrast regions.

The comparisons show the improvements and accuracy
gained by our proposed model.

D. Geodesic Length

In this section, we take g (f) = C(f+4), where § is a small
postive constant and C' is a positive constant. The parameter
0 is needed to keep g strictly positive and thereby acts as a
small length regularizer.

In Figure 9, the method is applied to region detection (in
particular linear-structure detection). The result (Figure 9 (d))
is qualitatively different from that of the GAC solution (Figure
9(e)). The GAC is smooth along the entire curve, missing some
of the local geometry that our solution captures.

Figure 10 displays our method applied to linear-structure
detection with multiple intializations. In both cases the final
curve locates the bridge structure correctly. Notice that as long
as the curve is initialized locally to the desired structure, the
different initializations converge to similar final edge sets (see
Figure 10 (d) and (h)).

VI. CONCLUSION

This work presents a new image segmentation and edge
detection technique using a free curve representation of the
edge set. Within this free curve framework, we propose a



(a) Proposed Method (b) CV

(d) AT

(e) GAC solution

Fig. 9. Locating Dark Region in an Electron Microscopy Image [1]

[

(e) AT (Threshold) (f) Canny Edge Detector

Fig. 7. Comparisons on Comet Image (courtesy: NASA and STScI)

(a) Proposed Method

(c) GAC

(e) AT (Threshold) (f) Canny Edge Detector
(g) 50 iterations (h) Final Curve

Fig. 8. Comparisons on Plasma Image
Fig. 10. Different Initializations for Linear-Structure Detection



segmentation model which can capture a variety of edge
structures. The model is related to the Mumford and Shah
model for image segmentation and recovery in an asymptotic
sense where only the edge set is considered. The result is
a variational edge dectector which can quickly locate either
edges, region boundaries, or linear-structures.
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APPENDIX A
DERIVATION OF EULER-LAGRANGE EQUATIONS

Let ¢,1) € W1 and assume that the absolute value, Dirac
delta, and Heaviside functions are replaced by their differ-
entiable approximations and recall the unregularized energy
below.

Eo(¢, ) = / <9 (£ IVel -

To compute the the first variation, let n € W and
differentiate the energy with respect to perturbation using these
functions. First, to find the minimizer ¢, we fix 1 define
G(e) := E(¢ + en, ) and compute G'(0) =

(Vo V)

o ) B(6)H () da

iE(cb + en, 1p)

= */5¢>+677 )<9|V¢>+6V77|
V(b Vf+eVn- Vf) )dw
[V + eV

Assuming sufficient regularity, the integral and the derivative
can be interchanged. For the first term:

[ 5 (610 + vnlso+ en ) ds

- / Vo+evn
B g|v¢+eV77|

4 / gIVé + Valé (¢ + en)n H(Y)de

0(¢p + en)H (W)dx

Next, set ¢ = 0 and integrate by parts (assuming Neumann
boundary conditions)

/( Vgl Vi S(@H (Y )+9|V¢5'(¢)77H(¢)> dx

Vol
— /_5(¢) div (gH(¢)|§Z|) n dx

[ |aiv (smwisorgs ) + aivow @] n do

For the second term, defining S = V¢ - Vf (for simplicity),
we have the following.

d ((S+eVn Vf)°
/i (Wéw + 677)H(1/))> d

B 2(84€Vn-Vf)Vn-Vf
-/ ( Notevy @t

[ (S+eVn- V)2 (Vo +eVn) - Vn(s
[V$ + V|3
(S +eVn-Vf)?
Vo + eV

(¢ + 677))

&' (¢ + en)n) H(y)dx

Setting € = 0 and integrating by parts yields:

25 V- Vf S v¢-vn)
/ << Vol vop )0

(S+eVn-Vf)?, .
e 5(¢)n>H(w)d
B , 25V  S* V¢
-/ (‘ aw (s (5 - Yoo )
s?
+|V¢|5 (¢)H(¢)>ndﬂc

- [ o (s (35t = o)) o

Since both hold for all » we can take the minimizing equation
as (replacing S)

v Vo-VIV
0:_5(¢)div<H(¢)<9|ij| : ¢S|V¢if :
_(V6-V))' Vé

)

Now embedding this equation in a time dependent scheme (in
the descent direction) gives the following equation.

Vol?

o6 Vo 2V ViVS
o~ Olo)div (HW) (9 N
(Vo Vi)?

)

Lastly, repeating the arguments above in terms of ¢ yields the
following.

Vol?

dip

2
W = 5w)s0) (mw - <V¢Vf>>

IVl
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