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Abstract—This paper considers a pursuit-evasion game where
a number of pursuers are attempting to capture a single evader.
Cooperation among multiple agents can be difficult to achieve,
as this coordination may require considering all possible actions
of the agents in question. This work presents a decentralized,
real-time algorithm for cooperative pursuit of a single evader by
multiple pursuers in bounded, simply-connected planar domains.
The pursuers share state information but compute their inputs
independently. No assumptions are made about the evader’s
control strategies other than requiring evader control inputs
to conform to a limit on speed, and proof of guaranteed
capture is shown when the domain is convex and the players’
models are identical. Simulation results are presented showing
the effectiveness of this strategy, and experimental results using
the pursuit strategy to guide human players in a pursuit-evasion
game are also presented.

I. INTRODUCTION

Cooperation between agents is often a source of consid-
erable difficulty for adversarial games with many agents.
Computing solutions over the joint input space of multiple
agents can greatly increase the computational complexity
of the problem. This paper considers a multi-agent pursuit-
evasion game, with a number of pursuers attempting to capture
a single evader in a simply connected planar region. The
pursuers may have speed equal to or faster than the evader,
and the objective is to find a successful cooperative pursuit
strategy for the pursuing agents.

The challenge is to find a solution strategy that induces
effective cooperation among the pursuers without incurring
a significant computational burden. To accomplish this, an
approach is taken that allows computations to occur only in the
state space of single agents instead of the high dimensional
joint state space of all agents. This allows solutions to be
computed quickly and in real-time.

This work presents a decentralized, guaranteed pursuit strat-
egy where the pursuers cooperatively minimize the area of the
evader’s safe-reachable set. The evader’s safe-reachable set is
the set of all points that the evader can move to without being
captured along the way by a pursuer. The set can be computed
using a modified fast marching method (FMM) algorithm [1],
or analytically for convex game domains when the pursuers
and evader have equal speeds [2]. Each pursuer influences
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the evader’s safe-reachable set only on a portion of the safe-
reachable set’s boundary, analogous to the shared Voronoi
boundary in a Voronoi decomposition. Thus each pursuer’s
input decouples from that of the other pursuers and can be
computed independently, but their inputs are coupled through
the safe-reachable set and the evader’s position, giving rise
to cooperation between the pursuers. The pursuit algorithm
is thus decentralized in the sense that the pursuers compute
their control actions independently given the agent positions,
which is the only shared information, resulting in real-time
computation of the control inputs. Some elements of this pur-
suit algorithm were first presented in [3] for convex domains
where the evader and pursuers have equal speeds. This work
includes the previous results and also extends the algorithm
to more general domain geometries and agent speeds, and
includes further simulation and experimental results.

For convex domains and equal speeds, this pursuit strategy
results in guaranteed capture of the evader in finite time
regardless of the strategy or inputs of the evader. Empirically,
the algorithm is shown to result in effective cooperation
between pursuing agents, resulting in superior performance
to techniques such as the pure pursuit strategy, where the
pursuers attempt to minimize the instantaneous distance to the
evader. This ability to engender cooperation is one of the key
advantages of the strategy proposed in this chapter.

In addition, reachability and reachable sets are natural,
intuitive tools to use with human agents and hierarchical
control frameworks [4], [5]. In this particular case, the safe-
reachable set of the evader can be used to create intuitive vi-
sualizations for a pursuing human agent. In experiments based
on the BErkeley Autonomy and Robotics in CApture-the-
flag Testbed (BEARCAT) with human agents, human pursuers
utilizing the pursuit strategy with appropriate visualization of
the set were able to capture an evader even in the presence of
disturbances such as GPS noise and communications delay.

The following sections will present the pursuit strategy
in detail, as well as simulation and experimental results
demonstrating its use. First, related work is presented in
Section II. The pursuit-evasion problem in question is defined
in Section III, and its formulation as a differential game is
discussed. Section IV lays out the pursuit strategy, first for
the case of equal-speed pursuers and evader in a convex
domain, and then for the more general case of non-convex
domains and unequal speeds. A number of simulations are
presented comparing the performance of the proposed strategy
against the pure pursuit strategy. Section V describes these
simulations and some comparative tests that were conducted
for evaluating the algorithm. Experimental results are also
presented for games involving human agents, and these are
described in Section VI. These experiments demonstrate the
feasibility of the safe-reachable area minimization strategy not
only for autonomous agents, but also as a tool for guiding and
coordinating human agents. Finally, Section VII concludes the



paper with a discussion of the algorithm and results.

II. RELATED WORK

The most complete approach to solving pursuit-evasion
games is to formulate the problem as a differential game, and
then solve the appropriate related Hamilton-Jacobi-Isaacs(HJI)
partial differential equation(PDE) [6], [7], [8], [9]. The game
is defined by an appropriate value function representing the
capture time, with the evader attempting to maximize the
time and pursuers attempting to minimize. This value can
be computed via a related HJI equation, with appropriate
boundary conditions, and this can be used to synthesize tra-
jectories and controls that are optimal with respect to capture
time. Solutions are typically found either using the method
of characteristics [6], [8], where single trajectories are found
by integrating backward from a known terminal condition, or
via numerical approximation of the HJI equation on grids [9],
[10], [11], [5].

The characteristic solutions are useful in understanding
optimal solutions qualitatively, but can be of limited utility
in extracting control inputs. The method requires backward
integration from a terminal point, which makes it difficult to
generate strategies when only the initial state of the agents is
known. HJI computation on grids suffers from the curse of
dimensionality: computing solutions to HJI equations is com-
putationally infeasible for large problems, as the grid required
for approximating the value function grows exponentially as
the size of the state space increases.

For certain games and game configurations, it is possible to
construct strategies for the agents geometrically. For example,
pure pursuit, where a pursuer minimizes the instantaneous
distance to the evader, is the optimal single-pursuer strategy
in an open environment [6] and is guaranteed to capture
the evader in simply-connected regions [12]. Strategies have
also been found for coordinating groups of pursuers in open,
unbounded spaces [13]. In general, such geometric methods
are computationally efficient in generating control strategies,
but are limited to relatively simple game environment with
no obstacles. Inhomogeneous speed constraints, such as that
occasioned by varying terrain, also present a challenge to
geometric approaches.

In addition to games played in continuous time on contin-
uous spaces, there has also been research into discrete games
played on graphs, with the agents taking turns to move [14],
[15]. This work on pursuit-evasion games on graphs has also
led to results for games in continuous spaces, particularly
for a class of games known as visibility pursuit-evasion [16],
[17], [18]. The main difficulty with regards to discrete games
is computational complexity. For either pursuit-evasion on
graphs or visibility pursuit-evasion, solution strategies are
usually found by searching over a large set of discrete actions,
limiting the size of problems that can be practically solved,
especially when multiple agents are involved on a side.

When the computation required to find optimal or guaran-
teed strategies is intractable due to either problem complexity
or the need for real-time solutions, a form of model-predictive
control (MPC) is often employed. In an MPC formulation,

an optimization problem is solved over the control actions of
one side while using a model to predict opponent actions.
This solution is implemented for a short time period, and
the optimization is then re-solved using the new agent states.
Feedback via this recomputation is used to correct for errors in
the prediction model. This strategy has been used for a number
of games, for example in complex pursuit-evasion games such
as air combat, where the roles of the agents may change over
time [19], [20].

In general, MPC approaches work best when the predictive
model used is a good approximation of the actual strategy of
the opponent. When this is true, control inputs can be quickly
and efficiently generated for the controlled agents using stan-
dard optimization tools. However, proofs of optimality and
guarantees for the solutions are usually not available.

The overview above highlights the trade-offs between opti-
mality (in terms of capture time), guarantees for capture, prob-
lem complexity, and computational speed that must be made
in control design in adversarial games. Optimal, guaranteed
solutions come at the price of either simplified problems, slow
computation, or both, while real-time computation usually re-
quires simple problems or loss of optimality and completeness.
The research presented here is no exception to this rule. As
the ultimate goal of this work is to provide useful, practical
solutions, optimality may be sacrificed for computationally
efficient solutions that nonetheless possess guarantees with
respect to capture. The following sections will discuss the
problem formulation and the strategy formulated to meet these
needs.

III. THE COOPERATIVE PURSUIT PROBLEM

Consider a multi-agent pursuit-evasion game involving N
pursuers and a single evader, taking place in an open, simply
connected region Ω in R2. Let xe ∈ R2 be the position of the
evader and xip ∈ R2 be the position of pursuer i. The equations
of motion are

ẋe = d, xe(0) = x0
e,

ẋip = ui, x
i
p(0) = xi,0p , i = 1, ..., N, (1)

where d and ui are the velocity control inputs of the evader
and pursuers, respectively, and x0

e, x
i,0
p ∈ Ω are the initial

evader and pursuer positions. The respective agent inputs are
constrained to lie within sets Ui for the pursuers and D for
the evader. In this paper, Ui and D are assumed to be the
following:

D = {d | ||d|| ≤ ve,max}, Ui = {ui | ||ui|| ≤ vi,max}, (2)

for some maximum speeds ve,max for the evader and vi,max
for each pursuer. The motions of the evader and pursuers, as
described by equation (1), are also constrained to lie within
the region Ω, with

xe(t), x
i
p(t) ∈ Ω, ∀t ≥ 0. (3)

Any velocity input d(t) or ui(t) which satisfies the constraints
in equations (2) and (3) is called an admissible input for the
evader or pursuer i, respectively.



The goal of the pursuers is to capture the evader by having
at least one of the pursuers bring the evader within a distance
rc of the pursuer. Let C(t) be the set of all positions in which
the evader is captured at time t, that is

C(t) = {y | ∃i, ||y − xip(t)|| ≤ rc}

The capture condition for the pursuers is then given by

xe(t) ∈ C(t). (4)

To achieve this capture condition, each pursuer selects
control inputs using a pursuit strategy µi(xe, x1

p, ..., x
N
p ), based

upon observations of the evader and pursuer positions at each
time instant, resulting in the closed-loop system dynamics:

ẋe = d, xe(0) = x0
e,

ẋp
i = µi(xe, x

1
p, ..., x

N
p ), xip(0) = xi,0p , i = 1, ..., N (5)

The evader may use some strategy γ(xe, x
1
p, ..., x

N
p ) to avoid

the pursuers. Any strategy µi which satisfies the constraints
from equations (2) and (3) is referred to as an admissible
pursuit strategy for pursuer i, and similarly for γ. The sets of
admissible strategies for the pursuers and evaders are denoted
U and D, respectively.

A precise statement of the problem for the multi-agent
pursuit-evasion game can now be given as the following: for
any initial configuration x0

e, x
i,0
p ∈ Ω satisfying x0

e /∈ C(0),
find an admissible choice of pursuit strategy µi for each
pursuer i such that, regardless of any admissible choice of
evader input d, the capture condition (4) is satisfied for some
time t <∞.

IV. PURSUIT VIA SAFE-REACHABLE AREA MINIMIZATION

The pursuit strategy proposed is based on the concept of
the safe-reachable set as presented in [1]. The evader’s safe-
reachable set Se is defined as the set of all points in Ω that
the evader can directly move to without being captured by a
pursuer. The strategy is designed so as to decrease the area of
Se over time. Intuitively, as this area decreases towards zero,
the capture condition will be satisfied.

The definition of the safe-reachable set is briefly summa-
rized below. Given initial conditions x0

e, x
i,0
p , a point y ∈ Ω is

safe-reachable if there exists some γ ∈ D and t ≥ 0 such that
xe(t) = y and xe(s) /∈ C(s) for all s ∈ [0, t] and all µi ∈ U.
The safe-reachable set Se of the evader is then defined as

Se = {y ∈ Ω | y is safe-reachable}.

Define the minimum time-to-reach function ϕ : Ω→ R for the
evader constrained to Se :

ϕ(y) = min{t | xe(t) = y, xe(s) ∈ Se,∀s ∈ [0, t]}. (6)

Similarly, a minimum time-to-capture function ψc : Ω → R
for a pursuer in Ω is defined as:

ψc(y) = min{t | y ∈ C(t), xp(s) ∈ Ω,∀s ∈ [0, t]}. (7)

The minimum time-to-capture function represents, for a point
y, the minimum time required for the pursuer to capture the

evader if the evader were stationary at y. Se relative to a single
pursuer is therefore

Se = {y | ϕ(y) < ψc(y)}. (8)

For multiple pursuers, the evader must reach a point y before
all pursuers. Let ψci be the minimum time-to-capture function
for pursuer i. The evader must reach the point y in less
time than the minimum of all of the time-to-capture functions.
Therefore

Se = {y | ϕ(y) < ψci (y),∀i}.

Observe that the definitions of Se and ϕ are interrelated. Com-
puting Se requires simultaneously computing the set Se and
the values of ϕ within that set. When the pursuer and evader
speeds are equal, the safe-reachable set is equivalent to the
generalized Voronoi decomposition of the agents [2]. In more
complex situations the appropriate time-to-reach values can
be computed using modified fast marching methods (FMM) as
described in [1]. FMM [21], [22], [23] is a single-pass method
used to numerically approximate the Eikonal equation, which
for the agent dynamics described here can be used to compute
the time-to-reach and time-to-capture functions.

It should be noted that Se is defined in the open-loop
sense, in that a point in Se can be reached by the evader
moving directly toward that point and ignoring the actions
of the pursuers. Furthermore, the computational efficiency of
the proposed control strategy directly results from the fact
that Se is defined in the open-loop sense. On the other hand,
the feedback nature of the strategy comes from the receding
horizon implementation of the open-loop controls. Namely,
the minimization of the open-loop safe reachable is carried
out at each time instant, given the current measurement of
system state. The game is still played in the closed-loop sense
in that the pursuers react to the movements of the evader (and
the evader is presumably reacting to the pursuers). Se is used
by the pursuers to guide their pursuit strategy but does not
necessarily affect the actions of the evader itself.

Since Se depends only on the position of the agents, the
area A of Se depends only on the locations of the pursuers
relative to the evader. The time derivative of A is given by

dA

dt
=
∂A

∂xe
ẋe +

N∑
i=1

∂A

∂xip
ẋip (9)

Now consider a cooperative pursuit strategy that jointly
minimizes dA

dt . According to equation (9), this joint objective
can be decoupled into the individual objectives of minimizing
∂A
∂xi

p
ẋip for each pursuer i. A pursuer i is said to share an active

boundary with the evader if there is a portion of the boundary
of Se where ψci (y) < ψcj(y) for all points y in this portion
and all other pursuers j. In other words, there is a portion
of the boundary of Se that is defined purely by the position
of pursuer i. This is analogous to having a shared Voronoi
boundary with the evader in a Voronoi decomposition.

Let Ne be the set of all such pursuers that share an active
boundary with the evader. The area A only depends on the
pursuers in Ne, so ∂A

∂xi
p

= 0 for all i /∈ Ne. Any pursuer i
which does not share an active boundary with the evader may



simply use the pure pursuit strategy. On the other hand, for
each pursuer i ∈ Ne, the choice of pursuit strategy which
minimizes equation (9) is given by:

u∗i = µ∗i (xe, x
1
p, . . . , x

N
p ) , −vi,max

∂A
∂xi

p

|| ∂A∂xi
p
|| .

Computing ∂A
∂xi

p
for each pursuer depends on the geometry

of the game domain Ω and the relative speeds of the agents.
An analytic solution is found below for convex domains with
equal agents’ speeds, and a more general algorithm based on
fast marching methods is presented for non-convex domains
with unequal agent speeds.

A. Convex Domains with Equal Speeds

For games played in convex domains with agents of equal
speeds, the safe-reachable set of the evader is equal to the
evader’s Voronoi partition. Let S(D) = {Se, S1, . . . , SN}
be the Voronoi partition of Ω generated by the points
{xe, x1

p, . . . , x
N
p }:

Se = {y ∈ Ω | ‖y − xe‖ < ‖y − xip‖,∀i ≤ N},
Si =

{
y ∈ Ω | ‖y − xip‖ ≤
min{‖y − xe‖, ‖y − xjp‖},∀j 6= i

}
, i ≤ N

The edge shared by Se and Si, i ∈ Ne is called the line
of control for pursuer i and is denoted by Bi, where Li is
the length of Bi (see Figure 1). It can be observed that by
appropriate re-scaling of the dynamics in equation (5), the
region Ω, and the capture radius rc, it is sufficient to consider
this problem for the case where ve,max = vi,max = 1. Thus,
for the rest of the convex, equal-speed analysis, it is assumed
without loss of generality that ve,max = vi,max = 1 in
equation (2).

1) Convex pursuit strategy: With a convex game domain
and equal agent speeds, an analytic expression for the pursuer
strategies µ∗i , i ∈ Ne can be found. Moreover, it will be shown
that the analytic expression is nicely captured by a simple
description of the control strategy, namely that pursuer i shall
always head towards the midpoint of the line of control Bi if
it has such a line of control.

The construction of this pursuit strategy proceeds using
a particular choice of local coordinate system. First, let
ξi(xe, xp) = xe−xip be the displacement vector pointing from
the location of pursuer i towards the location of the evader.
When there is no ambiguity, its arguments will be omitted and
this vector will be denoted simply by ξi. Denote δmin to be the
minimum of ||ξi|| as i ranges from 1 to N . As δmin(0) > rc
until capture, at which δmin(T ) = rc, ||ξi|| ≥ rc for all i ≤ N
and t ∈ [0, T ]. Define ηih = ξi

‖ξ‖i and let ηiv ∈ R2 be a unit
vector orthogonal to ηih, as shown in Figure 1(a). The vectors
{ηih,ηiv} define a local coordinate system that depends on the
locations of xe and xip. For any y ∈ R2 and (xe, x

1
p, ..., x

N
p )

such that y + xip ∈ Ω, define

A+
i (y)|(xe,x1

p,...,x
N
p ) = A(xe, x

1
p, ..., x

i
p + y, ..., xNp ).

Define Di
hA and Di

vA as the directional derivatives of A along
ηih and ηiv , thenD

i
hA|(xe,x1

p,...,x
N
p ) = limε→0

A+
i (ε·ηi

h)|(xe,x1
p,...,xN

p )−A

ε

Di
vA|(xe,x1

p,...,x
N
p ) = limε→0

A+
i (ε·ηi

v)|(xe,x1
p,...,xN

p )−A

ε ,

(10)

where A(xe, x
1
p, ..., x

N
p ) is denoted by A for brevity. From

this expression, the partial derivative of A with respect to xip
is given by

∂A

∂xip
= Di

hA · ηih +Di
vA · ηiv. (11)

Lemma 1. For any i ∈ Ne, it is true that

Di
hA = −Li

2
,

Di
vA =

l2i − (Li − li)2

2||ξi||
,

where Li is the length of the line of control Bi and li is the
length of the segment of Bi on the side of the intersection of
ξi with Bi opposite to ηiv , as shown in Figure 2.

Proof: Perturbation along ηih: A perturbation ε in the
pursuer’s position toward the evader moves the line of control
ε
2 toward the evader, and generates a corresponding change
in the area of the evader’s Voronoi cell δAih, as shown in
Figure 2(a). This change in area is

δAih = −Liε
2

+O(ε2),

where the O(ε2) term depends on the angle of intersection
between Bi and the boundaries of the Voronoi cell Se. From
this expression, the directional derivative of A along ηih can
be calculated as

Di
hA = lim

ε→0

δAih
ε

= −Li
2
.

Perturbation along ηiv: There are two different scenarios
for perturbation along ηiv , corresponding to the two pursuer
configurations shown in Figure 1(b). In one case, as for x2

p in
Figure 1(b), ξi intersects Bi. A perturbation of ε, as shown
in Figure 2(b), will cause the evader’s Voronoi cell to shrink
above the new intersection by δAiv,1 and grow below it by
δAiv,2. Let δAiv = δAiv,2 − δAiv,1, with

δAiv,1 =
1

2
((Li − li)−

ε

2
)2 ε

‖ξi‖
+O(ε2),

δAiv,2 =
1

2
(li +

ε

2
)2 ε

‖ξi‖
+O(ε2),

where the terms O(ε2) again depend on the angle of intersec-
tion between Bi and the boundaries of the Voronoi cell Se.
Thus, the resulting changes in area will be

δAiv,1 =
(Li − li)2ε

2||ξi||
+O(ε2)

δAiv,2 =
l2i ε

2||ξi||
+O(ε2)



Line of Control Se Se

(a) (b)

Fig. 1. Illustrations showing the evader’s safe-reachable set Se in a convex domain with equal agent speeds (a) for a single pursuer and evader
and (b) with an additional pursuer.

xi
p

xe xi
p

xe xi
p

xj
p

xe

(a) (b) (c)

Fig. 2. Variational change in area of the evader’s safe-reachable set with respect to (a) a perturbation toward the evader, (b) perturbation parallel
to the line of control, and (c) when another pursuer is present and ξi no longer intersects Bi, as in Figure 1(b).

which implies

Di
vA = lim

ε→0

δAiv
ε

=
l2i − (Li − li)2

2||ξi||
.

The second case is that of x1
p in Figure 1(b), where ξi no

longer intersects Bi due to the presence of other pursuers. As
shown in Figure 2(c), the change in area is

δAiv = δAiv,2 − δAiv,3,

where δAiv,2 is calculated as before and

δAiv,3 =
1

2
(li − Li +

ε

2
)2 ε

‖ξi‖
+O(ε2).

Note that here li ≥ Li. Letting ε→ 0 then again it is true that

Di
vA = lim

ε→0

δAiv
ε

=
l2i − (li − Li)2

2||ξi||
.

With the above lemma, the proposed strategy µ∗i can be
rewritten in the local coordinate system as

µ∗i = −
(

αih√
|αih|2 + |αiv|2

· ηih +
αiv√

|αih|2 + |αiv|2
ηiv

)
,

(12)



where αih and αiv are given by

αih = −Li
2
, αiv =

l2i − (Li − li)2

2||ξi||
.

Lemma 2. It can be shown that under this choice of pursuit
strategy, ui always points toward the interior of Ω, thus
satisfying the constraint from equation (3).

The proof is straightforward but requires some amount of
algebra and is thus omitted.

Using the above results, the pursuit strategy can be shown
to take the following form:

Theorem 3. Under the proposed pursuit strategy, pursuer i
should always head for the midpoint of the line of control Bi.

Proof: From Lemma 1, the control input is the vec-
tor (Di

hA,D
i
vA) in the local coordinate system defined by

{ηih,ηiv}. Let α be the angle between the velocity input and
the local horizontal axis defined by ηih. It is true that

tan(α) =
Di
vA

Di
hA

=

l2i−(Li−li)2
2||ξi||

−Li

2

= −2li − Li
||ξi||

; (13)

Let β be the angle between the local horizontal axis and the
vector from pursuer i to the midpoint of Bi. Then

tan(β) =
li − (Li/2)

||ξi||/2
= −2li − Li

||ξi||
; (14)

Therefore α = β, thus establishing the theorem.
2) Proof of guaranteed capture: The pursuit strategy out-

lined above for the convex, equal speed game is guaranteed to
capture the evader in finite time, regardless of any admissible
evader input d. It can be seen that if this holds for the case
of a single pursuer (N = 1), then the conclusion also extends
to the case of multiple pursuers (N > 1). Indeed, for the
case of N > 1, one can choose any pursuer i which is a
Voronoi neighbor of the evader and use the arguments for the
case of N = 1 to show that the capture condition will be
satisfied. This section presents the proof for a single pursuer.
Correspondingly, the notation from above will carry through
without the indices i.

First, observe that as A approaches zero, the evader’s
Voronoi cell approaches either a line or a point. Either of the
two cases clearly implies ‖xe − xp‖2 → 0. The strategy here
is then to show that, under the proposed pursuit strategy µ∗

and any admissible evader control input d, either the area A
or the distance δ is guaranteed to decrease until the capture
condition is met.

In terms of preliminaries, by Lemma 1,

∂A

∂xp
= αhηh + αvηv.

It can be also verified in a similar manner as the proof of
Lemma 1 that the partial derivative ∂A

∂xe
in the local coordinate

system is given by

∂A

∂xe
= αhηh − αvηv. (15)

Also recall that the variable L in the statement of Lemma 1
depends on the spatial locations of the evader and the pursuer,

as well as the geometry of the region Ω. For this proof, make
the following definitions of parameters lmin and lmax, which
depend solely on the geometry of Ω:{

lmin = infxe∈Ω,xp∈Ω L(xe, xp)

lmax = supxe∈Ω,xp∈Ω ||xe − xp||.
(16)

Since Ω is bounded and the game ends upon capture, it is true
that lmin > rc, lmax <∞, and L ≤ lmax.

The following result shows that the area A is always non-
increasing under the pursuit strategy µ∗ for a single pursuer.

Lemma 4. Under the proposed pursuit strategy µ∗(xe, xp),
the area A satisfies dA

dt ≤ 0 for any admissible evader control
input. Furthermore, dA

dt = 0 if and only if the evader follows
the following strategy:

γ∗(xe, xp) =
αhηh − αvηv√

α2
h + α2

v

. (17)

Proof: For an arbitrary d with ‖d‖ ≤ 1:

dA

dt
=
∂A

∂p
µ∗(xe, xp) +

∂A

∂e
d

=−
√
α2
h + α2

v + (αhηh − αvηv)T d ≤ 0,

where equality holds if and only if d(t) = γ∗(xe(t), xp(t)).

To prove that the capture condition is achieved in finite time,
it is necessary to show that the distance between the pursuer
and the evader is strictly decreasing whenever the area A is
constant. For this purpose, define

z(xe, xp) = ‖ξ(xe, xp)‖2 = (xe − xp)T (xe − xp).

Clearly, the variable z is the squared Euclidean distance be-
tween the evader and pursuer. From the preceding discussions,
the range of z lies in [r2

c , l
2
max]. The following result shows

that ż < 0 whenever Ȧ = 0.

Lemma 5. If Ȧ = 0, then under the pursuit strategy µ∗, the
following holds:

dz

dt
= − 4z√

z + (lmax − lmin)2
≤ −4r2

c√
r2
c + l2max

.

Proof: By Lemma 4, Ȧ(t) = 0 if and only if d(t) =
γ∗(xe(t), xp(t)). Thus, if the pursuer input is selected accord-
ing to the strategy µ∗, then whenever Ȧ = 0, then

ż =2(xe − xp)T (ẋe − ẋp)

=4ξT

(
αh√

α2
h + α2

v

ηh

)

=
−2L‖ξ‖√

L2

4 + (l2−(L−l)2)2

4‖ξ‖2

=− 4z√
z + (2l − L)2

≤ −4r2
c√

r2
c + l2max

,



where the second equality follows from the fact that ξTηv =
0, and the last inequality follows from the monotonicity of the
function 4z√

z+(2l−L)2
for z ≥ 0.

By this result, z is strictly decreasing whenever the area A
remains constant. However, there remains the possibility that z
is increasing on time intervals where A is strictly decreasing.
The question then becomes whether there exists an evader
control that can keep z inside [r2

c , l
2
max] while preventing A

from reaching 0. The following result proves that this is not the
case, by exploiting certain properties of the proposed pursuit
strategy.

Lemma 6. Under the pursuit strategy µ∗, if Ȧ ≥ −β for some
positive constant β > 0, then ż ≤ −c(β), where the bound
c(β) is given by

c(β) =

√
2r2
c

lmax
− 4lmax

lmin
β. (18)

Proof: Under strategy µ∗, the following identities hold{
Ȧ = −

√
α2
h + α2

v + (αhηh − αvηv)T d
ż = 2(xe − xp)T d− 2z√

z+(2l−L)2

Now suppose Ȧ ≥ −β. From the relations ηh =
xe−xp

‖xe−xp‖ ,
αh = −L2 , and αvηTv d ≥ −|αv|, it is true that

(xe − xp)T d ≤ −
2‖xe − xp‖

L

[√
α2
h + α2

v − β − |αv|
]

≤ 2‖xe − xp‖β
L

≤ 2lmax

lmin
β,

which implies that

ż ≤ 4lmax

lmin
β −
√

2r2
c

lmax
.

Notice that this lemma also implies Ȧ < −β whenever
ż > −c(β). Now the previous results in this section will be
combined to show that under µ∗, the area A or the distance δ
decreases until the capture condition is met.

Consider an “energy” function E

E = kA+ z

for a positive constant k (to be defined subsequently). Clearly,
E = 0 if and only if A = 0 and z = 0, both of which imply
that capture occurs. A proof will now be presented that E will
decline to zero as t increases.

Theorem 7. Under the pursuit strategy µ∗, if the capture
condition has not been achieved before time t > 0, then for
some positive constants k, β > 0

E(t) ≤ E(0)− c(β)t

where E(0) is the initial energy and c(β) is defined as in (18).

Proof: First, it is assumed that the β parameter in
Lemma 6 is chosen such that c(β) > 0. Lemmas 5 and 6
imply that one of the following conditions must be true at any
given time:
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Fig. 3. An example of safe-reachable set computed in a non-convex
game domain, with contours plotted for equal time-to-reach values for
each agent.

1) Ȧ ≥ −β and ż ≤ −c(β), or
2) ż > c and Ȧ < −β

Note that the derivative of E is

Ė = kȦ+ ż

and Ȧ ≤ 0 for all time. Then, under condition 1, Ȧ ≤ 0
and ż ≤ −c(β), thus Ė ≤ −c(β). The rate of change of z
is limited by the maximum speed of the two agents and the
geometry of the domain. Since ż = 2δδ̇, δ ≤ lmax, and δ̇ ≤ 2,
then ż ≤ 4lmax. Now, let k = 4lmax+c(β)

β . Under condition 2,
Ȧ < −β and of course ż ≤ 4lmax, thus Ė ≤ −kβ + 4lmax,
therefore again Ė ≤ −c(β), guaranteeing that the energy will
decrease to 0 in finite time, leading to capture.

B. Non-Convex Domains and Unequal Speeds

For non-convex domains and unequal speeds, it is more
difficult to construct the safe-reachable set geometrically.
Instead, the modified fast-marching method (FMM) presented
in [1] can be used to compute the safe-reachable set on a
grid. The area can then be approximated using the grid and
the gradient computed numerically.

The details of the modified FMM algorithm can be found
in [1] and will not be repeated here. A sketch of the algorithm
is as follows: first, the standard FMM algorithm is used to
compute the time-to-capture ψci (yj,k) for every node yj,k on
the grid. The modified FMM is then used to compute the safe-
reachable set Se, beginning with the current position of the
evader xe, and successively adding points that can be reached
in time ϕ(yj,k) with ϕ(yj,k) < ψci (yj,k),∀i. An example of
the computation performed for a non-convex region with a
triangular obstacle and point capture (rc = 0) is shown in
Figure 3, with equal time-to-reach values plotted for the two
agents. Note that the boundary of Se is no longer a straight
line, since the evader must first move to the corner of the
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Fig. 4. An illustration of a scenario where the pursuer (red triangle)
is slower than the evader (blue circle). Note how Se grows larger as the
pursuer gets closer to the evader.

obstacle in order to reach points in the lower portion of the
game domain.

Let Ns be the number of grid nodes for which ϕ(yj,k) <
ψci (yj,k),∀i. The area of Se can be approximated as

A ≈ Nsh2

where h is the grid spacing. The gradient with respect to
pursuer movements can be numerically approximated by per-
turbing each pursuer by h horizontally and vertically on the
grid and recomputing A. The pursuit strategy is identical, with

u∗i = µ∗i (xe, x
1
p, . . . , x

N
p ) , −vi,max

∂A
∂xi

p

|| ∂A∂xi
p
|| .

There are two things to note about using safe-reachable
area pursuit in non-convex domains with unequal speeds. The
first is that the algorithm is only effective in cases where the
pursuers are at least as fast as the evader. This is due to the
fact that, if the pursuer is slower than the evader, the evader’s

Fig. 5. Illustration of the asymmetry between the evader and the pursuer
when the domain is non-convex.

safe-reachable set actually shrinks in area as the pursuer goes
farther from the evader, as shown in Figure 4. Thus area
minimization will likely not lead to capture.

A second point is that currently no proof has been found
to guarantee capture in the non-convex case, although the
area minimization strategy works well empirically. The major
obstacle in this case is that the game is no longer symmetric
with respect to the area of Se. This is illustrated in Figure 5,
which shows the safe-reachable set for an evader that must
turn around a non-convex obstacle. This configuration gives
an advantage to the evader, as it moves in the same direction
whether it is headed for the point x1 or x2. Thus, if the evader
were to move distance ε toward x1, it has also decreased its
distance to x2 by ε. If the pursuer moves to maintain x1 on the
boundary of the safe-reachable set, then it can move ε toward
x1, but it will have moved some distance less than ε toward x2,
and x2 will have become part of the evader’s safe-reachable
set. In this manner, the evader is able to increase the area of
its safe-reachable set regardless of the pursuer input.

V. SIMULATION RESULTS

A number of simulations were conducted to evaluate the
proposed safe-reachable area minimization pursuit strategy.
The performance of the pursuit strategy was compared in
a sequence of trials against two other pursuit algorithms:
pure pursuit, where each pursuer instantaneously minimizes
the distance between itself and the evader, and a numerical
approximation of the optimal Hamilton-Jacobi-Isaacs solution
on a grid. The pure-pursuit strategy was chosen for compar-
ison purposes because it is straightforward to implement on
arbitrarily defined game domains and is the optimal pursuit
strategy for open domains with no boundaries. It is also
guaranteed to result in capture for closed, simply connected
domains [12]. Several simulation examples will be used to
highlight some qualitative properties of the safe-reachable
area pursuit strategy, and then the quantitative results of the
numerical trials will be presented.
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Fig. 6. Simulation results for a single pursuer (triangle, dashed line)
and evader (circle, solid line), showing (a) the trajectories and (b) the
area of Se and the distance between the agents over time.

A. Illustrative Examples

A few simulations are presented here to highlight some
qualitative aspects of the safe-area pursuit algorithm. The first
set of simulations were conducted in a 10 x 10 square using
the convex, analytic pursuit algorithm. The maximum speed
was 1 for all agents, with capture radius of 0.5, and time steps
of 0.01. In these simulations the trajectory of the evader was
controlled by human input, and pursuers that did not have a
line of control bordering on the evader’s safe-reachable set
were commanded to head straight for the evader.

An example trajectory for a game with a single pursuer is
shown in Figure 6. The critical trade-off between area and
distance is highlighted by this example. Note that initially the
pursuer did not move directly toward the evader, and thus the
distance between the agents did not decrease, but the area
decreased very quickly. Near the end of the game the area
decreased slowly while the distance decreased very quickly.

Figure 7 shows a comparison between the pure pursuit
strategy and safe-reachable area pursuit for a scenario with 3
pursuers and highlights the cooperation in this pursuit strategy.
Pure pursuit is shown in Figure 7(a), and safe-reachable
area pursuit is shown in Figure 7(b). The pursuers began
closely grouped, and in pure pursuit they acted independently,
resulting in a prolonged chase. With the safe-reachable area

pursuit strategy, the pursuers gradually separated to surround
the evader. The cooperative behavior effectively contained the
evader, limiting its movements until capture was achieved.

Pursuit in a non-convex environment is shown in Figure 8,
which shows 2 pursuers (red triangles) pursuing a single
evader (blue circle) in a simple, non-convex region with
a triangular obstacle. The evader’s safe-reachable set Se is
shown at each time, with equal time-to-reach contours plotted
within Se.

The simulations were conducted in Matlab on a Macbook
Pro laptop with a 2.2 Ghz Intel Core i7 processor with 8 GB of
RAM, with computation per time-step of less than 1ms to cal-
culate inputs for all the pursuers in the analytic, convex case,
and about 100ms for each pursuer using FMM. Note that some
small errors are introduced by discretization of the control
scheme when distances between the evader and pursuers are
comparable to the distance traveled by an agent in a single time
step. Reducing the time step alleviates the problem without
eliminating it entirely, and increasing the capture radius also
reduces the chance of this problem occurring. It is possible that
some relationship can be found between step size, velocity, and
the capture radius to formally guarantee this in a discrete-time
situation.

B. Comparison Tests
The results of the comparison tests conducted to evaluate

the safe-reachable area pursuit strategy will now be presented.
Two groups of trials were conducted. The first set of trials
matched safe-reachable area pursuit, pure pursuit, and the
numerical HJI strategy against each other in tests with one
pursuer and one evader. For these tests, a numerical approxi-
mation to the HJI equation was computed on a 40 x 40 grid
for a simple non-convex region, shown in Figure 9(b), and
the pursuer and evader strategies were evaluated by numerical
differentiation. The three different pursuit strategies were then
evaluated against the approximate optimal evader strategy for
500 initial conditions generated randomly.

The results of this test are displayed in Figure 10. In general,
the area-minimization strategy performed slightly worse than
the numerical HJI pursuit strategy, and the pure pursuit strat-
egy performed typically the worst among the three . However,
it should be noted that the numerical HJI strategy depends on
numerical differentiation of the approximated value function
on a grid, and numerical errors can lead to sub-optimal pursuer
and evader actions. For example, in 29% of trials the area
minimization pursuit strategy out-performed the “optimal” HJI
pursuer, and similarly in 8.5% of trials the pure pursuit strategy
resulted in faster capture-times.

In addition to the numerical issues discussed above, due to
computational complexity, the HJI solution can only be found
for the case of a single pursuer. To evaluate the performance of
the pursuit strategy with multiple pursuers, a further series of
tests were conducted comparing safe-reachable area pursuit
with pure pursuit. For these tests, the evader strategy was
defined as the following: the evader selects as its target point
y∗ the farthest point from itself in Se, that is

y∗ = max
y∈Se

δg(y, xe)
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Fig. 7. A scenario with 1 evader (blue circle) and 3 pursuers (triangles, dotted lines) using (a) pure pursuit, and (b) safe-reachable area minimization,
highlighting the cooperation enforced by the safe-reachable area minimization pursuit strategy when the pursuers begin tightly spaced.

where δg is the geodesic distance between y and xe. Once
the evader reaches a certain distance (set here as half of the
capture radius) from y∗, a new target is selected and the evader
will proceed toward this target.

Three sets of trials were conducted with 1, 2, and 3 pursuers,
with one set in a square, convex region using the analytically
derived pursuit formula and two others in non-convex regions
using FMM, shown in Figure 9. For each set, 500 random ini-
tial conditions of pursuer and evader positions were generated.
The results of the tests are summarized in Figure 11, showing
histograms of the difference in time between trials, defined as
the time required for the safe-reachable area strategy minus
the time required for pure pursuit for each initial condition.

Table I shows the fraction of trials in each case where
the area pursuit strategy resulted in faster capture times than
pure pursuit. Figure 11(a) shows the distribution of results in
the convex environment. In this scenario, the safe-reachable
area pursuit strategy resulted in clearly superior performance,
with the vast majority of trials resulting in faster capture
times. The distribution of times seems somewhat bimodal in
these trials, with a number of trials where safe-reachable area
minimization pursuit and pure pursuit performed similarly, and
then a large group where the safe-reachable area minimization
pursuit strategy was clearly superior.

The results for the non-convex scenarios are shown in
Figure 11(b) for the simple non-convex environment, and
in Figure 11(c) for the complex non-convex environment.
The simple non-convex case still resulted in a large majority

of trials where the safe-reachable area minimization pursuit
strategy gave faster capture, although in a smaller percentage
of trials than the convex scenario. The complex non-convex
case showed a decline in the performance of the safe-reachable
area minimization strategy relative to the pure pursuit strategy.
This is due to the fact that the obstacles create areas where the
width of the free space is of similar size to the capture radius,
thus the pure pursuit can still “trap” the evader, lessening the
advantage conferred by the safe-reachable area strategy. In
fact, it is to be expected that as the space becomes more and
more similar to a single long, narrow corridor, the pure pursuit
and area-pursuit strategies should have identical performance.
This is especially evident in the trials with only 1 pursuer,
where only about 50% of trials resulted in faster capture
with safe-reachable area pursuit, with a long tail of trials
where the area pursuit performed much worse than pure
pursuit. These typically occurred in trials where the evader was
able to escape from a confined portion of the game domain
against the safe-reachable area minimizing pursuer, in part due
to numerical errors in the area differentiation. Nonetheless,
the safe-reachable area minimization strategy showed a clear
superiority in the trials with 2 and 3 pursuers, demonstrating
the benefit of cooperation.

VI. EXPERIMENTAL RESULTS

Experiments were conducted using the safe-reachable area
minimization pursuit strategy on the BErkeley Autonomy
and Robotics in CApture-the-flag Testbed (BEARCAT).
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Fig. 8. An example scenario showing 2 pursuers and 1 evader in a non-convex environment, solved using the modified FMM algorithm.
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Fig. 9. Domains used for the comparison simulations.

1 pursuer 2 pursuers 3 pursuers
Convex 91.6% 98.2% 96.6%
Simple Non-convex 67.2% 86.2% 86.4%
Complex Non-convex 48.2% 72.6% 76.4%

TABLE I
PERCENTAGE OF TRIALS FOR WHICH THE SAFE-REACHABLE AREA

MINIMIZATION PURSUIT STRATEGY OUT-PERFORMED THE PURE
PURSUIT STRATEGY.

BEARCAT is a novel testbed for research into automated
assistance for human agents in adversarial games, consist-

ing of smartphones connected to off-board computation and
quadrotor UAVs. The primary purpose of BEARCAT is to
provide a flexible testbed where human agents can partici-
pate in an adversarial game such as capture-the-flag, while
receiving guidance from computational tools and working
with autonomous agents such as UAVs. The testbed allows
experiments to be performed by playing reach-avoid and
pursuit-evasion games on the Berkeley campus. The major
components of BEARCAT are illustrated in Figure 12, con-
sisting of HTC Incredible smartphones [24], laptop computers,
and quadrotor UAVs. The different components are networked
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Fig. 11. Histograms showing the number of trials versus difference in capture time between the pure pursuit and safe-reachable area minimization
strategies for (a) the convex game domain, (b) the simple non-convex domain, and (c) the complex non-convex domain.

via wireless communications, providing a complete system
for both tracking agents and providing them with access to
resources such as computed game solutions and UAV sensing.

The purpose of the tests was to evaluate the feasibility of
the pursuit strategy as a tool for guiding human agents in
a cooperative pursuit task. For these experiments, the UAV
component of BEARCAT was not utilized. The game was
played by two pursuers and a single evader in a small, convex
field measuring about 80m x 40m. Agents were tracked using
HTC Incredible smartphones, with the agent positions, game
region, and the evader safe-reachable set also displayed on the
phones. Pursuer strategies were computed using the analytic
formulation directly on the phones, and the optimal heading
direction was displayed for each pursuer, along with that
pursuer’s active boundary of the safe-reachable set.

Results from one of these experiments is shown in Fig-
ure 13. In this experiment, the pursuers began the game on
the western side of the field, with the evader on the eastern
side. The camera was placed to the north of the field, looking

south. The pursuers were able to successfully trap and capture
the evader.

An important point to note is that during these experiments,
the GPS positions of the agents were not always perfectly
reliable, and as a result the optimal headings were not al-
ways correct. Nonetheless, the pursuers were able to use the
boundaries of the evader safe-reachable set to guide their
actions. Instead of following the optimal headings exactly,
each pursuer’s active boundary of Se gave an idea of that
pursuer’s area of responsibility, such that each pursuer could
still reduce the area of Se by attempting to “push” the
boundary toward the evader by moving toward the perceived
midpoint of the boundary. In addition, the visual display of the
safe-reachable set allowed for implicit cooperation between the
human pursuers, without the need for verbal communication.
Thus, even though the agents were unable to always directly
use the computed optimal headings, the safe-reachable set still
enabled the pursuers to efficiently coordinate in capturing the
evader.
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Fig. 13. Video stills and data plotted for an experiment using the safe-reachable area minimization pursuit strategy in BEARCAT. For visual clarity,
the evader is labeled e and the pursuers are labeled p1 and p2.
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Fig. 12. Components of the BEARCAT experimental platform.

VII. CONCLUSIONS AND FUTURE WORK

The safe-reachable area minimization strategy presented in
this work has several important strengths. The construction
of the safe-reachable set allows a high-dimensional problem
to be reduced to lower dimensions, easing the computational
burden. Additionally, each pursuer can compute its inputs
independently, allowing the strategy to run efficiently in real
time. Yet information is shared through the set itself, enabling
cooperation between the pursuers and reducing capture time.
The safe-reachable set itself also encompasses global infor-
mation about the game domain, giving an advantage over a
strategy like pure pursuit that ignores the presence of obstacles
and boundaries.

One weakness of the strategy as presented is that safe-
reachable area pursuit cannot handle more general domains
that are not simply connected, where obstacles form holes
in the domain. Further work is required to adapt the con-
cepts presented here to more general domains. In addition,

the numerical evaluation of the area gradient may also be
improved. From the simulations and experiments it was noted
that the behavior of the pursuers was typically smoother with
the analytic input formula in convex domains than with the
FMM computation.

Overall, safe-reachable area minimization seems to hold
promise as a cooperative pursuit solution approach. As seen
before in other works [4], [5], the visualization of the reachable
set is a useful tool for human agents. Although GPS noise and
time delay rendered the optimal headings sometimes unreliable
in practice, the visualization of the set itself allowed the agents
to compensate for these disturbances and head in the correct
general direction to capture the evader. This result supports the
idea that reachable sets are effective visual tools for assisting
human agents.
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