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Abstract. In this paper, we investigate theoretically the behavior of Meyer’s image cartoon +
texture decomposition model. Our main results is a new theorem which shows that, by combining
the decomposition model and a well chosen Littlewood-Paley filter, it is possible to extract almost
perfectly a certain class of textures. This theorem leads us to the construction of a parameterless
multiscale texture separation algorithm. Finally, we propose to extend this algorithm into a di-
rectional multiscale texture separation algorithm by designing a directional Littlewood-Paley filter
bank. Several experiments show the efficiency of the proposed method both on synthetic and real
images.
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1. Introduction. In the last decade, based on the work of Meyer [14], many pa-
pers were published on cartoon + textures decomposition models for images. Some of
them address numerical issues [1, 2, 16], others the modeling aspects [3, 5, 9, 13, 15],
a few focus on applications [2, 4, 6, 7, 8, 10]. Finally a very small number of publica-
tions tries to characterize the solutions of such models with respect to the choice of
the parameters [5, 10]. In [21], Tadmor et al. proposed a multiscale cartoon repre-
sentation of an image. They iterate the Rudin-Osher-Fatemi model to consecutively
extract objects that belong to different scales. This work does not deal with textures
at different scales but it is interesting as it provides the relationship between the no-
tion of scale and the choice of the regularizing parameter of the algorithm.
Initially, the idea of decomposing an image is to separate different kind of information:
objects and textures. Indeed, in term of analysis (like, for example a segmentation
task) it is useful to have separated specific information. For example, a classical way
to analyze textures is to use some wavelet type filtering and then use the obtained
coefficients to build a feature vector which can be provided to some classifier. While
the idea of extracting such texture feature vectors directly from the texture part of
the decomposition seems natural, no publication really addresses the construction of
a well-defined texture separation algorithm based on decomposition models. In this
paper, we investigate the possibility to optimally combine image decomposition and
a well chosen filtering to extract specific textures in an image. Based on this result,
we propose a multiscale texture separation algorithm.

To do this program, we propose a general formulation to decompose an image
f ∈ L2(R2) into three parts u, v and w. The first one represents the objects contained
in f , the second part is a residual term while the last one models the highest oscillating
parts in the image.

In our work, we model u, v and w by three different functional spaces, BV,L2 and
the space G which is, in a sense defined below, the dual of BV . Moreover, we use two
complementary parameters λ > 0 and µ > 0 to control the behavior of the algorithm.
Finally, the optimal decomposition must minimize

J(u, v, w) = ‖u‖BV + λ‖v‖2L2 + µ‖w‖G (1.1)
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over all possible decompositions f = u+ v + w of f .
We will see that this program works only if the parameters λ > 0 and µ > 0 are,

a posteriori, fixed accordingly to the processed image. If µ is too large, we necessarily
have w = 0 and the decomposition algorithm is equivalent to the well known Rudin-
Osher-Fatemi (ROF) [17] algorithm. If µ is too small (0 < µ < 4π) then we have
u = 0 and the algorithm degenerates.

The remainder of the paper is as follows. In section 2 we recall the definition
of the used function spaces and some of their properties. Section 3 gives a detailed
presentation of the decomposition model and recall some of its properties which will
be useful to prove our main result. In section 4, we prove a theorem which states
that we can retrieve, almost perfectly, some specific textures from the texture part
and a well chosen Littlewood-Paley filter. Section 5 provides a more precise result in
the case of noisy images. A multiscale texture separation algorithm is proposed in
section 6 and is extended to a directional multiscale texture separation algorithm in
section 7. We conclude this work in section 8.

2. The function spaces. In this section, we recall the definition of the function
spaces used in image decomposition models. In [14], Meyer defined the decomposition
idea on the basis of the ROF model [17] which uses the function space BV (the space
of functions of Bounded Variations) to model objects in an image where the norm on
BV is defined by ‖u‖BV = ‖u‖L1 + |Du| where,

|Du| = sup

{∫
Ω

udivφdx : φ ∈ C∞
c (Ω,RN ), |φ| 6 1 ∀x ∈ Ω

}
(2.1)

Meyer proposed to modify the ROF model by using dual concepts to characterize
textures as oscillating patterns in an image. But rigorously speaking, duals of BV (R2)
or L∞(R2) do not exist. The problem vanishes if we keep the same norm and consider
the closure of S(R2) (Schwartz function class) in the studied space. For example,
instead of BV (R2), we get a (closed) space BV ⊂ BV or instead of L∞(R2) we get
C0(R2) (the space of continuous functions vanishing at infinity), etc.

The dual of BV is the space G ⊂ S ′(R2) (the dual space of S). Meyer shows
that functions or distributions f ∈ G can be seen as the divergence of a vector field
F ∈ L∞(R2) × L∞(R2). More precisely, the G−norm of f ∈ G, denoted ‖f‖G, is
defined by

‖f‖G = inf {‖F‖∞; f = divF} (2.2)

where

‖F‖∞ =
∥∥∥(|F1(x)|2 + |F2(x)|2

) 1
2

∥∥∥
∞

(2.3)

with F = (F1, F2).
The question of G dual has no meaning. In its strict sense, G is not the dual of

BV , and BV is not the dual of G.
We will denote G0 the closure of L2 in G. A consequence of BV ⊂ L2 is that

L2 ⊂ G. Then the dual of G0 is in BV .
In the following, we need to equip G0 of the fanciful norm:

‖f‖µ = inf {‖u‖BV + µ‖v‖G} (2.4)
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where the decomposition is considered over all f = u+ v decompositions.
The dual space of G0 (endowed with ‖f‖µ) is BV associated with the norm

‖f‖BVµ = sup

{
‖f‖BV

µ
, ‖f‖G

}
; (2.5)

we are interested in the case wherein µ is larger than one. If 0 < µ 6 4π, the
norm ‖f‖BVµ simply is 1

µ‖f‖BV (this is a result of the isoperimetric inequality) while

‖f‖µ = µ‖v‖G.

3. The image decomposition algorithm. We propose to decompose an image
f ∈ L2(R2) into three components u, v and w. The first one represents the objects
contained in f , the second part is a residual term while the last one models the highest
oscillating parts in the image.

The variational algorithm providing the f = u + v + w decomposition aims to
minimize

inf
{
‖u‖BV + λ‖v‖2L2 + µ‖w‖G

}
. (3.1)

Naturally, we can rewrite this algorithm into an f = g + h algorithm where we
need to minimize

inf
{
‖g‖E + λ‖h‖2L2

}
(3.2)

where the functional space E is G0 endowed with the norm given by Eq. (2.4). We
set g = u+ w and h = v and then results for “generalized” ROF algorithms apply:

Theorem 3.1. Let V ⊂ L2(R2) a normed vector space. We suppose the norm
‖.‖V has the following upper semi-continuity property: if fj ⇀ f in L2, then ‖f‖V 6
lim inf ‖fj‖V .

Then we consider the unique optimal decomposition of f ∈ L2(R2) into u + v
minimizing ‖u‖V + λ‖v‖22. If ‖.‖∗ denotes the dual norm of V , we have

1. if ‖f‖∗ 6 1
2λ , then u = 0 and f = v,

2. if ‖f‖∗ > 1
2λ , the optimal decomposition is characterized by

‖v‖∗ =
1

2λ
,

∫
uvdx = ‖u‖V ‖v‖∗. (3.3)

The proof of this theorem is based on an analysis of the optimal pair solution of
the ROF model, see Lemma 3,4 and theorem 3 in [14] (a more general form of this
theorem can be found in [22]). Theorem 3.1 and Eq. (2.5) yield into the important
following result (originally proven in [10]) which characterizes the solutions of the
decomposition model with respect to the input parameters.

Theorem 3.2. If ‖f‖BV 6 µ
2λ and if ‖f‖G 6 1

2λ , then the optimal decomposition
of f is given by u = 0, v = f and w = 0.

If either ‖f‖BV > µ
2λ or ‖f‖G > 1

2λ , then necessarily we have

‖v‖BV =
µ

2λ
and ‖v‖G 6 1

2λ
(3.4)

or

‖v‖BV 6 µ

2λ
and ‖v‖G =

1

2λ
(3.5)
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and 〈u+ w, v〉 = 1
2λ‖u+ w‖µ.

This theorem shows us that if λ > 0 is too small and if f ∈ BV , we are in the first
case and the optimal decomposition is obvious: the whole image is captured by v (the
term λ‖v‖22 is not enough penalized). If f is enough oscillating to have ‖f‖G 6 1

2λ
and if µ is large, we also are in the case where f is entirely captured by v: the term
µ‖w‖G is too much penalizing.

The following Theorem 3.3 is a variant version of Theorem 3.2. It is not a corollary
of Theorem 3.2.

Theorem 3.3. Assume f ∈ BV and ‖f‖BV 6 µ
4λ . Then the optimal decomposi-

tion f = u+ v + w necessarily verifies w = 0. There are no textures.
In other terms, if µ is too large, then µ‖w‖G is too penalizing.
Proof. We have ‖u‖BV 6 ‖f‖BV (compare f = u + v + w to f = f + 0 + 0).

Consequently, we have ‖v +w‖BV = ‖f − u‖BV 6 2‖f‖BV 6 µ
2λ . Consider u is fixed

and set σ = v+w. Then for all fixed u, we are supposed to minimize λ‖v‖22+µ‖w‖G.
We apply the general theory. The dual norm of the G−norm is the BV−norm. Then
if ‖σ‖BV 6 µ

2λ , the optimal decomposition of σ is given by v = σ and w = 0.
Corollary 3.4. Under assumptions of Theorem 3.3, the optimal decomposition

of f is provided by the ROF algorithm.

4. Optimal texture separation. In this section, we study the behavior of the
decomposition algorithm with respect to the presence of different oscillating patterns.
We consider the following image f(x) = a(x)+b(x) cos(ω1x+ϕ1)+c(x) cos(ω2x+ϕ2)
with |ω1| � |ω2|.

Firstly, note that if µ
λ � |ω2|, then theorem 3.3 applies and we get w = 0 (because

‖f‖BV ≈ |ω2|).
Secondly, let us examine the case where 1 6 λ� |ω1| � µ

λ � |ω2|. We will prove
that, for some specific λ and µ, w(x) is essentially equal to c(x) cos(ω2x + ϕ2). We
assume that a, b, c are C1 functions with compact support.

Let us begin by evaluating the energy of the corresponding decomposition. It is
given by J0(f) = ‖a‖BV + λ‖b‖22 +

µ
|ω2| and is bounded by Cλ.

Thus we have ‖u‖BV 6 Cλ, λ‖v‖22 6 Cλ. We apply theorem 3.2 and we get
‖f‖BV ' C|ω2| which is much larger than µ

λ . We necessarily have ‖v‖BV 6 µ
2λ .

Finally, we get

‖f − w‖BV 6 C
µ

λ
. (4.1)

In order to prove the following main theorem, we start to prove the next two
useful lemmas (the hat symbol stands for the Fourier transform).

Definition 4.1. The Littlewood-Paley filter associated with scale j, denoted ∆j,
is defined by

∆̂j(ξ) =

{
1 if 2j−1 6 ξ 6 2j

0 if ξ 6 2j−2 or 2j+1 6 ξ.
(4.2)

Figure 4.1 sketches the magnitude of the Fourier transform of such operator.
Lemma 4.2. Let E a functional space, ‖.‖E its associated norm which we will

assume is translation invariant (like BV,Lp, . . .), ∆j is a Littlewood-Paley operator
associated to the function ψ. Then for all function f ∈ E

‖∆j [f ]‖E 6 C‖f‖E where C = ‖ψ‖L1 . (4.3)
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Fig. 4.1. Illustration of the Fourier transform magnitude of a ∆j operator in one dimension.

Proof. The proof is straightforward:

‖∆j [f ]‖E 6
∥∥∥∥∫ 22jψ(2jy)f(x− y)dy

∥∥∥∥
E

(4.4)

6
∫

22j |ψ(2jy)|dy‖f‖E (4.5)

6 ‖ψ‖L1‖f‖E . (4.6)

Lemma 4.3. If f̂ is supported by R 6 |ξ| 6 3R with R � 1 then ‖f‖BV ≈
R‖f‖L1 . This lemma is a direct consequence of Bernstein’s inequalities.

Now let us prove the following theorem which asserts that a particular texture
can be separated from the rest of the image.

Theorem 4.4. If f(x) = a(x) + b(x) cos(ω1x + ϕ1) + c(x) cos(ω2x + ϕ2) and if
we assume that 1 6 λ � |ω1| � µ

λ � |ω2| then there exists a constant C such that
f = u+ v + w verifies, for a certain integer j,

‖∆j [w](x)− c(x) cos(ω2x+ ϕ2)‖L1 6 C
µ

λ|ω2|
. (4.7)

Proof. We denote r = u + v, g(x) = a(x) + b(x) cos(ω1x + ϕ1), W (x) =
c(x) cos(ω2x + ϕ2), then f = g + W = r + w. It is easy to see that ‖g‖BV 6
C1|ω1| 6 C µ

λ . Moreover,

‖w −W‖BV 6 ‖f − r − (f − g)‖BV (4.8)

6 ‖r‖BV + ‖g‖BV . (4.9)

But, because of Eq. (4.1), we have ‖r‖BV 6 C2
µ
λ , which finally conducts to

‖w −W‖BV 6 C
µ

λ
. (4.10)

Now, let ∆j be a Littlewood-Paley filtering operator defined as in Definition. 4.1. We
assume that the scale j is chosen such that 2j−1 6 ω2 6 2j . We denote ∆j(w−W ) =
wj −Wj . Then equation Eq. (4.10) and lemma 4.2 yields

‖wj −Wj‖BV 6 C
µ

λ
. (4.11)
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Note that ̂(wj −Wj) is supported by 2j−2 6 ξ 6 2j+1. We apply lemma 4.3 which
provides

‖wj −Wj‖L1 6 C
µ

λ|ω2|
. (4.12)

Otherwise we have

‖Wj −W‖L1 6 C
µ

λ|ω2|
. (4.13)

Indeed, if we decompose c(x) by a paraproduct algorithm: c(x) = cj(x)+γj(x) where

ĉj(ξ) = ĉ(ξ)ϕ̂

(
ξ

2j

)
(4.14)

and where ϕ is a lowpass filter: ϕ̂(ξ) 6= 0 if |ξ| 6 1
N for a fixed N � 1. Then

c(x) cos(ω2x + ϕ2) = cj(x) cos(ω2x + ϕ2) + γj cos(ω2x + ϕ2). Taking the inverse
Fourier transform, we have (n being the dimension)

cj =

(
1

2π

)n ∫
eıξxĉ(ξ)ϕ̂

(
ξ

2j

)
dξ (4.15)

then

cje
ı(ω2w+ϕ2) =

(
1

2π

)n ∫
eı(ξ+ω2)x+ϕ2 ĉ(ξ)ϕ̂

(
ξ

2j

)
dξ. (4.16)

From the initial assumption, we know that 2j−1 6 |ω2| 6 2j and from the definition

of ϕ̂ given above, we know that ϕ̂( ξ
2j ) 6= 0 if

∣∣∣ ξ
2j

∣∣∣ 6 1
N . Finally we get that for(

1− 1

N

)
2j−1 6 |ξ + ω2| 6

(
1 +

1

N

)
2j , (4.17)

∆j is the identity (∆j = I). As N is considered much larger than one, every-
thing happen in the dyadic ring between 2j−1 and 2j . Notably, this means that
∆j [cj cos(ω2x+ ϕ2)] = cj(x) cos(ω2x+ ϕ2). Then we have

∆j [W ]−W = ∆j [cj(x) cos(ω2x+ ϕ2)] + ∆j [γj(x) cos(ω2x+ ϕ2)] (4.18)

− cj(x) cos(ω2x+ ϕ2)− γj(x) cos(ω2x+ ϕ2)

= ∆j [γj(x) cos(ω2x+ ϕ2)]− γj(x) cos(ω2x+ ϕ2) (4.19)

Now we take the L1−norm:

‖∆j [W ]−W‖L1 = ‖∆j [γj(x) cos(ω2x+ ϕ2)]− γj(x) cos(ω2x+ ϕ2)‖L1 (4.20)

6 ‖∆j [γj(x) cos(ω2x+ ϕ2)]‖L1 + ‖γj(x) cos(ω2x+ ϕ2)‖L1 (4.21)

(4.22)

Lemma 4.2 gives ‖∆j [γj(x) cos(ω2x+ ϕ2)]‖L1 6 C3‖γj(x) cos(ω2x+ ϕ2)‖L1 and con-
sequently

‖∆j [W ]−W‖L1 6 C3‖γj(x) cos(ω2x+ ϕ2)‖L1 + ‖γj(x) cos(ω2x+ ϕ2)‖L1 (4.23)

6 C4‖γj(x) cos(ω2x+ ϕ2)‖L1 (4.24)

6 C4‖γj‖L1 . (4.25)
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But

γj(x) =c(x)−
∫
c(x− 2−jy)ϕ(y)dy (4.26)

=

∫
(c(x)− c(x− 2−jy))ϕ(y)dy. (4.27)

If we denote dj(x, y) = c(x)− c(x− 2−jy) then the triangular inequality provides

‖γ‖L1 6
∫

‖dj(., y)‖L1 |ϕ(y)|dy, (4.28)

‖dj(., y)‖L1 meaning that the L1−norm is taken with respect to the first variable. Let
us assume that c ∈ BV , one property of BV is that there exists a constant C such
that ‖c(x) − c(x + y)‖L1 6 C|y|. We deduce that ‖dj(., y)‖L1 6 C2−j |y| and finally
‖γj‖L1 6 C ′2−j . We know that j is chosen such that |ω2| 6 2j and consequently

‖γj‖L1 6 C′

|ω2| . This permits us to conclude that there exists a constant C5 such that

‖Wj −W‖L1 6 C5

|ω2|
(4.29)

The combination of Eq. (4.12) Eq. (4.29) allows us to conclude that there exists a
constant C such that

‖wj −W‖L1 6 C
µ

λ|ω2|
(4.30)

This ends the proof.
In order to verify this theorem experimentally, we build a synthetic image which

contains the different components expected by the theorem assumptions. The Little-
wood-Paley filter is implemented by using Meyer’s wavelet. The test image is com-
posed of a BV type part and two different frequential components (ω1 = 025.6Rad/s,
ω2 = 256Rad/s and without any loss of generality ϕ1 = ϕ2 = 0) defined over finite
domains, see Fig. 4.2 and 4.3. Accordingly to the theorem, we fix the parameters as
follows: λ = 1 and µ = 100.

Then the component w given by the decomposition algorithm and its Littlewood-
Paley filtered version ∆j [w](x) are given in Fig. 4.4. To better understand what really
happens, we can compare the Fourier transforms of ∆j [w](x) and ∆j [f ](x). Figure 4.5
shows the logarithm of the amplitude of these Fourier transforms. If we look carefully,
we can see that some coefficients (mainly on the frequency axis) due notably to a(x)
are removed when we use w. This means that the extracted textures from w are
less affected by frequencies due to objects in the image (indeed, an object with sharp
edges has high frequencies which add up to texture frequencies).
To completely verify the theorem, we sweep ω2 in a range which remains in the support
covered by ∆j and, in Fig. 4.6, we plot the curves ‖∆j [w](x)− c(x) cos(ω2x+ϕ2)‖L1

(solid line) and ‖∆j [f ](x)− c(x) cos(ω2x+ ϕ2)‖L1 (dashed line). Then we show that
the decreasing error follows what is announced by the theorem (in O(1/ω2)). We can
also see that the error in retrieving the textures is lower if we filter w instead of the
original image directly.

5. Noisy images. Now let us assume that f(x) = a(x) + b(x) cos(ωx + ϕ) +
σRN (x) where RN is a white noise filtered at a cutoff frequency N (such that f is of
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a(x) b(x) cos(ω1x)

c(x) cos(ω2x)

Fig. 4.2. Reference synthetic components.

finite energy because the energy of a non-filtered white noise would be infinite). To
simplify the problem we work on the bidimensional torus.

The G−norm of RN is O(
√
logN). Then we suppose that σ

√
logN ' λ is λ 6√

logN (otherwise σ = 1). We can use the same arguments as previously in the case
where µ

λ � N,λ2 � µ. Then f = u + v + w where ‖u‖BV 6 Cλ and ‖v‖BV 6 C µ
λ

(because if we use this decomposition we have: ‖a‖BV + λ‖b‖22 + σ‖RN‖G 6 C ′λ;
consequently the optimal decomposition verifies ‖u‖BV 6 ‖u‖BV +λ‖v‖22+µ‖w‖G 6
Cλ; moreover we have ‖f‖BV > σN2

√
logN which corresponds to the second case of

theorem 3.2 where ‖v‖BV 6 µ
2λ ).

This gives

‖f − w‖BV 6 C ′µ

λ
(5.1)

and we can close the discussion like in section 4. We must use a bandpass filter
which removes frequencies of the order of |ω| and keeps the essential energy of the
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Fig. 4.3. The whole synthetic test image f .

Fig. 4.4. Component w provided by the decomposition and its Littlewood-Paley filtered version
∆j [w](x).

filtered white noise. The Fourier series representation of a Gaussian white noise is
given by R(x) =

∑
k

∑
l gk,l(ω)e

ı(kx+ly) where the coefficients gk,l(ω) are independent
identically distributed N(0, 1). Then we have,

RN (x) =
∑

|k|6N

∑
|l|6N

gk,le
ı(kx+ly) (5.2)

and the Fourier coefficients of a function g ∈ BV (T2) verify |ĝ(k)| 6 C
|k| ,k = (k, l).

There is a clear separation between the truncated white noise and the BV function.
This discussion can be resumed by the following lemma:

Lemma 5.1. Suppose we are given the sum w(x) = RN (x)+η(x) where ‖η‖BV 6
εN . Then w(x) remains close to a white noise of cutoff frequency N in the sense that,
if |k| 6 N, |l| 6 N,k = (k, l), we have |ŵ(k)− gk,l(ω)| 6 ε N

|k| .
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Fig. 4.5. Log-amplitude of Fourier transforms of ∆j [w](x) (left) and ∆j [f ](x) (right).

Fig. 4.6. Error curves ‖∆j [w](x) − c(x) cos(ω2x + ϕ2)‖L1 (solid line) and ‖∆j [f ](x) −
c(x) cos(ω2x+ ϕ2)‖L1 (dashed line) with respect to ω2.

6. Multiscale texture separation (MTS) algorithm.

6.1. Algorithm description. If Theorem. 4.4 is useful to extract specific tex-
tures, it assumes that we must know in which shell lies the texture we want to retrieve.
Indeed this knowledge is necessary to properly fix the parameters µ, λ and the scale
j. However, for texture analysis purposes, such information is generally unknown.
Then, we propose to design a multiscale texture separation algorithm by extracting
recursively the textures corresponding to different scales.
In such use of the decomposition, Theorem. 4.4 tells us that we can fix λ to one,
and the idea is to start by choosing the scale j which corresponds to the highest
frequencies. Then we can use the Theorem to fix the parameter µ associated with
this scale. We compute the cartoon + texture decomposition and finally apply the
Littlewood-Paley operator to accurately extract the most oscillating textures. Let us
denote wj = ∆j [w]. The lower oscillating counterpart is obtained by substracting
wj+1 from the input image fj . In the sequel we denote fj+1 = fj − wj+1, then a
single scale texture separation block can be depicted as in Fig. 6.1. This process can
be iterated to reach a multiscale texture separation algorithm (because we consider
dyadic scales, we can set µj+1 = µj/2) as in Fig. 6.2. The following lemma is an
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Littlewood-Paley
Operator ∆j+1
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-

+

wj+1
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Fig. 6.1. Single scale texture separation block

Single Scale

Texture Separation

Single Scale

Texture Separation

Single Scale

Texture Separation

f0 = f w1

w2

w3

f3

f2

f1

. . .µ1

µ2

µ3

Fig. 6.2. Multiscale scale texture separation

obvious property of this multiscale decomposition.
Proposition 6.1. Let J denote the number of scales, {fj , wj}j∈[1,J] the set of

components obtained by the multiscale texture separation of the original image f , then

f = fJ +
J∑

j=1

wj (6.1)

Proof. It is straightforward from the construction of the multiscale texture sepa-
ration algorithm.

6.2. Examples. In Fig. 6.3, we present the result of the multiscale texture sepa-
ration applied on a synthetic image. The input image is created in such a way that the
two oscillating components have their frequencies located in two consecutive shells,
respectively. On the obtained components, w1 and w2, we can see that the different
texture parts are well separated. Some “ringing” artifacts can be observed (see for
example components w2 and f2 in Fig. 6.3). These effects are coming from two facts.
Firstly, the decomposition doesn’t perfectly extract sharp objects and some Fourier
coefficients, mainly corresponding to edges, are still in the Fourier spectrum of the
texture part and then captured by the Littlewood-Paley filter. These phenomena can
be observed in Fig. 4.5 where some coefficients, coming from the cartoon part, remain
on the vertical and horizontal axis. Secondly, there is no guarantee that a texture
has its Fourier support belonging to a single scale. Indeed, the size of its Fourier
support depends directly on the regularity of the functions b(x) and c(x) and can lie
in contiguous scales.
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Amultiscale texture separation on a real image is given in Fig. 6.4. We can observe
that the algorithm captures well the textures corresponding to different scales, w1 has
the most oscillating textures, w2 less oscillating ones and so on in the consecutive
components. This arises the question “how many levels of decomposition must we
choose?”. In some sense, this question is the same as for the wavelet transform, we a
priori do not know the best expansion depth. The coefficient J remains a parameter
of the algorithm. It is natural to think that the choice of this parameter will depend
on the kind of image we want to analyze. Further investigation is needed to find a
way to estimate the best J .

7. Directional MTS. Usually, in texture analysis, one uses the orientation in-
formation to build discriminating features. In the case of our multiscale texture sepa-
ration algorithm, an easy way to add such functionality is to consider only portions of
each dyadic shell. This idea was previously used in the construction of curvelet frames
by Candès et al. [18, 19, 20]. Then we can build a directional filter bank following the
construction of the curvelets by normalizing them in order to have an amplitude of
one in their domain of definition to match the properties of Littlewood-Paley filters.
Now, instead of applying only one filter to the texture part, we apply this filter bank
and get the different textures corresponding to each direction. This corresponds to
modifying the initial single texture separation block shown in Fig. 6.1 into a direc-
tional single texture separation block as depicted in Fig.7.1 where ∆θl

j represents the
Littlewood-Paley filter at scale j associated with direction θl.

We test this directional MTS algorithm by setting a partition of the Fourier
domain like the one depicted in Fig. 7.2.a. We fix two scales (delimited by the bold
squares) and eight directions for the outer shell and four directions for the inner shell.
Then we build a test image (Fig.7.2.b) composed of a cartoon part and four different
textures, two of them lie in the outer shell and the other two in the inner shell, all with
different orientations. Fig.7.2.c shows its Fourier transform and the localization (with
respect to the partitioning) of the main coefficients corresponding to each component.
Figures 7.3 and 7.4 give the output of the directional MTS algorithm. We can see
that, as expected from the Fourier transform of the input image, textures focused in
directions θ4, θ8, θB and θD are well separated on their corresponding components.

8. Conclusion. In this paper we proved that a Littlewood-Paley filtering of
the texture part, coming from a BV − G image decomposition, permits to almost
perfectly extracting oscillating components of an image. Based on this result we
built a multiscale texture separation algorithm. This algorithm permits to extract
textures which oscillate at different scales. Finally an extension from this multiscale
texture separation algorithm into a directional MTS was proposed. This version
allows us to separate textures which are close in terms of frequencies but have different
orientations.
The different experiments show that the outputs of the algorithms follow the predicted
results of the theory and could be useful for texture analysis purposes.
Further investigation is currently underway in order to generalize this approach to
build an adaptive decomposition algorithm.
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Fig. 6.3. Example of the first three scales components obtained from a synthetic image.
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Fig. 6.4. Five scales decomposition of Barbara image.
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Fig. 7.2. Partition of the Fourier domain (a), test image (b) and its Fourier transform (c).
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Fig. 7.3. First scale directional texture components obtained from the synthetic image.
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Fig. 7.4. Second scale directional texture components and the low scale image f2 obtained from
the synthetic image.
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[11] Jérôme Gilles and Stanley Osher, Bregman implementation of Meyer’s G-norm for cartoon
+ textures decomposition, UCLA CAM Report 11-73, 2011.

[12] Douglas S. Kurtz, Littlewood-Paley operators on BMO, Proceedings of the American Math-
ematical Society, Vol. 99, No. 4, pp. 657–666, 1987.

[13] Triet M. Le and Luminita A. Vese, Image Decomposition Using Total Variation and
div(BMO), Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, Vol. 4,
No. 2, pp. 390–423, 2005.

[14] Yves Meyer, Oscillating patterns in image processing and in some nonlinear evolution equa-
tions, The Fifteenth Dean Jacquelines B. Lewis Memorial Lectures, 2001.

[15] Stanley Osher and Andrès Sole and Luminita Vese, Image decomposition and restoration
using total variation minimization and the H−1 norm, Multiscale Modeling and Simula-
tion: A SIAM Interdisciplinary Journal, Vol. 1, No. 3, pp. 349–370, 2003.

[16] Luminita Vese and Stanley Osher, Modeling textures with total variation minimization and
oscillating patterns in image processing, Journal of Scientific Computing, Vol. 19, pp. 553–
572, 2003.

[17] Leonid Rudin and Stanley Osher and Emad Fatemi, Nonlinear total variation based noise
removal algorithms, Physica D, Vol. 60, pp. 259–268, 1992.

[18] Emmanuel Candès and David Donoho, Continuous Curvelet Transform, part I: Resolution
of the Wavefront Set, Applied Computational Harmonic Analysis, Vol. 19, pp. 162–197,
2003.

[19] Emmanuel Candès and David Donoho, Continuous Curvelet Transform, part II: Discretiza-
tion and Frames, Applied Computational Harmonic Analysis, Vol. 19, pp. 198–222, 2003.

[20] Emmanuel Candès and Laurent Demanet and David Donoho and Lexing Ying, Fast dis-
crete curvelet transforms, Multiscale Modeling and Simulation: A SIAM Interdisciplinary
Journal, Vol. 5, pp. 861–899, 2005.

[21] Eitan Tadmor and Suzanne Nezzar and Luminita Vese, A Multiscale Image Representa-
tion Using Hierarchical (BV,L2) Decompositions, Multiscale Modeling and Simulation: A
SIAM Interdisciplinary Journal, Vol. 2, No 4, pp. 554–579, 2004.

[22] Jean-Pierre Aubin and Ivar Ekeland, Applied nonlinear analysis, Pure and applied math-
ematics: Wiley-Interscience series of texts, monographs and tracts, ISBN-9780471059981,
1984.

19


