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Surface Reconstruction with Feature
Preservation based on Graph-cuts

Min Wan, Desheng Wang, and Xue-Cheng Tai

Abstract

A novel and fast surface reconstruction method is proposed aiming to preserve features. The
effectiveness of the weighted minimal surface model E(S) is examined in the tetrahedral mesh used
in this paper. A variation of the model with curvature Ec(S) is proposed for feature preservation. The
straightforward iterative approach is firstly presented as well as its disadvantages. A more efficient and
robust method is then proposed for the curvature minimization. The supremum and infimum of minima
of E(S) are obtained as two curvature estimations. Two estimations are merged into a new graph, the
min-cut of which is a very close approximation to the global minimum of EC(S). Various examples
show the effectiveness and the efficiency.

Index Terms

Graph-cuts, Curvature, Delaunay triangulation, Voronoi Diagram.
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1 INTRODUCTION

Reconstructing a surface from an unorganized point set has been an important yet chal-
lenging problem in computer graphic area for the last two decades. As a significant topic in
the reverse engineering, the surface reconstruction attempts to make the unorganized data
points to be “perceptible” by machines. In the last two decades, various advances have been
made in this area. The common goal of various approaches is to reconstruct the surface as
faithful as possible from the data set with some interruptions such as noise, outliers, and
non-uniformity.

In the reconstruction problem, sharp features are quite desirable for some specific applica-
tions such as computer-aided design (CAD). The sharp features represent the high frequency
portion of all information carried by a shape. From the knowledge of signal sampling
principle, a higher frequency needs a denser sampling, which is hardly met in the practice.
For instance, the edges and corners of a cube require infinite sampling to meet the ε-sampling
[1]. Due to the relatively sparse sampling on the feature, existing reconstruction methods
are not able to obtain a result with precise features even under noise free assumption. The
demand of a surface reconstruction method with feature preservation motivates this study.

Generally speaking, existing surface reconstruction methods could be classified into two
categories, explicit and implicit. Explicit methods are mostly local geometric approaches
based on the Delaunay triangulation and dual Voronoi diagram. Typical methods include the
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Alpha shape in [2] and CRUST algorithm in [1], and their variations [3]–[5]. One advantage
of these methods are their theoretical guarantee. The theorem states that if the point set
satisfies the ε-sampling, the restricted Delaunay triangulation of the input data set with
respect to the surface is homeomorphic to the surface. However, as we mentioned above,
such ε-sampling could not be met at the sharp features. Besides explicit approaches are
subject to a lot of reconstruction difficulties such as noises and outliers.

The other category, i.e. implicit methods, reconstructs surfaces through implicit functions.
One important representative is the level set formulation [6]–[15]. The surface is recon-
structed as a certain level set in a volumetrical discretized domain. Usually a variational
model is introduced. The reconstruction problem is then translated to an minimization
problem. With the representation flexibility and mathematical facilities brought by the im-
plicit formulation, the implicit methods are well received among researchers. Graph-cuts
have been proven an efficient minimization tool [14], [23]–[28]. By controlling the curvature
term in the energy functional as well as in the minimization procedure, some researchers
made advances in feature preservation. [9], [16]–[22]. However, to reconstruct surfaces with
feature, existing implicit methods are not suitable due to their discretizing schemes. Most
implicit methods use grid, regular or adaptive, to discretize the domain. In this case, the
precise data points are represented by the grids. To reconstruct precise features under the
grid framework is impossible. In this article, one variational surface reconstruction method
with feature preservation is proposed based on Delaunay triangulation, implicit formulation,
and graph-cuts.

In the proposed method, a tetrahedral mesh is used instead of the grids to avoid the
information loss during the discretization. The position information conveyed by the input
data is well preserved in the Delaunay based mesh framework. The reconstructed surface is
a triangular mesh connecting the input data. This makes the precise feature preservation pos-
sible. We also give the theoretical guarantee that a triangular two manifold homeomorphic
to the original surface exists in this mesh. We propose a novel variational model for feature
preservation. A curvature term and the weighted minimal surface term constitute the energy
functional. This energy functional was approached by iteratively local swapping method in
our previous study [29]. Iterative local swaps were performed on the neighborhood of the
surface to evolve the surface to the global minimum. That method has some disadvantages
such as efficiency and robustness. In this study, we propose a more efficient and robust
global approach to minimize the energy involving curvature.

We investigate the possible multiple minima for the weighted minimal surface model.
If these minimal surfaces are ordered according to the volumes they enclose, two specific
surfaces, i.e. the supremum and infimum, carry partial features of the original surface. These
two surfaces are proved to be unique and able to obtain via graph techniques. The curvature
information of these two surfaces is then merged reasonably into a new graph, the min-cut
of which carries most features. The workload to recover the remaining features is much
smaller compared with the previous iterative approach.

The remainder of this paper is organized as follows. In Section 2, the tetrahedral mesh
generation and the variational model is presented. The theoretical guarantee is also pro-
vided. Section 3 presents the iterative local swap to minimize the curvature energy as
well as its disadvantages. Section 4 proposes a more efficient and robust method. A global
approach consisting of three graph-cuts gives a close approximation to the solution. The
flowchart of the whole algorithm is explained. In Section 5, various examples are presented
to demonstrate effectiveness and robustness of the proposed method. At last, Section 6
concludes this article.
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(a) DelP (b) Del(P ∪Q)

Fig. 1. Two meshes with the homeomorphic sub-complex.

2 TETRAHEDRAL MESH AND VARIATIONAL MODEL

Let P be a point set sampled from Σ in the domain Ω. The distance from one point to a set
is defined as d(x, Y ) = infy∈Y d(x, y), where d(x, y) is the Euclidean distance between x and
y. The medial axis M of a surface Σ is the closure of the set of the points that have at least
two closest points in Σ. Feature size for a point x ∈ Σ is defined as f(x) = d(x,M). The
feature function has the Lipschitz Continuity property, i.e. f(x)− f(y) < d(x, y) for any two
points on surface. If for each point x ∈ Σ, d(x, P ) ≤ εf(x), then the sample P is a ε-sample
[1]. Amenta and Bern found that a sub-complex, i.e. the restricted Delaunay triangulation
of P with respect to Σ, is homeomorphic to Σ for sufficient small ε. We cite the theorem as
follows:

Theorem 1
Let P be an ε-sample of a smooth surface Σ. For ε ≤ 0.18, the underlying space of DelP |Σ is
homeomorphic to Σ. [1]

2.1 Tetrahedral mesh
Theorem 1 is the theoretical guarantee for most explicit methods. DelP |Σ is the goal for
those methods as illustrated in Figure 1(a). However, in order to apply variational methods
and numerical solvers, the mesh formed by only DelP |Σ is not a reasonable discretiza-
tion. Usually we need some auxiliary points such as shown in Figure 1(b). In this article,
these auxiliary points are called non-geometric points to be distinguished from the input
“geometric” data points P . These non-geometric points are denoted as Q.

We hope the homeomorphic sub-complex in Theorem 1 still exists in the mesh consisting
of P and Q. Next we prove that there still exists the homeomorphic sub-complex in Del(P ∪
Q) as long as Q is away enough from P .

First, the following Lemma shows that under the ε-sample assumption, the sizes of 1- and
2-dimensional faces in DelP |Σ are relatively small. Upper bound is provided with respect
to feature size.

Lemma 1
For ε < 1,
(1) The length of an edge pq in DelP |Σ is at most 2ε

1−ε
f(p);

(2) The circumradius of an triangle pqr in DelP |Σ is at most ε
1−ε

f(p)

Proof:
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For any point x in the restricted Voronoi cell Vp|Σ, from the ε-sample definition, we have

d(x, p) ≤ εf(x) (1)

From the Lipschitz Continuity, we have

f(x)− f(p) ≤ d(x, p) (2)

Combined the above two inequalities,

f(x)− f(p) ≤ εf(x) (3)

f(x) ≤ 1

1− ε
f(p) (4)

d(x, p) ≤ ε

1− ε
f(p) (5)

For an edge pq in DelP |Σ, which means Vp|Σ ∩Vq|Σ 6= ∅. Choose one point x ∈ Vp|Σ ∩Vq|Σ,
we have both d(x, p) ≤ ε

1−ε
f(p) and d(x, q) ≤ ε

1−ε
f(p). By triangle inequality, d(p, q) ≤ d(x, p)+

d(x, q) ≤ 2ε
1−ε

f(p).
For a triangle pqr in DelP |Σ, which means Vp|Σ ∩ Vq|Σ ∩ Vr|Σ 6= ∅. For a point x ∈ Vp|Σ ∩

Vq|Σ ∩ Vr|Σ and the circumcenter c of pqr, we have d(c, p) ≤ d(x, p) ≤ ε
1−ε

f(p).
Since the 1- and 2-faces in DelP |Σ are small, the insertion of Q would not destroy these

faces if Q are away enough from P . We give the following theorem.

Theorem 2
Let P be an ε-sample of a smooth surface Σ and Q be the non-geometric points. If for each
point m ∈ Q and p ∈ P , d(m, p) > 2ε

1−ε
f(p), and ε ≤ 0.18, the underlying space of Del(P ∪Q)|Σ

is homeomorphic to Σ.

Proof:
1) For an edge pq in DelP |Σ and any m ∈ Q, we are given: d(m, p) > 2ε

1−ε
f(p). Combined

with Lemma 1,

d(m, p) >
2ε

1− ε
f(p) ≥ d(p, q) (6)

m resides out of Bp,d(p,q), the ball centered at p with radius d(p, q). The circumsphere
of edge pq, B p+q

2
,
d(p,q)

2

, is a subset of Bp,d(p,q) as illustrated in Figure 2(a). The fact m /∈
B p+q

2
,
d(p,q)

2

implies that the insertion of m does not violate the empty sphere property of
Delaunay triangulation. pq is still an edge in the Delaunay triangulation of DelP∪{m}.

2) For a triangle pqr in DelP |Σ and any m ∈ Q, suppose the circumsphere of pqr is Bc,rad.
Lemma 1 states that rad ≤ ε

1−ε
f(p). We are given d(m, p) > 2ε

1−ε
f(p). We have:

d(m, p) >
2ε

1− ε
f(p) ≥ 2rad (7)

The distance between any two points in a sphere is at most the diameter of the sphere.
Hence the above inequality shows that m /∈ Bc,rad. According to the Delaunay trian-
gulation property, pqr is still a triangle in the Delaunay triangulation of DelP ∪ {m}.

Part (1) and (2) shows that all edges and triangles in DelP |Σ are kept in DelP ∪ {m}. By
incremental inserting all points in Q, all edges and triangles in DelP |Σ are kept in Del(P∪Q),
which is equivalent to DelP |Σ ⊂ Del(P ∪Q).

Next we show that DelP |Σ = DelP ∪ Q|Σ. Suppose that for any p ∈ P and m ∈ Q, such
that Vp|Σ∩Vm|Σ 6= ∅. Pick any point x ∈ Vp|Σ∩Vm|Σ. According to the Voronoi cell definition,
d(x, p) = d(x,m).
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Fig. 2. Two illustrations showing that insertion of non-geometric points would not destroy SΣ.

Given by condition, we have

d(m, p) ≤ d(x,m) + d(x, p) = 2d(x, p) ≤ 2εf(p) (8)

The given condition d(m, p) > 2ε
1−ε

f(p) and above inequality leads to contradiction. Hence
Vp|Σ ∩ Vm|Σ = ∅ for any p ∈ P and m ∈ Q. As the dual to restricted Voronoi diagram, pm
is not an edge in Del(P ∪ Q)|Σ for any p ∈ P and m ∈ Q. Hence DelP |Σ = Del(P ∪ Q)|Σ.
Recall Theorem 1 states that DelP |Σ is homeomorphic to Σ. We can draw the conclusion
Del(P ∪Q)|Σ is homeomorphic to Σ. For the rest of this paper, we assume P and Q satisfy
this criterion and denote both DelP |Σ and Del(P ∪Q)|Σ by SΣ.

Remark 1
In two dimensional cases, the criterion d(m, p) > 2ε

1−ε
f(p) in Theorem 2 can be loosened

to d(m, p) >
√

2ε
1−ε

f(p). As illustrated in Figure 2(b), the circumsphere B p+q
2

,
d(p,q)

2

is subset of
B

p,
√

2d(p,q)
2

∪B
q,
√

2d(p,q)
2

.

In practice, regular grids or body-centered cubic (BCC) lattices could be generated as
the candidates for Q. The candidate points are filtered according to the distance to P . The
distance criterion proposed in Theorem 2 is with regard to the feature function f(p), which
is unavailable. Hence, we need to convert this criterion to a practicable one.

To convert this criterion, certain assumption of sampling uniformity should be made
firstly. Usually two uniformity definitions are used, global and local. Since the global uni-
formity is more restrictive, it is sometimes not met in real cases. We use the local uniformity
as our assumption. P , a sample of Σ is locally (ε, δ)-uniform for δ > 1 > ε > 0 if each point
x ∈ Σ has a point in P within εf(x) distance and no point p ∈ P has another point q ∈ P
within ε

δ
f(p) distance [30].

Given a sample P conforming this uniformity assumption, the distance criterion could
be revised as follows. First, the Delaunay triangulation of P is generated. For each vertex
p ∈ P , the shortest edge incident to p is found and the length is denoted by h(p).

In earlier study, it was shown that the shortest edge incident to p is a Delaunay edge in SΣ

under the ε-sample assumption. With the locally uniform assumption, we have h(p) > ε
δ
f(p).

For a non-geometric point m ∈ Q, if d(m, p) > 2δ
1−ε

h(p), then d(m, p) > 2δ
1−ε

h(p) > 2ε
1−ε

f(p),
which is the criterion in Theorem 1. Therefore, the unknown f(p) is replaced by the explicit
h(p). And the lattice points can be filtered by this new criterion and obtain Q. The Delaunay
triangulation of P ∪Q is generated as the mesh framework denoted by T .
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2.2 Variational model
With respect to the reconstructed surface S, the weighted minimal surface model was
proposed by Zhao et al. in [8].

E(S) =

∫

S

d(x, P )ds. (9)

The watertight surface S is equivalent to a segmentation of domain Ω. In discrete mesh
framework T , it is also equivalent to a two-labeling of all elements in T , 1 for interior and
0 for exterior. The labeling for the element Ki is denoted by li ∈ {1, 2}.

The discrete surface could be represented as

S =
⋃

li 6=lj

(Ki ∩Kj) (10)

The discrete energy functional

E(S) =

∫

S

d(x, P )ds (11)

=
∑

i6=j

∫

Ki∩Kj

d(x, P )1{li 6=lj}ds (12)

=
∑

i6=j

di,jsi,j1{li 6=lj} , (13)

where

di,j =

∫
Ki∩Kj

d(x, P )ds∫
Ki∩Kj

ds
, si,j =

∫

Ki∩Kj

ds (14)

and the indicator function 1{.} is 1 when the statement in brackets is true and 0 otherwise.
d(x, P ) is piecewise linear on the triangulated two manifold. Hence, di,j could be approxi-
mated as the mean of d(x, P ) on the three vertices.

Graph-cuts, as a fast global minimization tool, can be used to approach this energy. A
graph G is built dual to the mesh T . For each tetrahedral Ki in T , a node ni is added to G.
For each triangle face Ki ∩Kj in T , an edge (ni, nj) is added to connect ni and nj . The cost
of edge cost(ni, nj) = di,jsi,j . The primal-dual relationship also applies to the segmentation
and cut. A surface S segmenting T corresponds to a cut C in G. The cost of C is equal to
E(S). Hence finding the min-cut is equivalent to minimizing the energy E(ST ). Next we
show that SΣ corresponds to a min-cut in G.

Theorem 3
SΣ corresponds to a minimal cut of G.

Proof:
E(SΣ) =

∑

i6=j

di,jsi,j1{li 6=lj} (15)

where
⋃

li 6=lj
(Ki ∩Kj) = SΣ.

For each triangle Ti,j = Ki ∩ Kj , li 6= lj , we have Ti,j ⊂ SΣ = DelP |Σ. The fact that
Ti,j ⊂ DelP |Σ implies that for all three vertices u, v, w on triangle Ti,j , u, v, w ∈ P .

di,j =
1

3
(d(u, P ) + d(v, P ) + d(w, P )) = 0 (16)
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Fig. 3. Illustrations on local swap and energy computation on triangulated two manifold

Thus E(SΣ) = 0, the corresponding cut of G is also zero and hence is a min-cut of G.
Theorem 3 shows that the weighted minimal surface model could well reconstruct the

surface in tetrahedral meshes by graph-cuts. If SΣ is the unique minimal cut of G, the graph-
cuts could obtain the desirable solution. However the minimal is not unique for E(S) in
most cases. In order to eliminate this ill-posedness, a revising regularization term is usually
added to the model E(S). The regularization with regard to surface area is the most common
choice [31], [32].

EA(S) =

∫

S

d(x, P )ds + α

∫

S

ds (17)

In this case, the graph-cuts approach is still effective if the n-link costs are updated
with (di,j + α)si,j . However, area regularization could not preserve features effectively. The
smoothed features are commonly observed in earlier studies. In this paper, we propose a
variational model with the curvature regularization term.

EC(S) =

∫

S

d(x, P )ds + µ

∫

S

|κ(x)|2 ds , (18)

where κ(x) is the mean curvature of x.

3 LOCAL APPROACH FOR CURVATURE MINIMIZATION

The effectiveness of the curvature term in preserving features has been approved by some
researchers in other frameworks such as grids [9]. In this paper, the grid is replaced by the
tetrahedral mesh. The minimization of any energy functional involving curvature is a more
difficult task in a tetrahedral mesh than in grids.

The fast solver, graph-cuts, could be used to minimize the energy only if the high order
geometric characteristic could be well transferred to a graph representable term. In the
previous study, we proposed a two stage method to tackle this high order issue. Local
swaps on single elements are performed iteratively to approach a local minimum of EC(S).
The criterion of swap is a decreasing energy EC(S) after swap.

Though the curvature is defined on smooth surface, the mean curvature could still be
calculated on any triangulated surface mesh [33]. Given a triangulated two manifold Σh

and a vertex v ∈ Σh, the one ring neighborhood of v is Nv. With regard to Figure 3(a),
the mean curvature of v could be calculated as follows. A normal vector function K(x) is
introduced.

K(x) =
1

2Av

∑
ni∈Nv

(cot αi + cot βi)(v − ni) , (19)

where Av is the Voronoi cell of v restricted to Σh. The mean curvature κ(x) = 1
2
‖K(x)‖.
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For each triangle Ti,j = Ki ∩Kj , li 6= lj , κi,j could be calculated similar to (16):

κi,j =
1

3

∑
u∈Ti,j

|κ(u)|2 . (20)

The method in (19) from [33] is the most “economical” way to estimate curvature on
a triangulated two-manifold. Only 1-ring neighborhood is utilized to calculate curvature.
Though the optimality and convergence have been shown in [33] and [34] respectively, the
accuracy of this approximation is largely dependent on the mesh density as well. In some
cases, sparse mesh representation on the high curvature places could not approximate the
actual curvature closely enough. Alternatively, some more accurate curvature estimations
could be obtained by dilating the region of interest to N -ring neighborhood. All vertices in
the dilated neighborhood is utilized in a quadric fitting procedure [35]–[37]. All the first and
second fundamental forms could be expressed by the coefficients of the quadric surface.
The compromise between the extra computational workload and the relatively accurate
curvature must be made. In practice, the cases when (19) is not satisfyingly accurate do
occur, however, not often. This quadric fitting curvature approximation method is provided
as an alternative way. A hybrid curvature approximation scheme is also under study, which
shall be efficient and accurate.

One swap on a single element is illustrated in Figure 3(b)-3(d). Several steps in these
iterations on a two-cube example are shown in Figure 4. However, the iterative minimization
by single swap has several disadvantages. (a) Efficiency. The iteration is performed on every
element adjacent to the surface. The method is quite time-consuming in practice. (b) Local
Minima. The greatest problem for any curve/surface evolving method is the local minima
traps. The minimization procedure is quite likely be stuck in a local minimum far away
from the global minimum. In our reconstruction method, the local minima trap is also a
big problem. Extra measures must be taken to help the procedure out of the local minima.
Random perturbation similar to simulated annealing may be applied. Sometimes local swaps
for single element is not able to recover the features. In this case, the swap object has to
be extended to a clique formed by two elements or more. The iteration with respect to all
cliques shall be performed after the single element iteration. The combination and priority
of various iterations is complicated and heuristic.

4 GLOBAL APPROACH FOR CURVATURE MINIMIZATION

In this section, we propose a more efficient and robust method. In order to approach EC(S),
we investigate the multiple minima of E(S) and its relationship with the variations. Further
more, two more models will be introduced to identify some specific minima which convey
useful information concerning curvature.

4.1 Multiple Minima
As we mentioned above, E(S) may have multiple minima if discretized in T . It is easy to
show that given small enough α and β, the minima of EC(S) and EA(S) are also minima
of E(S). (The proof is similar to that of Theorem 4) Furthermore, we investigate all minima
of E(S).

Suppose we have M minima for E(S) and denote them by {Si}M
i=1. From Theorem 3, we

know that SΣ is a minimum for E(S) and E(SΣ) = 0. It derives that E(Si) = 0 and Si are
all sub-complexes consisting of P . We define that Si ≤ Sj if Si is enclosed by Sj . Given this
order definition, {Si} is a partially ordered set. Then we denote the supremum and infimum
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Several step results in iterations

(a) Smax (b) Smin

Fig. 5. Supremum and infimum of {Si}

of {Si} by Smax and Smin respectively. Due to the fact that Si are discrete sub-complex of
the tetrahedral mesh, we have Smax, Smin ∈ {Si}.

We find that Smax and Smin carry most of features in Σ. Take the two cubes as example,
Smax and Smin are shown in Figure 5. It can be observed that most of features are contained
mutually exclusively in these two surfaces. To be more specific, the convex features are
included in Smax and the concave ones in Smin. This discovery gives an hint that these two
bounds of {Si} could be used to approach the curvature model EC(S).

Smax and Smin are defined as the supremum and infimum of {Si}. However, it is not
practicable to find them by comparing each pair in {Si}. As an alternative approach, we
propose two variational models.
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EV +(S) =

∫

S

d(x, P )ds + β

∫

ΩS

dx (21)

EV−(S) =

∫

S

d(x, P )ds− β

∫

ΩS

dx (22)

where ΩS is the region enclosed by S. Next we show that the minimum of EV +(S) is Smin

and the minimum of EV−(S) is Smax given small enough β.

Theorem 4
In the mesh T , given small enough β,
(1) The minimum of EV +(S) is Smin

(2) The minimum of EV−(S) is Smax

Proof:
Denote the minimum of EV +(S) and EV−(S) by S+ and S− respectively. Assume τ is the

smallest 2-face in T and sτ is the area. h is the infimum of f(p), p ∈ P . We know that in
mesh T , EV +(S) can be discretized as

EV +(S) =
∑

i6=j

di,jsi,j1{li 6=lj} + β
∑

i

V olume(Ki)1{li=1} (23)

Suppose that S+, is not a sub-complex consisting of P , i.e. S ′ /∈ {Si}. There exists at least
one vertex v ∈ S+ such that v /∈ P

EV +(S+) =
∑

i6=j

di,jsi,j1{li 6=lj} + β
∑

i

V olume(Ki)1{li=1}

>
1

3
(d(v, P ) + d(u, P ) + d(w, P )) · svuw (consider only 4vuw, v /∈ P )

>
1

3
· 2εh

1− ε
· sτ ( d(v, P ) <

2ε

1− ε
h, see Theorem 2; svuw < sτ ) (24)

For any S0 ∈ {Si},

EV +(S0) =
∑

i6=j

di,jsi,j1{li 6=lj} + β
∑

i

V olume(Ki)1{li=1}

= β
∑

i

V olume(Ki)1{li=1} ( E(S0) =
∑

i6=j

di,jsi,j1{li 6=lj} = 0 )

≤ β
∑

i

V olume(Ki)

= β · V olume(Ω) (25)

Combining the above two inequalities, if β ≤ 1
3V olume(Ω)

· 2εh
1−ε

· sτ , (24) (25) could lead
to EV +(S+) > EV +(S0), which contradict to the fact that S+ is the minimum. Recall our
assumption, it derives that S+ ∈ {Si}.

For each Si ∈ {Si},

EV +(Si) = β
∑

i

V olume(Ki)1{li=1} = β · V olume(ΩSi
)
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(a) Cut for EV +(S) (b) Compute κi,j explicitly for
EC(S)

(c) Redistribute the edge costs
for EC(S)

Fig. 6. Process of building a new graph

Smin is defined as the infimum of {Si}, i.e. V olume(ΩSmin
) ≤ V olume(ΩSi

) for any Si.
Combining the above identity, we have Smin is minimum of EV + for the set {Si}. With the
fact S+ ∈ {Si}, we have S+ = Smin. Similar proof applies to EV−(S) as well.

As shown above, Smin and Smax are a minimum of EV +(S) and EV−(S) respectively. The
uniqueness of Smin and Smax is trivial. Therefore, minimizing EV +(S) and EV−(S) is well-
posed problems and solutions are Smin and Smax. The graph minimization tool could be
utilized on EV +(S) and EV−(S) as well. n-links for (ni, nj) are still di,jsi,j . A t-link with cost
βV olume(Ki) is added to (s, ni) or (ni, t). Min-cuts for the modified graph correspond to
Smin and Smax. Next we discuss how to use Smin and Smax to minimizing EC(S).

4.2 Graph Approach
Consider a simple case first. The graph G consists of only two nodes, ni and nj . Solving EV +

obtains the cut C+ as in Figure 6(a). Assume C+ corresponds to the ground truth surface and
carries all features. Hence the correct curvature could be calculated explicitly by (19). The
curvature term µκi,jsi,j for edge (ni, nj) is added to G. The EC(S) could be graph-represented
as shown in Figure 6(b). However, the curvature term µκi,jsi,j on the n-link has no “sign”.
C+ in Figure 6(a) has distinguish the exterior and interior already. It shall be better that
the “sign” is utilized as well. Hence the n-link µκi,jsi,j is split into two t-links connecting
s and t. Meanwhile two large cost t-links are added to the opposite terminals respectively.
The modified graph is shown in Figure 6(c). This new graph could guarantee the min-cut
is topologically identical to the one in Figure 6(a).

Based on this “split n-link into two t-links” principle, we propose the algorithm in Table 1.
Notice that at the end of the algorithm, n-links of di,jsi,j are updated with (di,j +α)si,j , which
integrates the model EA. We introduce the area term to avoid the non-manifoldness in the
result. After obtained the new cost distributed graph G ′, the max-flow/min-cut algorithm
is applied. The surface extracted from the min-cut would carry most of the features and is
a close approximation to the minimum of EC(S). The reconstruction result of two cubes is
shown in Figure 7(a).

It can be seen that most of edges and corners are fairly preserved. Ambiguous parts are
only around the saddle points in Σ. In CAD examples, the obtained surface S ′ could be
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TABLE 1
Graph Construction

Inputs
1. Graph G dual to the mesh
2. C+, C− as the min-cut of EV + and EV−

Algorithm
1. Initialize all cost(ni, nj) by di,jsi,j

2. Initialize all cost(s, ni) and cost(ni, t) by a large value L
%% Estimation from C+

3. For each (ni, nj)
4. If (ni, nj) ∈ C+, ni ∈ S, nj ∈ T
5. calculate κi,j from C+

6. cost(s, ni) = min {µκi,jsi,j/2, cost(s, ni)}
7. cost(nj , t) = min {µκi,jsi,j/2, cost(nj , t)}
8. End If
9. End For

%% Similar procedure for C−
10.

...
11. Update cost(ni, nj) = (di,j + α)si,j

Outputs A new cost-distributed graph G′

(a) Result from G′ (b) Result for a higher resolution exam-
ple

Fig. 7.

iteratively updated by the single swap further. In the examples where the features are not
rigid, such as Happy Buddha and Dragon, S ′ is already a faithful enough reconstruction,
which can be seen in Section 5. The whole pipeline of the reconstruction method described
in this article can be visualized as the flowchart in Figure 8.

Compared with the previous iterative approach, the method proposed in this study has
two advantages. (a) Efficiency. Most of features are recovered by a global approach by
three graph-cuts instead of the local approach by iterative single swaps. In S ′, the ratio of
unpreserved features to the whole amount is determined by the ratio of the saddle points to
the whole feature points. Take the two cubes as example, this ratio is about 6

350
≈ 0.017. The

low ratio suggests that the approximation S ′ is a quite faithful result. The workload for the
subsequent local swap refinement is relatively small. Furthermore, in large scale example,
this ratio would decrease further. See S ′ for a high resolution sample of two cubes in Figure
7(b). It is almost the original surface. (b) Robustness. The approximation obtained from
three graph-cuts is already a surface close to the global minimum. The local minima trap
in iteratively swapping approach can be avoided by choosing S ′ as a good initialization. In
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Fig. 8. Flowchart of the proposed method

summary, the method proposed in this study well solve the minimization with regard to
curvature.

5 NUMERICAL EXAMPLES

In this section, various numerical examples are provided to illustrate the effectiveness of
the proposed method as well as the efficiency. All experiments had been conducted on a
desktop PC with Intel Pentium 4 CPU of 3.2GHz. All CAD examples were synthesized
by ourselves. Classic models were obtained from the Stanford 3D Scanning Repository
(http://graphics.stanford.edu/data/3Dscanrep/) and Large Geometric Models Archive of
Georgia Institute of Technology (http://www.cc.gatech.edu/projects/large models/). Com-
putational Geometry Algorithms Library [38] is used for mesh generation and the algorithm
in [39] is used for graph-cuts. All reconstructed surfaces are rendered by PovRay [40]. Only
points locations were utilized in the algorithm. All examples can be categorized into two
groups: CAD examples and real examples.

In experiments, the curvature and area coefficients are chosen µ = 1, α = 1. To solve
Smin and Smax, the coefficient β is selected according to Theorem 4. In practice, we choose
β = 1

3V olume(Ω)
· d(P,Q) · sτ .

CAD examples with rigid features, such as piecewise linear surface models, are presented
in Figure 9. These examples include union, substraction, and intersection of basic geometries,
which could well represent most models in various CAD applications. Input point sets,
reconstruction surfaces, and the surface rendered according to the curvature are presented
in columns. The curvature rendering highlights the feature.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Fig. 9. CAD examples with rigid features: input data in the first row; reconstructed surface in
the second row; curvature rendering surface in the third row.

All CAD results are the surfaces after iterative local swap refinement. This refinement
workload is described in Section 4 and illustrated in Figure 7(b). Due to the rigid charac-
teristic, the extra iterative refinement is necessary for CAD applications.

In Figure 11, all examples are scanned data from real models, such as the classic Happy
Buddha and dragon. Reconstruction surfaces and the surface rendered according to the
curvature are presented in columns. The global reconstruction result S ′ of these cases are
presented instead of the result refined by iterative swaps. We can notice that these S ′ are so
close an approximation that little difference could be told. In real applications, these results
are satisfactory enough.

6 CONCLUSION

In this article, a surface reconstruction method with feature preservation is proposed based
on Delaunay triangulation and graph-cuts. The proposed method could efficiently find a
close approximation to the global minimum of a high order energy functional. Compared
with the previous iterative approach, this close approximation could largely improve the
efficiency and robustness.
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(a) (b) (c) (d)

Fig. 10. Examples of Happy Buddha and armadillo

(a) (b)

(c) (d)

Fig. 11. Examples of horse and dragon.
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