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Abstract

In this work, we introduce a numerical method to approximate differential operators and

integrals on point clouds sampled from a two dimensional manifold embedded in Rn. Global

mesh structure is usually hard to construct in this case. While our method only relies on the

local mesh structure at each data point, which is constructed through local triangulation in the

tangent space obtained by local principal component analysis (PCA). Once the local mesh is

available, we propose numerical schemes to approximate differential operators and define mass

matrix and stiffness matrix on point clouds, which can be used to solve partial differential

equation (PDE) and variational problem on point clouds. As numerical examples, we use the

local mesh method and variational formulation to solve the Laplace-Beltrami eigenproblem and

solve the Eikonal equation to compute distance map and geodesics on point clouds.

1 Introduction

In many problems in science and engineering, data is commonly represented as a collection of

points, referred as a point cloud, embedding in a certain space. In practice, a common feature for

many point cloud data is that those data points sit on a low dimensional manifoldM in an ambient

space Rn possible with a large dimension. Analyzing, processing and characterizing point cloud

become important tasks in many applications, such as computer visions, data mining and machine

learning [1, 2, 3].

A typical example is 3D modeling in computer graphics and computer vision, where geometric

objects, usually 2-dimensional surfaces, are represented as a set of 3D points obtained by a laser

scanner. In practice, a triangulated surface or an implicit representation, such as level set function,

is constructed to approximate the point cloud data. Based on these representations, partial differ-

ential equation (PDE) based methods and variational methods provide powerful tools to extract

intrinsic geometric information either locally or globally for the underlying manifolds. Here, we

propose a local mesh method that can be applied to solving PDE and variational problem on point

clouds without requiring the construction of a global mesh or representation of the point cloud,

which may be difficult and computationally expensive in three and higher dimensions.
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To solve variational problems or differential equations on point clouds, we first need to approx-

imate integrals and differential operators. Previously, Belkin et al. [4] proposed to approximate

the Laplace-Beltrami operator on point clouds through the heat diffusion in the ambient Euclidean

space, and then the Laplace-Beltrami eigenproblem (Helmholtz equation) on point clouds is dis-

cussed. Construction of a local mesh in the tangent space is needed to approximate integration of

the heat kernel. Their method suffers from the low order approximation and is only limited to the

approximation of the Laplace-Beltrami operator on point clouds. After that, Luo et al. [5] pro-

posed to approximate integrals on point clouds through computing summation with voronoi weight

or principle eigenvector weight. More recently, Liang et al. [6, 7] proposed a more systematic way

to approximate differential operators on point clouds. In their method, discrete approximation

of differential operators are constructed by local least square approximations of the manifold and

hence the metric using K nearest neighbors (KNN). Since the differential operators are intrinsically

approximated from more accurate local manifold reconstruction, their method can achieve high

order accuracy and enjoy more flexibility since no mesh is needed at all. It can be applied to

manifolds with arbitrary dimensions and co-dimensions with or without boundary. Moreover, the

computational complexity depends on the true dimension of the manifold rather than the dimen-

sion of the embedded space. However, their method can not deal with integrals and variational

problems easily due to the lack of meshes.

In this paper, we propose an approach that requires only local mesh in the tangent space and can

approximate both differential operators and integrals on point clouds. Hence, this method applies

to cases where the tangent space can be locally triangulated. Our method is based on several simple

observations as follows. 1©. Local mesh construction is much easier than global mesh construction

for general point clouds; 2©. Definition of differential operators at any point only depends on the

local structure of the point cloud; 3©. Integration can be represented as an inner product weighted

by the mass matrix, which can be obtained from local information of point clouds by choosing

a locally supported basis. To clearly represent our approach in this paper, we only restrict our

discussion on point clouds sampled from two dimensional manifolds in an ambient space Rn, while

all techniques we discussed here can be easily adapted to problems on point clouds sampled from

k−dimensional manifolds in Rn. We first use local PCA to estimate the tangent space at each

point, then the local mesh can be obtained from the Delaunay triangulation in the tangent space.

After the local mesh is obtained, differential operators can be approximated. With the constructed

local connectivity, we propose a simple numerical approximation of the mass matrix and stiffness

matrix similar to those using finite elements on triangulated surfaces. Then integrals, such as area

and volume, and variational problem can be approximated numerically. Based on the variation

formulation and our local mesh method, we solve the Laplace-Beltrami eigen-problem. Moreover,

we also numerically solve the Eikonal equation to compute distance map and geodesics on point

clouds based on either the fast sweeping or the fast marching method.

The rest of the paper is organized as follows. In section 2, we introduce the idea of local mesh

construction for point clouds. Then differential operators and integrals can be approximate for
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given point clouds based on the constructed local mesh. Selected applications to the local mesh

method are discussed section 3. We propose an analogue of finite element method to solve Laplace-

Beltrami eigenproblems on point clouds. Moreover, we discuss numerical approximation of distance

maps and geodesics on point clouds by solving the Eikonal equation based on the fast marching or

the fast sweeping methods. After that, section 4 reports all numerical experiments and comparisons

to demonstrate the proposed methods. Conclusions are made in section 5.

2 Local Mesh method

Given a point cloud P = {pi ∈ Rn|i = 1, . . . , N} sampled from a smooth surface/manifold M,

it is a challenge to extract its global information without a global mesh or parametrization. For

instance, a elementary geometric quantity such as the area ofM is not easy to obtain. One way is to

first approximate the manifoldM by constructing a global triangulation or implicit representation.

Then, many differential geometry, PDE and variational tools can be applied to M. However,

surface reconstruction for point clouds may be difficult and time consuming, especially for a large

amount of data in three or higher dimensions with complicated geometry and topology plus possible

noise and nonuniform sampling. On the other hand, local geometry and connectivity at each point

can be easily obtained. This motivates our method for approximating differential operator, PDEs

and variational formulation on point clouds based on local mesh. Moreover, one can obtain useful

global information for point clouds by solving PDE problems on point cloud [6].

2.1 Local connectivity construction for point clouds

Let’s denote the indices set of K-nearest neighborhood (KNN) of each point pi ∈ P by I(i). Local

PCA on KNN is well-known and widely used for local linear approximation for point clouds [8].

One can determine the local tangent space and normal space using local PCA. For convenience, we

Figure 1: Red stars mark the KNN of pi, green stars

mark the projection of red stars on the tangent plane

at pi, and blue triangles color-code the connectivity of

the first ring of pi.

we translate the K-nearest neighborhood

N (i) = {pk, k ∈ I(i)} to center pi at the origin.

We can estimate local linear structure near pi

using the covariance matrix Pi of N(i), defined

by:

Pi =
∑

k∈N(i)

(pk − ci)T (pk − ci) (1)

Here, ci is the local barycenter ci =
1
K

∑
k∈N(i) pk. The eigenvectors (e1i , e

2
i , e

3
i ) of

Pi form an orthogonal frame associated with

eigenvalues (λ1i , λ
2
i , λ

3
i ) with λ1i ≥ λ2i ≥ λ3i ≥ 0.

If the point cloud is sampled from a two di-

mensional manifold, and the local sampling is

dense enough to resolve local feature size, then
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e1i ≥ e2i � e3i . e
1
i ≥ e2i provide two orthogonal directions in the tangent plane, and e3i is the normal

direction of P at the point pi.

To construct the local connectivity and a mesh at the point pi, we project its K-nearest neigh-

borhood N (i) on the tangent plane Ti of pi spanned by e1i , e
2
i . Namely, we have the following

construction:

p̂k = ProjTi(pk) = pk − pi − 〈pk − pi, e3i 〉e3i , k ∈ I(i) (2)

With this projection, all points in {p̂k, k ∈ I(i)} belong to the tangent plane Ti. Then, the local

mesh structure near pi can be obtained by the standard Delaunay triangulation. Denote all triangles

of the first ring of pi by R(i) = {T 1
i , · · · , T

li
i } and all vertices in the first ring of pi by V(i) . The

local connectivity of pi is provided by Ci = {pi;V(i),R(i)}. (See Figure. 2.1)

2.2 Numerical approximation of differential operators on point clouds

Since differential operators, such as gradient, divergence and Laplacian, are defined locally, we

can obtain point-wise numerical approximation of these differential operators using the local mesh

constructed in section 2.1. Here, we directly borrow the idea of approximating differential operators

on triangle meshes [9, 10, 11, 12, 13] on the first ring of each point of the point cloud P.

To make the paper self-contained, we write down details of the numerical approximation of

gradient, divergence and Laplace operators on the local mesh at a point pi. First, the discretization

is defined on on a single triangle by their coordinate invariant definition in differential geometry [14,

15]. Then an average in the first ring is taken weighted by the area of each triangle.

First of all, we show the discretization on a single triangle T with three vertices {pi ∈ Rn | i =

0, 1, 2}. In the discrete case, we have a function f = {f(p0), f(p1), f(p2)} and a vector field
−→
V = {−→V (p0),

−→
V (p1),

−→
V (p2)} defined on each vertex respectively. With the barycentric coordinates

{(u1, u2, 1 − u1 − u2) | 0 6 u1, u2, u1 + u2 6 1} of T , any point p ∈ T , the linear interpolation of

f,
−→
V in T can be given by:

p = u1(p1 − p0) + u2(p2 − p0) + p0

f(p) = u1(f(p1)− f(p0)) + u2(f(p2)− f(p0)) + f(p0)
−→
V (p) = u1(

−→
V (p1)−

−→
V (p0)) + u2(

−→
V (p2)−

−→
V (p0)) +

−→
V (p0)

(3)

Then we have ∂u1 = p1 − p0, ∂u2 = p2 − p0, and the metric matrix of T would be:

g = (gi,j)i,j=1,2 =

(
∂u1 · ∂u1 ∂u1 · ∂u2
∂u2 · ∂u1 ∂u2 · ∂u2

)
and (gi,j)i,j=1,2 = g−1 (4)

where · is the dot product in Rn. We then have the following discretization:

∇T f(p0) =
2∑

i,j=1

gij
∂f

∂xj
∂ui = (f(p1)− f(p0), f(p2)− f(p0))g

−1

(
∂u1

∂u2

)
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= (f(p1)− f(p0), f(p2)− f(p0))

(
∂u1 · ∂u1 ∂u1 · ∂u2
∂u2 · ∂u1 ∂u2 · ∂u2

)−1(
p1 − p0
p2 − p0

)
(5)

We next discretize the divergence operator on the triangle T . Suppose
−→
V = v1∂u1 + v2∂u2 is a

vector field on T . Then the coefficients v1, v2 are given by:(
v1

v2

)
= g−1

( −→
V · ∂u1
−→
V · ∂u2

)
(6)

Differentiate both sides of above equality, we have:(
∂
∂u1

v1
∂
∂u2

v2

)
=

(
g11(
−→
V (p1)−

−→
V (p0)) · ∂u1 + g12(

−→
V (p1)−

−→
V (p0)) · ∂u2

g21(
−→
V (p2)−

−→
V (p0)) · ∂u1 + g22(

−→
V (p2)−

−→
V (p0)) · ∂u2

)
(7)

Since
√
G is constant on each triangle, we can obtain the discretization of the divergence operator

on triangle T as follows:

divT
−→
V (p0) =

1√
G

2∑
i=1

∂

∂ui
(
√
Gvi) =

∂

∂u1
(v1) +

∂

∂u2
(v2) (8)

Now, we consider the discretization of the

gradient and divergence operators on the local

mesh at a point. We take a weighted average

on the first ring of pi in terms of triangle areas.

Namely, for any function f and vector field
−→
V

defined on the given point cloud P, the gradi-

ent and divergence operators at each point are

approximated as follows:

∇Pf(pi) =
1∑

T∈R(i)Area(T )

∑
T∈R(i)

Area(T )∇T f(pi) (9)

divP
−→
V (pi) =

1∑
T∈R(i)Area(T )

∑
T∈R(i)

Area(T )divT
−→
V (pi)(10)

Moreover, we can also approximate the

Laplace-Beltrami operator as follows:

∆Pf(pi) ≈
∑
j∈V(i)

ωij(pi) (f(pj)− f(pi)) , (11)

where ωij(pi) =
cotα1

ij(pi) + cotα2
ij(pi)

2
, α1

ij and α2
ij are the two angles opposite to the edge pipj ,

V(i) is the first ring neighborhood of the vertex pi.
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Remark 1 Here, we only consider approximate the differential operators using the first ring on

local mesh obtained from section 2.1. More accurate approximation can be obtained using the second

ring structure.

2.3 Integral approximation

Integration on point clouds, such approximation of surface area, enclosed volume, and variational

formula, is an important task in many applications. One way is to reconstruct the surface first,

which can be difficult and expensive itself. More direct methods have been proposed before. Li et

al. [16] propose to approximate areas of surfaces in R3 by estimating the intersections of lines in R3

based on Cauchy-Crofton formula. More recently, Lui et al. [5] propose to estimate area of point

clouds in Rn using voronoi cells of local mesh reconstruction from point clouds. Here we propose a

method for integral approximation using local mesh.

First we construct the mass matrix on a point cloud P through which we can approximate

integration on P as follows. Given a point cloud P = {pi ∈ Rn | i = 1, · · ·N} with local connectivity

C = {Ci = {pi;V(i),R(i)} | i = 1, · · · , N} constructed in section 2.1, we define the set of nodal

basis {ej}Nj=1 on P as:

ej : P → R, ej(pi) =

{
1, if i = j

0, otherwise
i, j = 1, · · · , N (12)

Then, any function f = (f(p1), · · · , f(pN ))T defined on P can be written as f =
∑N

i=1 f(pi)ei.

Given a point pi ∈ P with the first ring structure R(i) = {T 1
i , · · · , T

li
i } in Ci, we define:

〈ei, ej〉 =


1

6

li∑
k=1

Area(T ki ), if i = j

1

12
[Area(T i1i ) +Area(T i2i )], if pipj is the adjacent edge of T i1i and T i2i

0, otherwise

(13)

Consider the linear interpolation of ei on its first ring structure, we define the inner product of

ei, ej on P: ∫
P
eiej =

1

2
[

∫
R(i)

eiej +

∫
R(j)

eiej ]

=
1

2
[

li∑
k=1

∫
Tk
i

eiej +

lj∑
k=1

∫
Tk
j

eiej ]

=
1

2
(〈ei, ej〉+ 〈ej , ei〉) (14)

We define the N ×N mass matrix M = (mij) for the point cloud P by:

mij =

∫
P
eiej =

1

2
(〈ei, ej〉+ 〈ej , ei〉) (15)

6



Here M is a sparse and symmetric matrix. Let’s denote the constant one function on P by 1 =

(1, · · · , 1)T . For any two functions f = (f(p1), · · · , f(pN ))T and g = (g(p1), · · · , g(pN ))T , we can

approximate the following integrations on the point cloud P by:∫
P
f = fTM1,

∫
P
fg = fTMg. (16)

For example, we can approximate the area of the underlying surface of P by:

Area(P) =

∫
P
1 = 1TM1 =

∑
i,j

mij (17)

If the underlying surface of the given point cloud P is a closed surface M in R3, we can also

estimate the 3D volume of the manifold D bounded by M using Stokes’ theorem. Assume each

pi = (p1i , · · · , p3i ) is represented as a point in R3. We define three global coordinates functions of P
by:

xα : P → R, xα(pi) = pαi , α = 1, 2, 3. (18)

The Stokes’ theorem tells us:

V olume(D) =

∫
D
1 =

∫
D

∂

∂xα
(xα) =

∫
M
xανα ≈

∫
P
xανα = (xα)TMνα, α = 1, 2, 3. (19)

where ~ν = (ν1, ν2, ν3) is the outward normal vector of M. Therefore, we approximate the volume

of D as follows:

V olume(D) =
1

3

3∑
α=1

(xα)TMνα =
1

3

3∑
α=1

 N∑
i,j=1

pαi mijν
α
j

 (20)

3 Solving PDEs on point clouds

As long as differential operators and integrals can be approximated on the given point clouds based

on the local mesh method, many problems related to differential equations on point cloud can be

further studied. As applications, we propose an analogue of the finite element method on point

cloud to solve a typical elliptic eigenvalue problem, Laplace-Beltrami eigenvalue problem. After

that, we demonstrate how to use the proposed local mesh method to solve the Eikonal equation,

a typical nonlinear partial differential equation, on the given point cloud by adapting the fast

marching and fast sweeping methods [17, 18, 19, 20]. Using the resulting distance maps, we also

discuss the construction of geodesics on point clouds.

3.1 Laplace-Beltrami eigenproblems

As an intrinsic differential operator defined on a surface, the Laplace-Beltrami (LB) operator can be

used as a bridge to connect local and global geometry of the surface. Its eigenvalues and eigenfunc-

tions can be used to study and characterize the surface. For example, generic LB eigenfunctions of
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surfaces are morse functions [21], which enable LB eigenfunctions as descriptors for the topologies

of the surfaces. Moreover, LB eigenfunctions can be viewed as either global or local descriptors

to analyze surface geometric structures [22, 23, 24, 25, 26]. Furthermore, the LB operator is also

closely related to harmonic maps between two surfaces. Recently a few numerical methods [4, 6, 7]

have been proposed to compute LB eigenproblems on point clouds. These methods are all based

on pointwise discretization of the LB operator. Here, we design a variational formulation using the

local mesh method, which can be used to solve other type of elliptic PDEs on point clouds as well.

Let’s consider a Riemannian surface (M, g) with boundary ∂M 1. The LB operator ∆M =

divM ◦∇M is self-adjoint and elliptic, so its spectrum is discrete. The LB eigen-system {λk, φk}∞k=0

of (M, g) is composed of eigenvalues of ∆M , 0 = λ0 < λ1 ≤ λ2 ≤ · · ·, and the corresponding

eigenfunctions φ0, φ1, φ2, · · · satisfying:{
∆Mφk = −λkφk,
∇Mφk · ~n|∂M = 0,

⇐⇒
∫
M
∇Mφk∇η = λk

∫
M
φkη, & φk ⊥ {φ0, · · · , φk−1}. (21)

where ~n is the normal vector of ∂M inM. The LB eigen-system plays an essential role to undertand

intrinsic surface geometry [27, 28]. Computationally, the variational formulation has been well

studied based on triangulated surfaces [12, 29] and implicit representations [30, 31] and successfully

used in many fields such as computer science [32, 33, 34, 35, 36, 22, 37, 23] and medical image

analysis [38, 39, 40, 41, 42, 25, 43, 24, 26, 44].

Given a point cloud P = {pi ∈ Rn | i = 1, · · ·N} sampled from a Riemannian surface M
embedded in Rn, a discrete analogue of LB eigen-system on P can also be studied. Based on our

local mesh method, we can use the numerical approximation of the LB operator on P given by

(11) and compute the spectrum of the corresponding matrix. We can also compute LB eigensystem

on point clouds based on the variational formulation in (21), as a demonstration of an analogue

of finite element method (FEM), on the point cloud P using its local connectivity C = {Ci =

{pi;V(i),R(i)} | i = 1, · · · , N}. Numerical comparisons of our method with previous methods will

be conducted in section 4.2.

Consider {ei}Ni=1 as the set of linear elements defined on P given in (12), and write E =

SpanR{ei}Ni=1. Then the discrete version of LB eigensystem on P can be defined by the following

weak formulation: ∫
P
∇Pφ ∇Pη = λ

∫
P
φ η, ∀ η ∈ E. (22)

In fact, if we can write φ =
∑N

i viei, the essential part of the above problem is a numerical

approximation of
∫
P ∇Pei ·∇Pej , which forms the stiffness matrix S = (Sij)N×N for the given point

cloud P. Ideally, we would like S to have properties, such as symmetric and nonnegative definite,

same as those for the stiffness matrix for a triangulated surface [29]. However, these are global

properties which may not be possible to achieve due to the use of local mesh only. To be more

1If M is a closed surface, then ∂M = Ø
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specific, the first ring structure of pi is not necessary compatible with the first ring structure of

pj although pj belongs to the first ring of pi. To have a numerical approximation of the stiffness

matrix, we first define

Aij =
∑

T∈R(i)

∫
T
∇T ei · ∇T ej = −1

2

[
cotα1

ij(pi) + cotα2
ij(pi)

]
, i 6= j (23)

where ∇T ei and ∇T ej are computed by (5) and αkij(pi), k = 1, 2 are the angles opposite to the edge

connecting points pi and pj in the first ring of pi. This is the approximation of
∫
P ∇Pei · ∇Pej

based on the first ring structure at pi. Note that Aij may not be equal to Aji due to the possible

incompatibility of the first ring structures of pi and pj . One simple symmetrized definition of the

stiffness matrix is the following:

Sij =


1

2
(Aij +Aji) , if i 6= j

−
∑

k 6=i Sik, if i = j

(24)

The above definition of the diagonal element is to enforce the consistence condition, i.e., constant

function is an eigenfunction with zero eigenvalue. In particular, if all triangles in the first ring

structure are acute, off-diagonal elements are non-positive and diagonal elements Sii = |
∑

k 6=i Sik|
are positive. Hence all eigenvalues are real and non-negative. When the distribution of points is

reasonably uniform, this definition of stiffness matrix works quite well. However, when the points

are distributed non-uniformly, the first ring structure of pi is more likely incompatible with the first

ring structure of pj . Numerical tests suggest that the following definition for off-diagonals elements

produces better results (see Figure. 5):

Sij =


max(Aij , Aji) if Aij ≤ 0 and Aji ≤ 0

min(Aij , Aji) if Aij ≥ 0 and Aji ≥ 0

min(Aij , Aji) if Aij ·Aji < 0

−
∑

k 6=i Sik if i = j

(25)

The intuition for this definition of off-diagonals is that (a) no direct coupling between pi and pj

unless they are both in each other’s first ring, (b) use better triangles in the first ring structures

at pi and pj to approximate
∫
P ∇Pei · ∇Pej when they are both in each other’s first rings. The

first case in (25) means we use triangles with acute angles αkij or αkji further away from 0 degree.

The second case in (25) means we use triangles with obtuse angles αkij or αkji further away from

180 degree. The third case in (25) means we use triangles with acute angles αkij or αkji rather than

those with obtuse angles.

Then the solutions to (22) can be computed from the following generalized matrix eigen-problem:{
Sv = λMv, where v = (v1, · · · , vN )T

φ =
∑N

i viei
(26)
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Note that the stiffness matrix S and the mass matrix M are symmetric and sparse matrices of

size N × N . Thus, all eigenvalues and eigenfunctions computed from the above method are real.

Computationally, there are a variety of softwares, such as Matlab, to solve the above problem (26).

We would like to point out that this approach is not necessary restricted to solve LB eigensystem.

Similar approach can be used to solve other types of PDE, such as the poisson equation, the heat

equation etc., on point clouds.

3.2 Distance maps and geodesics on point clouds

Once local connectivity is available on a point cloud, one can use appropriate local solver on

triangular mesh to solve many types of PDEs on the point cloud. Here we specifically demonstrate

how to solve a special type of nonlinear hyperbolic PDE, the Eikonal equation (27), to compute

distance maps and geodesics on point clouds using local mesh method. Here is the Eikonal equation

for the distance map to a given set Γ on a manifold M:{
|∇Md(x)| = 1

d(x) = 0, x ∈ Γ ⊂M
(27)

In particularly, a distance map dp to a given point p can be computed by setting Γ = p. Once the

distance map dp is obtained, one can construct the geodesic from any point q ∈M to p by solving

the ODE: 
dX(s)

ds
= −∇Mdp(s)

X(0) = q
(28)

where X(s) traces out the geodesic path between two points p, q ∈ M and dp(·) is the distance

function with boundary condition dp(p) = 0.

To solve the Eikonal equation (27) on a point cloud P, the first step is to design an appropriate

discretization at each point of P. Since we have a local mesh, i.e., the first ring structure, we can

directly adopt the monotone upwind discretization for triangular mesh [18, 20], which is equivalent

to an approximation of the dynamic programming principle on the first ring. As the result of the

discretization, at each point pi ∈ P we have a nonlinear equation that couples the value at pi

with the values of its first ring neighbors. Hence we have to solve a system of nonlinear equations

numerically. Fortunately, we have efficient ways to solve it either using the fast marching method

[17] or the fast sweeping method [19] which are also generalized to triangular mesh in [18] and

[20] respectively, where only first ring structures of the given triangular mesh are needed. Thus,

the proposed local mesh method can be directly adapted to either fast marching method or fast

sweeping method to solve the Eikonal equation on point clouds. This is a more direct and more

accurate approach to obtain distance maps than the previous method proposed in [45], where the

Eikonal equation is solved in the tubular neighborhood of the point cloud P in Rn to approximate

the true Eikonal equation defined on P.

Once we have computed the distance map dp(x) on the point cloud P, we can find the shortest
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path from p to q on P by solving (28). To have more accurate approximation of geodesics and avoid

zigzag paths, we can not require the nodes of discretized geodesic path strictly passing through

points of P. The question is how to add new points in the way that the geodesic can truly reflect

Figure 2: Geodesic path tracing. The cur-

rent point (pc), its KNN points and the new

point (pn) are marked as the red solid circle,

the blue solid circles and the black solid star

respectively, whose projections on the tan-

gle plane at pc are marked as corresponding

hollow markers.The red line has direction

(−v1,−v2, 0).

the geometry of underlying manifold represented by the

point cloud. Here, we propose to use the local interpola-

tion method introduced in [6, 7] to add necessary points

for tracing geodesics.

Suppose a point pc (current point on the geodesic)

has already been obtained, we intend to find the next

point on the geodesic path. Notice that pc may not be

in the point cloud P. Without loss of generality, sup-

pose p1, p2, · · · , pK ∈ P are KNN of pc in the point cloud

P. Using PCA, we can build a local coordinate sys-

tem centered at pc, 〈pc; e1, e2, e3〉 and the KNN of pc

has local coordinates (xi, yi, zi). We use moving least

squares (MLS) to locally approximate both the surface

as Γ = (x, y, z(x, y)) and the distance function dp as

dp = dp(x, y), then we can use the definition of the gradi-

ent operator to write ∇Pd(pc) as ~v (more details can be

found in [6] and [7]). We construct the Delaunay trian-

gulation of the projections p̂c, p̂1, p̂2, · · · , p̂K and find the

first ring R = {T 1
c , · · · , T lc} of pc, which is the same as we

did in Section 2.1. Suppose ~v has local coordinate (v1, v2, v3) in 〈pc; e1, e2, e3〉. We find the inter-

section of line segment starting at pc with the direction (−v1,−v2, 0) and the first ring, notice that

this computation is done within the tangent space of pc. Denote the intersection as p0 = (x0, y0, 0),

we then project it back to the approximated surface to obtain the next point on the geodesic path

pn = (x0, y0, z(x0, y0)). This process is illustrated in Figure 2.

We start from the target point and set it as the current point on the geodesic path. Using the

algorithm introduced above, we trace back the distance field to get the next point on the geodesic

path (notice that it may not belong to the point cloud P) and set it to be the current one. We

repeat the process until the current point is close enough to the source point. Numerical examples

will be shown in Section 4.

4 Numerical Results

In this section, numerical experiments are presented to illustrate applications of the proposed local

mesh method to point clouds. First, we report numerical results of the area and volume approx-

imation for point clouds sampled from different surfaces. Second, we demonstrate the proposed

method in section 3.1 to solve the Laplace-Beltrami eigenproblem for point cloud data. In addi-

11
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Figure 3: Point cloud data set

tion, numerical comparison with existing methods are also conducted. Finally, we show numerical

results of distance maps and geodesic paths for point clouds. All our experiments are implemented

by MATLAB in a PC with a 4G RAM and a 2.66 GHz CPU.

4.1 Area and Volume approximation

In general accuracy of the area and volume approximation depends on the size and distribution

of the point cloud sampled from the given closed surface. Larger size and better distribution

sampling lead to better numerical approximation. To demonstrate this point, we first test our

method on different point clouds sampled from the unit sphere S2 in R3. We choose two groups

of point clouds on S2. One group of point clouds are uniformly sampled from S2 with the number

of points about geometrically increasing from 1k to 16k, and another group of point clouds are

non-uniformly sampled with the same number of points as the first group. The first row of Figure 3

plots two uniformly sampled and two non-uniformly sampled point clouds used in this experiment.

As a comparison, we also compute the area approximation using the voronoi weighting scheme

introduced in [5]. The numerical results and the corresponding relative errors for this two groups of

data are reported in Table. 4.1. According to our results, we can observe that our method provides

highly accurate approximation of the area and volume for the unit sphere in the case of uniformly

sampled data set, while the approximation results using nonuniformly sampled data are not as good

as the ones obtained from uniformly sampled data set. In both cases, our results are more accurate

than the results using the voronoi weighting scheme in [5]. In addition, we can also observe that

12



the relative errors halve as the number of point doubles for uniformly sampled points. However,

this behavior can not be observed for nonuniformly sampled points. Similar phenomenons can be

observed for point clouds sampled from a flat torus T = {(cosu, sinu, cos v, sin v) ∈ R4 | (u, v) ∈
[0, 2π)2} in R4.

Next apply our method to a few real data sets illustrated in the second row of Figure 3. Since

there is no true area and volume for these surfaces, we use the results computed from their triangular

mesh representation as the ground truth. The numerical approximation and the relative errors are

reported in the last four rows of Table. 4.1, where we can see that our method works as well as

using the triangulated surfaces.

surface
# of
points

Area Volume
Our method

Truth
Voronoi weighting scheme [5] Our method

Truth
Results Error Results Error Results Error

uniform
sampling
on S2

1002 12.5278 0.307 %

4π ≈
12.5664

12.5115 0.437 % 4.1605 0.675 %
4

3
π ≈

4.1888

1962 12.5466 0.157 % 12.5382 0.224 % 4.1743 0.345 %
4002 12.5567 0.077 % 12.5525 0.110 % 4.1817 0.169 %
7842 12.5614 0.039 % 12.5593 0.057 % 4.1852 0.086 %
16002 12.5640 0.019 % 12.5629 0.028 % 4.1870 0.042 %

non-
uniform
sampling
on S2

1002 12.3065 1.638 %

4π ≈
12.5664

12.1803 3.072 % 4.0866 2.439 %
4

3
π ≈

4.1888

1962 12.4548 0.888 % 12.3123 2.022 % 4.1394 1.180 %
4002 12.4814 0.676 % 12.4025 1.304 % 4.1526 0.865 %
7842 12.4924 0.589 % 12.4370 1.030 % 4.1675 0.508 %
16002 12.5318 0.275 % 12.4937 0.578 % 4.1762 0.301 %

Flat
torus in
R4

1024 39.3517 0.321 %

4π2 ≈
39.4784

38.9658 1.298 % – –

–
2025 39.4143 0.162 % 39.2186 0.658 % – –
4096 39.4467 0.080 % 39.3498 0.326 % – –
8100 39.4624 0.041 % 39.4133 0.165 % – –
16129 39.4704 0.020 % 39.4457 0.083 % – –

Kitten 2884 1.6996 1.6543 % 1.6720 1.6358 2.165 % 0.1234 1.042 % 0.1221
Knot 36898 24816.9033 0.811 % 24617.1913 24557.2129 0.244 % 54928.5678 2.844 % 53409.6952
Horse 19851 10499.4573 0.492 % 10551.3689 10325.4225 2.141 % 42278.6122 0.907 % 42692.7569

Armadillo 16519 37462.2439 2.873 % 36416.1313 34330.6387 5.727 % 235840.0965 1.361 % 239093.6180

Table 1: Area and volume approximation results. Here Error = |Result− Truth|/Truth

4.2 Laplace-Beltrami eigenproblems

To test the accuracy of the proposed method for solving LB eigenproblems of point clouds, we

would like to first apply our method to point clouds data sampled from the unit sphere S2. For the

unit sphere, its exact value of the n-th LB eigenvalue is given by λn = n(n+ 1), with multiplicity

2n + 1. Thus, we can compare the numerical results with these true values. In other words, we

compute the relative error:

Emax,n = max
i=1,···,2n+1

{
|λ̃n,i − λn|

λn

}
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where λ̃n,i’s are the approximated LB eigenvalues to λn computed from the proposed method

introduced in section 3.1 , and i runs over λn’s multiplicity. By the definition, Emax,n represents

the worst possible error in computing λn.

In our experiments, we apply the two definitions of the stiffness matrix in (24) and (25) to the

same two groups of spherical point clouds used in section 4.1. As comparisons, we also compute

the LB eigenproblem using other point cloud based methods, such as the MLS (using quadratic

approximation) method [6], the PCD method [4], and a mesh based finite element method [11] for

the same two groups of data. We show Emax,n for λ = 20 and 72 of the uniformly and non-uniformly

sampled data in Figure 4 and in Figure 5, respectively. For the uniformly sampled data set, the

numerical errors of our local mesh method using (24) and (25) are the same up to 10−10, thus

we only list one group of results using the local mesh method. In this case, it can be seen that

the error of our approach is of the same order as the mesh based method, while they are slightly

better that the results obtained by MLS approach and much better than PCD Laplacian method.

The results for nonuniformly sampled point clouds are not as accurate as results obtained from the

uniformly sampled data, while they are also comparable with the MLS approach and more accurate

than PCD Laplacian method. In addition, it is also clear to see that the results using the stiffness

matrix defined in (25) are more accurate than those using (24) for the non-uniform sampled data.

For some of the non-uniform data examples, a global triangular mesh can not be constructed and

hence mesh based finite element method does not work for those examples.

Size 1002 1962 4002 7842 16002
Local Mesh Method using (24) or (25) (LMM)

λ = 20 0.0206 0.0105 0.0051 0.0026 0.0013
λ = 72 0.0721 0.0363 0.0176 0.0090 0.0044

Moving Least Square Laplacian (MLS)
λ = 20 0.0516 0.0306 0.0135 0.0046 0.0020
λ = 72 0.1541 0.0774 0.0476 0.0298 0.0138

PCD Laplacian (PCD)
λ = 20 0.0773 0.0487 0.0431 0.0411 0.0403
λ = 72 0.1391 0.1174 0.1128 0.1108 0.1100

Finite Element Method (FEM)
λ = 20 0.0165 0.0085 0.0042 0.0021 0.0010
λ = 72 0.0660 0.0342 0.0169 0.0087 0.0043
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Figure 4: Emax errors for uniformly sampled data on unit sphere.

Size 1002 1962 4002 7842 16002
Local Mesh Method using (24) (LMM1)

λ = 20 0.0734 0.0454 0.0425 0.0195 0.0329
λ = 72 0.2129 0.1159 0.0812 0.0377 0.0458

Local Mesh Method using (25) (LMM2)
λ = 20 0.0633 0.0375 0.0251 0.0144 0.0092
λ = 72 0.2130 0.1088 0.0656 0.0317 0.0224

Moving Least Square Laplacian (MLS)
λ = 20 0.0907 0.0465 0.0241 0.0079 0.0060
λ = 72 0.5898 0.3232 0.1277 0.0357 0.0272

PCD Laplacian (PCD)
λ = 20 0.2585 0.1436 0.1112 0.0976 0.0947
λ = 72 0.3830 0.2846 0.2534 0.2395 0.2353
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Figure 5: Emax errors for non-uniformly sampled data on unit sphere.

To demonstrate the robustness of our method for point clouds sampled from general surfaces,
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Figure 6: Laplace-Beltrami eigenfunctions are color-coded on point clouds sampled from open and
closed surfaces.

either open or closed, we further show results of LB eigenfunctions for different point clouds in

Figure 6. The first row in Figure 6 illustrates a few of LB eigenfunctions on the point cloud

sampled from the unit sphere. It is clearly to see that the patterns of the computation results are

the same as the spherical harmonics which further verifies our proposed method. LB eigenfunctions

of point clouds sampled from surfaces with more complicated structures are illustrated in the second

and the third rows of Figure 6. In addition, we also report a few results of LB eigenfunctions of

point clouds sampled from open surfaces.

4.3 Distance maps and geodesics on point clouds

In our first numerical experiment, we choose a point cloud P sampled from a hemisphere shown in

Figure 7. Distance functions to four different subsets of P (marked as red stars) are computed on

the given point cloud. In the first row of Figure 7, distance functions to the four different given sets
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Figure 7: Distance maps on point clouds. The first row: distance maps to the given set Γ (red star
points) are color-coded on the point cloud sampled from a hemisphere. The second row: distance
maps, using mesh based method, to the same red stars on the hemisphere.

marked as red stars are color-coded on the point cloud. As a comparison, we also plot numerical

results obtained by mesh based approach in the second row of Figure 7. The results are consistent.

S2 ⊂ R10 uniform samlping non-uniform samlping

size 1002 1962 4002 7842 16002 1004 1964 4004 7844 16004

ground truth LT π ≈ 3.14159265 π ≈ 3.14159265

numerical result L 3.140372 3.140995 3.141278 3.141425 3.141503 3.141159 3.143439 3.143498 3.141948 3.142561

relative error |L− LT |/LT 0.0389% 0.0190% 0.0100% 0.0053 % 0.0029% 0.0138% 0.0588% 0.0606% 0.0113% 0.0308%

Table 2: Geodesic distance from the north pole to the south pole on the point clouds sampled from
S2 isometric embedded in R10.

Our next experiment reports numerical results of geodesic tracing on point clouds using the

method discussed in section 3.2. We choose point clouds sampled from the unit sphere S2 ⊂ R3.

They can also be viewed as point clouds in Rn by simply adding the last n− 3 coordinates as zero.

After that, by applying a randomly chosen orthonormal n×n matrix as a rotation and a randomly

chosen vector as a translation, we can obtain point clouds sampled from the isometrically embedded

S2 in Rn. We apply our developed method to compute distance maps and geodesics on these point

clouds to demonstrate the capability in handling point clouds in high dimension (n=10). Table.

2 shows our results of distance between the north pole and south pole. It is clear to see that our

method provides highly accurate estimation for geodesics on point clouds sampled from the unit

sphere S2 embedded in R10. In addition, we also report numerical results of geodesic tracing on

point clouds sampled from more complicated surfaces in the first row of Figure 8. As comparisons,
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Figure 8: Geodesics on point clouds. The first row: Distance maps are color-coded on the point
clouds, and geodesics are illustrated by black curves. The second row: distance maps and geodesics
obtained by mesh based method,

results obtained by using mesh based method introduced in [18] are plotted in the second row of

Figure 8. The results show that our method can compute geodesics accurately and robustly on

point clouds.

5 Conclusion

In this work, we propose a local mesh method that can be used to approximate differential operators,

integrals, variational formulation and to solve PDEs on point clouds. The local connectivity and

mesh at each point is constructed through local approximation of the tangent space, which is much

easier and cheaper than the construction of a global mesh, especially in high dimensions. Examples

of the area and volume approximation, solving eigenvalue problem of Laplace-Beltrami operator

using variational formulation, and computing distance maps and geodesics on point clouds are

presented.
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