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Abstract

We propose a preconditioned alternating projection algorithm (PAPA) for solving the maxi-
mum a posteriori (MAP) emission computed tomography (ECT) reconstruction problem. Specif-
ically, we formulate the reconstruction problem as a constrained convex optimization problem
with the total variation (TV) regularization. We then characterize the solution of the constrained
convex optimization problem and show that it satisfies a system of fixed-point equations defined
in terms of two proximity operators raised from the convex functions that define the TV-norm
and the constrain involved in the problem. The characterization (of the solution) via the prox-
imity operators that define two projection operators naturally leads to an alternating projection
algorithm for finding the solution. For efficient numerical computation, we introduce to the al-
ternating projection algorithm a preconditioning matrix (the EM-preconditioner) for the dense
system matrix involved in the optimization problem. We prove theoretically convergence of
the preconditioned alternating projection algorithm. In numerical experiments, performance of
our algorithms, with an appropriately selected preconditioning matrix, is compared with per-
formance of the conventional MAP expectation-maximization (MAP-EM) algorithm with TV
regularizer (EM-TV) and that of the recently developed nested EM-TV algorithm for ECT
reconstruction. Based on the numerical experiments performed in this work, we observe that
the alternating projection algorithm with the EM-preconditioner outperforms significantly the
EM-TV in all aspects including the convergence speed, the noise in the reconstructed images
and the image quality. It also outperforms the nested EM-TV in the convergence speed while
providing comparable image quality.

1 Introduction

Emission computed tomography (ECT) is a noninvasive molecular imaging method that requires
administration of radioactive tracers to patients. It comprises of two branches: positron emission
tomography (PET) and single-photon emission computed tomography (SPECT) [49, 60]. It might
provide estimate of the spatial and/or temporal distribution of radioactive tracer inside a patient
body through tomographic reconstruction from the detected emission events (typically in the form
of projection images for SPECT and sinograms or list data for PET). ECT provides a three-
dimensional (3D) functional rather than structural information provided by computed tomography
(CT) or magnetic resonance imaging (MRI). In a SPECT imaging system, the detectors (detector
units) record the number of single events due to gamma or x-ray photons emitted by SPECT
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radioactive tracer distributed inside a patient body. The photons are detected only if they travel
along directions well defined by a collimator. The collection of such emission data can be sorted
into a set of 2D projection images [60]. In PET systems, the pairs of detectors record the number
of coincidence events due to two 511 keV gamma photons emitted in positron annihilation events.
Positrons are emitted by PET radioactive tracer distributed inside a patient body. They travel
certain randomly distributed distances in the tissue before they annihilate electrons and produce
pairs of 511 keV photons emitted in random and approximately opposite directions. The collections
of such emission data form list data and can be sorted into a set of sinograms [49]. Clinical
applications of ECT include detection, staging and monitoring response to cancer therapy, detection
and risk stratification of cardiovascular diseases, mapping of regional blood flow in the brain, bone
scans, pulmonary ventilation/perfusion scans, and renal scans [63].

The aim of the reconstruction process is to obtain accurate estimation of the radiotracer distri-
bution in a patient or a phantom from the detected emission photons. The most commonly used
probability distribution for a description of raw ECT data is the Poisson model [35, 55, 60]. It
states that the vector of the number of events recorded by the detector units during ECT scan is a
Poisson distributed random vector with a mean equal to the sum of the system matrix multiplied
by the mean radiotracer activity distribution vector within an object of interest and by the mean
“background” counts vector. Sources of background counts include cosmic rays and terrestrial ra-
dioactive background. They are assumed to follow the Poisson distribution. For a given realization
of the detected ECT data and for the known expected background counts, this model allows one
to estimate the mean radiotracer activity distribution.

Finding numerical solutions of the model is a long-standing research problem. The iterative
expectation-maximization (EM) algorithm is a frequently used reconstruction method for ECT
imaging [35, 58]. Many reconstruction algorithms for the model are based on optimizing an objec-
tive function deduced in part from the statistical model of detection realization data. For example,
the maximum-likelihood (ML) method is based on minimizing the negative log-likelihood of ob-
served emission data conditional on radiotracer distribution. Under the Bayesian framework, the
maximum a posteriori (MAP) estimator seeks minimizing the sum of the negative log-likelihood of
observed emission data conditional on radiotracer distribution and a regularizing penalty function,
which penalizes solutions that have low probability. With various considerations such as compu-
tational efficiency of the algorithm to be developed and the spatial resolution of the reconstructed
images, many different types of penalty functions were proposed. The total-variation based penalty
function introduced in [28, 48] is particularly interesting in the field of ECT image reconstruction be-
cause it preserves the high spatial frequencies components of the reconstructed radiopharmacuetical
distribution including discontinuities and steep gradients. Many efficient algorithms for this model
were proposed, including EM-based methods [28, 48, 54], projected quasi-Newton methods [1, 2, 3],
and forward-backward approaches [7, 13, 56]. In particular, a nested EM-TV iterative scheme was
proposed recently in [54] for reconstruction of PET data with low signal-to-noise ratio, while an
alternating extragradient method was proposed in [7] for solving the primal-dual formulation of the
Poisson ECT data model with the TV regularization.

In the present paper, we study the numerical solution of the model that optimizes the sum of the
negative log-likelihood of observed emission data conditional on radiotracer distribution (i.e. the
Kullbach-Leibler divergence) and a total-variation regularization term. The ECT detector physics
requires that the solution of this model be nonnegative. Difficulties with the numerical solution
of such a model stem from the nonlinearity due to the use of the Kullbach-Leibler divergence and
the TV regularization, from the nonnegativity constraint on the solution, and from the dense and
large sized system matrix necessary for realistic ECT models. Motivated by our previous work
[39, 42, 43], we characterize the solutions of the model in terms of a fixed-point of the proximity
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operators with a precondition matrix. Numerical algorithms are then developed based on such a
characterization. More precisely, by identifying the total-variation as a composition of the convex
function, which defines the ‘ℓ1-norm’ or the ‘ℓ2-norm’, and the first order difference operator, we
formulate a characterization of the exact positive solutions to the optimization problem in terms of
a system of fixed-point equations via the proximity operators of the convex function that defines the
‘ℓ1-norm’ or the ‘ℓ2-norm’ and the one that defines the first quadrant of an Euclidean space. The
proximity operators of these simple functions have close forms, which provide great computational
advantages. The nonlinearity is expressed in terms of a system of fixed-point equations, which
naturally leads to an alternating projection algorithm. The dense system matrix of a large size is
treated by preconditioning. Appropriate choices of the preconditioning matrices lead to efficient
computational algorithms for solving the model.

This paper is divided into seven sections. In Section 2 we outline the Maximum a Posteriori
ECT image reconstruction model in terms of a somewhat general constrained convex optimization
problem. In Section 3, characterizations of the solution of the optimization problem are presented
in terms of a system of fixed-point equations via proximity operators, and the iterative algorithms
for finding the solution are developed based on the characterizations. Section 4 is devoted to
convergence analysis of the algorithm. In Section 5, we specialize the general algorithm to the TV-
regularized ECT image reconstruction problem. Numerical experiments are presented in Section 6
to test the approximation accuracy and computational efficiency of the proposed algorithm. The nu-
merical results demonstrate that the alternating projection algorithm with the EM-preconditioner
outperforms significantly the EM-TV in both the convergence speed and the image quality. We
also observe that our algorithm performs favorably in comparison to the nested EM-TV in both
the convergence speed and the image quality. We make concluding remarks in Section 7.

2 Maximum a Posteriori Estimation for ECT Reconstruction

In this section, we first present a mathematical model of a realistic ECT imaging system. We
then find the unknown radioactive tracer distribution by maximizing the posterior probability
distribution (the object function) using the observed emission data, known probability density
function of the unknown radioactive tracer distribution, and the Bayes law. This approach is
called the maximum a posteriori expectation-maximization (MAP-EM). Finally, the existence of a
solution of the resulting variational problem is discussed.

We begin by introducing the notation to be used throughout this paper. Let Nk := {1, 2, . . . , k}.
We use the same notation “1” to represent both the scalar number 1 and the vector with all
components equal to one. They can be distinguished by the context of their use. For x ∈ R

k, the
expression x ≥ 0 means that all components of x are no less than 0, and in this case, we say that
x is a nonnegative vector. We denote by R

k
+ the set {x : x ∈ R

k and x ≥ 0}. For any vectors x and
y in R

k, we define

x⊙ y := (xiyi : i ∈ Nk) and
x

y
:=

(
xi
yi

: i ∈ Nk

)

respectively, as the componentwise multiplication of x and y, and componentwise division of x by
y. The logarithmic function at x ∈ R

k is defined as

lnx := (lnxi : i ∈ Nk),

while the expression “x + γ”, the sum of the vector x with a scalar γ ∈ R, is understood as the
vector

x+ γ := (xi + γ : i ∈ Nk).
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We use 〈·, ·〉 and ‖ · ‖, respectively, for the inner product and the corresponding ℓ2-norm in an
Euclidean space, while we use ‖ · ‖1 and ‖ · ‖∞, respectively, for the ℓ1-norm and ℓ∞-norm.

It is well accepted that gamma and x-ray photons, as well as positrons emitted in radioactive
decay follow a Poisson distribution. Assuming that the detection of photons by detector units are
events independent of one another and can be described by a Bernoulli process, consequently the
projection images are a collection of Poisson random variables. The Poisson distribution approx-
imates the photon detection process only if one can neglect the detector dead-timed i.e. count
losses in the real detector systems, and no corrections are applied to the raw data. In addition
to photons emitted from the patient, the detector bins (units) detect events due to ubiquitous
radioactive terrestrial background and cosmic rays. It is assumed that they also follow the Poisson
distribution.

Let f represent the expected radiotracer distribution within a patient or a phantom. Let g
denote a vector with the i-th component being the number of single photons for SPECT or numbers
of pairs of annihilation photons for PET originated from the radiotracer and recorded by the i-th
detector unit or detector unit pair during the SPECT or PET scan, respectively. The dimension of
the vector g is the number of detector units or detector unit pairs in the SPECT or PET imaging
system, respectively. We assume that γ is a vector of the same size as g, with its i-th component
being the mean number of “background” counts recorded by the i-th bin in SPECT or bin pair
in PET. Under these assumptions, the observed emission data vector g related to the unknown
radiotracer distribution f can be approximated by the following model [35, 55]

g = Poisson (Af + γ) , (1)

where Poisson(α) denotes a Poisson distributed random vector with mean α and A is the ECT
system matrix with its (ij)-th element equal to the probability of detection of the photon emitted
from voxel j of image f by the i-th detector bin in SPECT or detector bin pair in PET.

The maximum a posteriori probability (MAP) EM estimate has been proven useful in ECT
for estimating the unobservable radiotracer distribution f when prior knowledge on probability
distribution function of f is available, especially when the observed emission data g are noisy or
incomplete [10, 19, 20, 21, 22, 30, 45]. Specifically, we assume that g in (1) is a given random
vector in R

m and f is a random vector in R
d. The MAP estimate f⋆ is obtained by maximizing

the conditional a posteriori probability p(f |g), the probability that f occurs when g is observed.
This probability may be computed using the Bayes law

p(f |g) ∝ p(g|f)p(f), (2)

where α ∝ β means that the scalar α is proportional to the scalar β. By taking the logarithm of
the both sides of equation (2), the MAP estimate can then be calculated using the formula

f⋆ = argmax
{
ln p(g|f) + ln p(f) : f ∈ R

d
}
. (3)

In other words, the MAP estimate f⋆ is obtained by maximizing expectation, that is, by minimiz-
ing the sum of a negative log-likelihood of the observed emission data conditional on radiotracer
distribution and a positive logarithm of the prior probability distribution. The first term can be
considered as a fidelity term, a measure of the discrepancy between the estimated and the observed
data. The second term is a regularization function, which penalizes solutions that have low prob-
ability. The Gibbs priors are commonly used in ECT reconstruction [18, 30, 36] in both convex
[17, 20, 45, 47] and nonconvex [21, 31, 62] forms

p(f) ∝ exp(−λU(f)) (4)
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with Gibbs real-valued energy function U(f) defined on R
d, and a positive regularization parameter

λ called hyperparameter.
We formulate our maximum a posteriori ECT reconstruction model from (3) and (4) by com-

puting the likelihood objective p(g|f) using equation (1) and specifying the energy function U .
According to equation (1), g follows the Poisson distribution having Af + γ as its mean. As a
result, the probability density function p(g|f) of g conditioned on f can be computed by using the
formula

p(g|f) =
∏

i∈Nm

((Af)i + γi)
gi exp(− ((Af)i + γi))

gi!
. (5)

We choose the energy function U in (4) as the total variation semi-norm. Accordingly, following
the notation used in [42], we have that

U(f) := (ϕ ◦B)(f), (6)

where B is an n × d first-order difference matrix and ϕ the ℓ1-norm for the anisotropic total-
variation or the ℓ2-norm for the isotropic total-variation on R

n. We shall provide more details of
the total variation later in Section 5. Taking the logarithm of the both sides of equation (5) and
incorporating identities ∑

i∈Nm

gi ln((Af)i + γi) = 〈ln(Af + γ), g〉

and ∑

i∈Nm

(Af)i = 〈Af, 1〉

in the resulting equation, we obtain that

ln p(g|f) = 〈ln(Af + γ), g〉 − 〈Af, 1〉+ const1,

where const1 is a constant independent of f . Moreover, from (4) and (6) we have that

ln p(f) = −λ(ϕ ◦B)(f) + const2,

where const2 is again a constant independent of f . Substituting the above two equations into (3)
leads to the following variational problem

min
{
〈Af, 1〉 − 〈ln(Af + γ), g〉 + λ(ϕ ◦B)(f) : f ∈ R

d
+

}
. (7)

Although the variational problem (7) is derived in the specific context of the ECT image re-
construction, in this paper, we shall consider solving the problem in the following somewhat more
general setting. We assume that A is a matrix in R

m×d, g is a given vector in R
m, γ is a positive

vector in R
m, λ is a positive number, ϕ is a convex nonnegative function on R

n, and B is an
n × d matrix. The ECT image reconstruction model is a special case of model (7) when ϕ ◦ B
is chosen as the total-variation semi-norm. For this reason, we call the above variational problem
the Poisson-TV model. In the remaining part of this section and Sections 3 and 4, we consider
model (7) in the general setting described above while in Sections 5 and 6 we specify it for the
ECT image reconstruction model. In model (7), the requirement of f ∈ R

d
+ is feasible due to the

fact that f represents the mean radiotracer activity distribution in the object in ECT.
In the remaining part of this section, we establish the existence of the solutions to the variational

problem (7). Recall that for a lower semicontinuous and convex function F defined over R
d, a

5



sufficient condition for F to have a minimizer over a closed convex set C is that the intersection of
C and a lower level set of F at some height ξ ∈ R defined by

lev≤ξF :=
{
f : f ∈ R

d, F (f) ≤ ξ
}
,

is nonempty and bounded (see, for example, [5]). We require some conditions on the system matrix
A, motivated from the ECT imaging system. We denote by A the collection of m × d matrices,
each of whose columns is a nonzero vector in R

m
+ . Since photons emitted from each voxel of an

object are detected by detector bins in the ECT imaging system, it is reasonable to assume that
the general system matrix A in (1) is in A.

Proposition 2.1. If A ∈ A, g ∈ R
m
+ , γ is a positive vector in R

m, λ is a positive number, ϕ is a
convex nonnegative function on R

n, and B is an n × d matrix, then the solution set of model (7)
is nonempty.

Proof. Let F : Rd+ → R be defined at any f ∈ R
d
+ as

F (f) := 〈Af, 1〉 − 〈ln(Af + γ), g〉 + λ(ϕ ◦B)(f).

Clearly, F is the objective function of the variational problem (7). It suffices to prove that F is
convex and coercive on the unbounded convex domain R

d
+.

Note that ϕ is a convex function. The convexity of F on R
d
+ is equivalent to the convexity of

the function
F1 := 〈A·, 1〉 − 〈ln(A ·+γ), g〉

on R
d
+. Since F1 is twice continuously differentiable and the Hessian of F1 at f ∈ R

d
+

∇2F1(f) := A⊤diag

(
g

(Af + γ)2

)
A,

is positive semi-definite due to g ∈ R
m
+ , the convexity of F follows.

Since ϕ is bounded below by 0, for any ξ ∈ R we have that lev≤ξF ⊂ lev≤ξF1. Hence, by
Theorem 11.9 in [5], the existence of the minimizer of the objective function F over Rd+ follows
from the boundedness of the lower level set lev≤ξF1 for some ξ ∈ R. Recalling the exercise 14 of
Section 1.2 in [8] and the conditions imposed on A, g and γ, we know that the function F1 has
compact lower level sets, which in turn completes the proof.

3 Characterizations and Algorithms

In this section, we first characterize solutions of the optimization problem (7) via the proximity
operator. We then develop an alternating projection algorithm for solving the optimization problem
based on the characterizations.

Let H denote an Euclidean space. For a proper convex function ψ : H → R ∪ {+∞}, having a
nonempty domain (the set on which ψ is finite), the proximity operator of ψ, denoted by proxψ, is
a mapping from H to itself, defined for a given vector x ∈ H by

proxψ(x) := argmin

{
ψ(u) +

1

2
‖u− x‖2 : u ∈ H

}
. (8)

The subdifferential of a proper function ψ on H at a given vector x ∈ H is the set defined by

∂ψ(x) := {y : y ∈ H and ψ(z) ≥ ψ(x) + 〈y, z − x〉 for all z ∈ H}.
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The subdifferential and the proximity operator of the function ψ are intimately related. Specifically,
for x in the domain of ψ and y ∈ H we have that

y ∈ ∂ψ(x) if and only if x = proxψ(x+ y). (9)

For a discussion of this relation, see, for example, [5, Proposition 16.34] and [42, 50].
The indicator function of a closed convex set C in H is defined as

ιC(u) :=

{
0, if u ∈ C,
+∞, otherwise.

It can be observed that the proximity operator for the indicator function of a closed convex subset
C in H is the projection operator onto C. For notational simplicity, when the set C is Rd+, we let

Υ := ι
Rd+
.

The subdifferential of Υ can be explicitly given. To this end, for a given vector x = (xi : i ∈ Nd) in
R
d
+, we define a projection matrix P associated with x by:

P (x) := diag (δ(xi) : i ∈ Nd) ,

where δ(xi) equals to 1 if xi = 0, and 0 otherwise. Then, by the definition of subdifferential, for a
vector x in R

d
+, we have that

∂Υ(x) = −P (x)Rd+. (10)

Define

S := {S : S is a d× d diagonal matrix with positive diagonal entries}.

For any S ∈ S and x ∈ R
d
+, from (10) together with the identity SRd+ = R

d
+, we have that

S∂Υ(x) = −SP (x)Rd+ = −P (x)SRd+ = −P (x)Rd+ = ∂Υ(x).

Thus, we observe that
S ◦ ∂Υ = ∂Υ. (11)

For given positive numbers λ and µ, a vector g in R
m
+ , an m× d matrix A ∈ A, an n× d matrix

B, we define H : Rd+ × R
n → R, at (f, b) ∈ R

d
+ × R

n, as

H(f, b) := 〈Af, 1〉 − 〈ln(Af + γ), g〉 + λµ〈Bf, b〉. (12)

We use ∇fH and ∇bH to denote the gradient of H with respect to its first and the second variables,
respectively. More precisely, we have for any point (f, b) ∈ R

d
+ × R

n that

∇fH(f, b) = A⊤

(
1−

g

Af + γ

)
+ λµB⊤b, (13)

∇bH(f, b) = λµBf. (14)

Set

τ :=
β

λ
and σ :=

1

λµ
. (15)

With this preparation, we present below a characterization of the solutions of model (7) via a
coupled fixed-point equations.
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Theorem 3.1. Let A ∈ A, g ∈ R
m
+ , γ and λ be two positive numbers, ϕ be a proper convex

nonnegative function defined on R
n, and B be an n × d matrix. If f ∈ R

d
+ is a solution of the

minimization problem (7), then for any β, µ > 0, and S ∈ S, there exists b ∈ R
n such that the pair

(f, b) ∈ R
d
+ × R

n is a solution of the following coupled equations

b =
(
I − proxµ−1ϕ

)
(b+ σ∇bH(f, b)) , (16)

f = proxΥ (f − τS∇fH(f, b)) . (17)

Conversely, if there exist β, µ > 0, S ∈ S, b ∈ R
n and f ∈ R

d
+ such that the above equations hold,

then f is a solution of the minimization problem (7).

Proof. Let f be a solution of the minimization problem (7). Applying Fermat’s rule to (7), we
get the relation

0 ∈ A⊤

(
1−

g

Af + γ

)
+ λB⊤∂ϕ(Bf) + ∂Υ(f). (18)

Hence, for arbitrary positive numbers β and µ, there exist u ∈ β
λ
∂Υ(f) and b ∈ 1

µ
∂ϕ(Bf) such that

from (13) and (18), we have that

0 = ∇fH(f, b) +
λ

β
u. (19)

By using relation (9), equation (16) is a direct consequence of b ∈ 1
µ
∂ϕ(Bf) and (14). Multiplying

the inclusion u ∈ β
λ
∂Υ(f) by the diagonal matrix S and using (11) yield the relation Su ∈ ∂Υ(f).

Applying (9) to the above inclusion, we have that

f = proxΥ(f + Su). (20)

Solving u from (19) and substituting it into (20) yield (17).
Conversely, if β, µ are given positive numbers and S is a matrix in S such that (f, b) is a solution

of (16)-(17), then all the arguments discussed above are reversible. This completes the proof.

The characterization of the solutions to the minimization problem (7) in Theorem 3.1 is essential
for deriving other equivalent ones with the aim of developing efficient algorithms for finding the
solutions of the variational problem. As an example, an alternative formulation for the minimization
problem (7) based on Theorem 3.1 is presented below.

Proposition 3.2. Let A ∈ A, g ∈ R
m
+ , γ and λ be two positive numbers, ϕ be a proper convex

nonnegative function defined on R
n, and B be an n × d matrix. If f ∈ R

d
+ is a solution of the

minimization problem (7), then for any β, µ > 0, and S ∈ S, there exists b ∈ R
n such that the pair

(f, b) ∈ R
d
+ × R

n is a solution of the coupled equations

b =
(
I − proxµ−1ϕ

)
(b+ σ∇bH (proxΥ (f − τS∇fH(f, b)) , b)) , (21)

f = proxΥ (f − τS∇fH(f, b)) . (22)

Conversely, if there exist β, µ > 0, S ∈ S, b ∈ R
n and f ∈ R

d
+ such that the above equations hold,

then f is a solution of the minimization problem (7).

From the given assumptions, the existence of a fixed point (f⋆, b⋆) of the coupled equations
(21)-(22) is a direct consequence of Proposition 2.1 and Theorem 3.1 together with Proposition 3.2.
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Based on the above characterization, the following Picard iteration is adopted to find a solution
of the equations (21)-(22): Given any initial (f (0), b(0)) ∈ R

d
+×R

n, for any k = 0, 1, . . . , we compute

{
b(k+1) =

(
I − proxµ−1ϕ

) (
b(k) + σ∇bH

(
proxΥ

(
f (k) − τS∇fH(f (k), b(k))

)
, b(k)

))

f (k+1) = proxΥ
(
f (k) − τS∇fH(f (k), b(k+1))

)
.

(23)

We show next that both I − proxµ−1ϕ and proxΥ are projections. Since the iterative scheme (23)
applies these two projections alternatingly, we shall call scheme (23) an alternating projection
algorithm. It is of particularly interest that S in the characterization of Proposition 3.2 can be
viewed as a preconditioner in our developed iterative scheme (23), therefore, it makes the algorithm
practically tractable. For this reason, we call this matrix the preconditioning matrix.

To better prepare the convergence analysis of this algorithm which will be our focus of the next
section, we present an equivalent form of (23). This new form is as follows:





h(k) := proxΥ
(
f (k) − τS∇fH(f (k), b(k))

)
,

b(k+1) =
(
I − proxµ−1ϕ

) (
b(k) + σ∇bH

(
h(k), b(k)

))
,

f (k+1) = proxΥ
(
f (k) − τS∇fH(f (k), b(k+1))

)
.

(24)

We now derive a technical lemma to show that the operator I −proxµ−1ϕ in (24) is a projection
operator on a closed convex set of Rn. To this end, we need to review the concept of the conjugate
function and some related results. Let ψ : H → R ∪ {+∞} be a proper function. The function
ψ∗ : H→ R ∪ {+∞} defined, at u ∈ H, by

ψ∗(u) := sup{〈x, u〉 − ψ(x) : x ∈ H}

is called the conjugate of ψ at u. For a proper lower semicontinuous convex function ψ on H and any
positive number α, the proximity operator of ψ and that of its conjugate ψ∗ satisfy the following
relation ([5, Theorem 14.3 (ii)] and [44, Proposition 4.a])

I = proxαψ + αproxα−1ψ∗ ◦ α−1I. (25)

Next, we recall the notion of the positive homogeneous function. A function ψ : H→ {−∞} ∪
R ∪ {+∞} is positive homogeneous if for any x ∈ H and any positive number α,

ψ(αx) = αψ(x). (26)

Clearly, ψ(0) = 0. Furthermore, if ψ is a positive homogeneous and proper lower semicontinuous
convex function on H then the conjugate function ψ∗ is the indicator function on the set ∂ψ(0)
(see, e.g., [5, 52]), that is,

ψ∗ = ι∂ψ(0). (27)

Lemma 3.3. If ψ is a positive homogeneous and proper lower semicontinuous convex function on
H and α is a positive number, then I − proxαψ is the projection operator on the set α∂ψ(0), that
is,

I − proxαψ = proxια∂ψ(0)
. (28)

Proof. From (27), we know that α−1ψ∗ = α−1ι∂ψ(0) = ι∂ψ(0). Combining this relation with (25),
we obtain that

I − proxαψ = αproxι∂ψ(0)
◦ α−1I = proxια∂ψ(0)

,

proving the desired formula.
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By Lemma 3.3, we conclude that I − proxµ−1ϕ in (24) is the same as proxι
µ−1∂ϕ(0)

. Hence, each

equation in the iterative algorithm (24) involves an operator of the form proxιC (·−T (∇G)(·)) for a
convex set C in H, a function G defined on H and a symmetric positive definite matrix T mapping
H to itself.

We shall end this section by providing a more general characterization of the solutions of the
minimization problem (7). To this end, for a proper convex nonnegative function ϕ on R

n, an n×d
matrix B, a given h ∈ R

d, a positive number µ, and a positive integer r, we define Qrh : Rn → R
n,

with
Q0
h := I and Qh :=

(
I − proxµ−1ϕ

)
(·+Bh),

recursively, by:
Qrh := Qh ◦Q

r−1
h . (29)

By using equation (14) and the proof of Proposition 3.2, we may establish the following result.

Proposition 3.4. Let A ∈ A, g ∈ R
m
+ , γ and λ be two positive numbers, ϕ be a proper convex

nonnegative function defined on R
n, and B be an n × d matrix. If f ∈ R

d
+ is a solution of the

minimization problem (7), then for any β, µ > 0, and S ∈ S, there exists b ∈ R
n such that the pair

(f, b) ∈ R
d
+ × R

n is a solution of the coupled equations

b = Qrf (b) (30)

f = proxΥ (f − τS∇fH(f, b)) . (31)

Conversely, if there exist β, µ > 0, S ∈ S, b ∈ R
n and f ∈ R

d
+ such that the above equations hold,

then f is a solution of the minimization problem (7).

Essentially, both Theorem 3.1 and Proposition 3.2 can be viewed as special cases of Proposi-
tion 3.4 with r = 1. The purpose of introducing the operator Qrf with r greater than 1 is mainly
from consideration of developing efficient algorithms in Sections 5 and 6.

4 Convergence Analysis

We analyze in this section convergence of the preconditioned alternating projection algorithm de-
scribed in the last section.

The convergence consideration of the algorithm requires introducing the notion of the weighted
norm. For a symmetric and positive definite matrix T : H → H, we define the weighted inner
product by

〈x, y〉T := 〈T−1x, y〉, x, y ∈ H.

The induced weighted norm is accordingly defined by

‖x‖T :=
√
〈x, x〉T .

Note that a symmetric positive definite matrix has precisely one symmetric positive definite square
root. Hence, we can rewrite 〈x, x〉T = 〈T− 1

2x, T− 1
2x〉, which in turn implies that the above weighted

norm is a norm on H.
Next we present a lemma which provides a tool for the proof of the convergence of the sequence

generated by the iterative scheme (23). For any initial pair (f (0), b(0)) ∈ R
d
+ × R

n, we let

U := {(f (k), b(k)) : k ∈ N}, where N := {1, 2, . . .}

be the sequence generated by the iterative scheme (23).
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Lemma 4.1. Let σ and τ be the two positive numbers defined by (15), H be a function on R
d×R

n

defined by (12), S ∈ S and ϕ be a positive homogeneous and convex function on R
n. If the following

conditions hold

(i) the sequence U is bounded,

(ii) limk→∞ ‖f
(k+1) − f (k)‖S = limk→∞ ‖b

(k+1) − b(k)‖ = 0,

then there exists a subsequence of U that converges to a solution of the coupled equations (21)-(22).

Proof. Since by hypothesis U is a bounded sequence in R
d
+ × R

n, there exists a subsequence

{(f (ki), b(ki)) : i ∈ N} that converges to a point (f̂ , b̂) in R
d
+ × R

n. This together with Condi-
tion (ii) ensures that the subsequence {(f (ki+1), b(ki+1)) : i ∈ N} converges to the same point.
Therefore, in (23) by choosing k := ki and letting i→∞, we conclude that the point (f̂ , b̂) satisfies
the coupled equations (21)-(22).

The use of Lemma 4.1 in the proof of the convergence result requires that we verify the hy-
potheses of the lemma. This is fulfilled by establishing the following estimate on the quantities
defined by

e(k) :=
1

2τ
‖f (k) − f⋆‖

2
S +

1

2σ
‖b(k) − b⋆‖

2

for a solution (f⋆, b⋆) of equations (21)-(22) that

e(k) +
1

2τ

k−1∑

j=0

‖f (j+1) − h(j)‖2S +
1

2τ

k−1∑

j=0

Cj‖h
(j) − f (j)‖2S +

1

2σ

k−1∑

j=0

Dj‖b
(j+1) − b(j)‖2 ≤ e(0), (32)

where h(j) is defined as in (24), and Cj , Dj are some positive constants.
We now establish several results needed for proving estimate (32). For a proper convex function

ψ : H→ R ∪ {+∞} and a symmetric positive definite matrix T , the proximity operator of ψ with
respect to T , denoted by proxTψ , is defined for a given vector x ∈ H by

proxTψ(x) := argmin

{
ψ(u) +

1

2
‖u− x‖2T : u ∈ H

}
.

Clearly, we have that proxψ = proxIψ. Moreover, for x in the domain of ψ and y ∈ H, we have the
following generalization of (9)

y ∈ T∂ψ(x) if and only if x = proxTψ(x+ y). (33)

We next present a reformulation of the proximity operator proxΥ.

Proposition 4.2. If S ∈ S, then
proxΥ = proxSΥ. (34)

Proof. Let x ∈ R
d and p = proxΥ(x). By relation (9), we have the inclusion x − p ∈ ∂Υ(p).

Since p ∈ R
d
+, using equation (11), we get that x − p ∈ S∂Υ(p). By relation (33), it yields that

p = proxSΥ(x), which completes the proof.

With Proposition 4.2 in mind, we next discuss several properties of the operator proxTιC (· −
T (∇G)(·)), which are crucial in our convergence analysis.
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Lemma 4.3. Let C be a nonempty closed convex subset of H, T be a symmetric positive definite
matrix mapping H to itself and G be a proper convex differentiable function on H. Set

p := proxTιC (x− T∇G(x)). (35)

Then the following statements hold:

(i) For any y ∈ C,
‖p − y‖2T ≤ ‖x− y‖

2
T − ‖p− x‖

2
T − 2〈∇G(x), p − y〉 (36)

and
‖p − y‖2T ≤ ‖x− y‖

2
T − ‖p− x‖

2
T − 2〈∇G(x), p − x〉+ 2 [G(y)−G(x)] . (37)

(ii) Furthermore, if G is also differentiable at p, then for any y ∈ C,

‖p − y‖2T ≤ ‖x− y‖
2
T − ‖p− x‖

2
T − 2〈∇G(x) −∇G(p), p − x〉+ 2 [G(y)−G(p)] . (38)

Proof. We first prove the inequalities in Item (i). Note that for any y ∈ H, we have that

‖p − y‖2T = ‖x− y‖2T − ‖p− x‖
2
T + 2〈T−1(p− x), p − y〉. (39)

By equations (35) and (9), we have the inclusion relation

x− T∇G(x)− p ∈ T∂ιC(p).

Multiplying the above inclusion by the symmetric positive definite matrix T−1 and recalling the
definition of the subdifferential, we have for all y ∈ C that

〈T−1(x− T∇G(x)− p), y − p〉 ≤ ιC(y)− ιC(p) = 0.

By splitting the term 〈T−1(p−x), p−y〉 as the sum of 〈T−1(x−T∇G(x)−p), y−p〉 and 〈−∇G(x), p−
y〉, and using the above inequality, from (39) we conclude that inequality (36) holds. Inequality
(37) follows from (36) together with

〈∇G(x), p − y〉 = 〈∇G(x), p − x〉+ 〈∇G(x), x − y〉

and the inequality
〈∇G(x), x − y〉 ≥ G(x)−G(y)

ensured by the convexity of G.
Finally, since G is differentiable at p, again by the convexity of G, we have that

〈∇G(p), p − x〉 ≥ G(p)−G(x).

This together with (37) leads to (38).

As a consequence of Lemma 4.3 with G being identical to zero, using (36) twice we derive for
all x, y ∈ H that

‖proxTιC (x)− proxTιC (y)‖T ≤ ‖x− y‖T . (40)

We next show that a solution of the coupled equations (16)-(17) is a saddle point of the function
H. This result is necessary for establishing inequality (32).
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Lemma 4.4. Let H be a function on R
d × R

n defined by (12). If (f⋆, b⋆) ∈ R
d
+ × R

n is a solution
of the coupled equations (16)-(17), then inequality

H(f⋆, b) ≤ H(f⋆, b⋆) ≤ H(f, b⋆) (41)

holds for any point (f, b) ∈ R
d
+ ×

(
µ−1∂ϕ(0)

)
.

Proof. We prove this lemma by showing the following two inequalities

H(f⋆, b) ≤ H(f⋆, b⋆), for all b ∈
(
µ−1∂ϕ(0)

)
(42)

and
H(f⋆, b⋆) ≤ H(f, b⋆), for all f ∈ R

d
+. (43)

We first prove inequality (42). By the definition of b⋆ and (28), we have that

b⋆ = proxι
µ−1∂ϕ(0)

(b⋆ +Bf⋆).

Employing the characterization of the projection, we observe that

〈Bf⋆, b− b⋆〉 = 〈(b⋆ +Bf⋆)− b⋆, b− b⋆〉 ≤ 0, for all b ∈
(
µ−1∂ϕ(0)

)
,

which is equivalent to inequality (42).
It remains to show inequality (43). Using the relations (9) and (34), from (17) we get for any

S ∈ S that
0 ∈ S∇fH(f⋆, b⋆) + S∂ι

Rd+
(f⋆).

Multiplying the above inclusion by the matrix S−1 guarantees that H(·, b⋆) achieves its minimum
value at the point f⋆. Thus, inequality (43) is valid.

We next prove estimate (32) by employing Lemma 4.3 and Lemma 4.4. To this end, for an
S ∈ S, we define the quantities

Aj :=

{
‖∇fH(h(j),b(j+1))−∇fH(f(j),b(j+1))‖

S−1

‖h(j)−f(j)‖S
, if ‖h(j) − f (j)‖S 6= 0,

0, otherwise,

and

Bj :=

{
‖∇fH(f(j) ,b(j+1))−∇fH(f(j),b(j))‖

‖b(j+1)−b(j)‖
, if ‖b(j+1) − b(j)‖ 6= 0,

0, otherwise.

Lemma 4.5. If (f⋆, b⋆) is a solution of the coupled equations (21)-(22), then the estimate (32)
holds with Cj := 1− 2τAj and Dj := 1− 2τ‖B‖2‖S‖2Bj .

Proof. Let j be a positive integer. Identifying x, y, p, T and G in (38), respectively, with b(j), b⋆,
b(j+1), I and −σH(h(j), ·), and recalling b(j+1) being defined by the projection (24), we have that

1

2σ
‖b(j+1) − b⋆‖

2 ≤
1

2σ
‖b(j) − b⋆‖

2 −
1

2σ
‖b(j+1) − b(j)‖2 +H(h(j), b(j+1))−H(h(j), b⋆), (44)

where we have used the fact that ∇bH(f, ·) is a constant. Likewise, identifying x, y, p, T and G
in (37), respectively, with f (j), f⋆, f

(j+1), S and τH(·, b(j+1)), recalling f (j+1) being defined by the
projection (23) and applying Proposition 4.2, we observe that

1

2τ
‖f (j+1) − f⋆‖

2
S ≤

1

2τ
‖f (j) − f⋆‖

2
S −

1

2τ
‖f (j+1) − f (j)‖2S + 〈∇fH(f (j), b(j+1)), f (j) − f (j+1)〉

+H(f⋆, b
(j+1))−H(f (j), b(j+1)). (45)
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Using the inequality
H(f⋆, b

(j+1)) ≤ H(h(j), b⋆),

which is ensured by Lemma 4.4, in the sum of the last two terms of (44) and (45) yields

H(h(j), b(j+1))−H(f (j), b(j+1))+H(f⋆, b
(j+1))−H(h(j), b⋆) ≤ H(h(j), b(j+1))−H(f (j), b(j+1)). (46)

The convexity of H(·, b(j+1)) ensures that

〈∇fH(h(j), b(j+1)), f (j) − h(j)〉 ≤ H(f (j), b(j+1))−H(h(j), b(j+1)),

which combined with (46) gives

H(h(j), b(j+1))−H(f (j), b(j+1))+H(f⋆, b
(j+1))−H(h(j), b⋆) ≤ 〈∇fH(h(j), b(j+1)), h(j)− f (j)〉. (47)

Moreover, identifying x, y, p, T and G in (36), respectively, with f (j), f (j+1), h(j), S and τH(·, b(j)),
and recalling the definition (24) of h(j) in terms of the projection, we obtain that

1

2τ
‖f (j+1)− f (j)‖2S ≥

1

2τ
‖f (j+1)−h(j)‖2S +

1

2τ
‖h(j)− f (j)‖2S + 〈∇fH(f (j), b(j)), h(j)− f (j+1)〉. (48)

Recalling the definition of e(j), summing (44) and (45), and using (48), (47) in the resulting sum
yield

e(j+1) − e(j) ≤ −
1

2τ
‖f (j+1) − h(j)‖2S −

1

2τ
‖h(j) − f (j)‖2S −

1

2σ
‖b(j+1) − b(j)‖2 + I1 + I2, (49)

where

I1 := 〈∇fH(f (j), b(j+1))−∇fH(h(j), b(j+1)), f (j) − h(j)〉,

I2 := 〈∇fH(f (j), b(j))−∇fH(f (j), b(j+1)), f (j+1) − h(j)〉.

Next we further estimate the last two inner products in (49). Note that S and S−1 are diagonal
and positive definite matrices, and hence they have unique diagonal positive definite square roots
S

1
2 and S− 1

2 , respectively. We then have that

I1 =
〈
S

1
2

(
∇fH(f (j), b(j+1))−∇fH(h(j), b(j+1))

)
, S− 1

2

(
f (j) − h(j)

)〉

≤ ‖∇fH(f (j), b(j+1))−∇fH(h(j), b(j+1))‖S−1 · ‖f (j) − h(j)‖S . (50)

The last inequality follows from using the Cauchy-Schwartz inequality together with the definition
of the weighted norm. Likewise, we can also get that

I2 ≤ ‖∇fH(f (j), b(j))−∇fH(f (j), b(j+1))‖S−1 · ‖f (j+1) − h(j)‖S . (51)

From the definitions of f (j+1) in (23) and h(j) in (24) and inequality (40), we get

‖f (j+1) − h(j)‖S ≤ τ
∥∥∥S
(
∇fH(f (j), b(j+1))−∇fH(f (j), b(j))

)∥∥∥
S

= τ
∥∥∥S

1
2

(
∇fH(f (j), b(j+1))−∇fH(f (j), b(j))

)∥∥∥ . (52)

On the other hand, since

∇fH(f (j), b(j))−∇fH(f (j), b(j+1)) = λµB⊤(b(j) − b(j+1)),
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this equation with (52) yields that

‖f (j+1) − h(j)‖S ≤ τλµ‖B‖2‖S
1
2 ‖2‖b

(j) − b(j+1)‖,

which together with the estimate (51) implies that

I2 ≤ λµτBj‖B‖2‖S‖2‖b
(j+1) − b(j)‖2. (53)

Combining inequalities (49), (50) and (53) together with using the definition of Aj gives the estimate

e(j+1) − e(j) ≤ −
1

2τ
‖f (j+1) − h(j)‖2S −

Cj
2τ
‖h(j) − f (j)‖2S −

Dj

2σ
‖b(j+1) − b(j)‖2. (54)

Summing the above inequality (54) for j running from 0 to k yields estimate (32).

In order to use the last lemma to show the validity of the hypotheses of Lemma 4.1, we bound
the constants Aj and Bj that appear in the last lemma. To this end, we need the following lemma
that pertains to the Lipschitz continuity of the gradient of H with respect to each of its variables.

Lemma 4.6. If H is a function on R
d×R

n defined by (12) and S ∈ S, then for a fixed vector b in

R
n, ∇fH(·, b) is Lipschitz continuous with constant

‖g‖∞‖A‖22‖S‖2
γ2

while for a fixed vector f in R
d,

∇fH(f, ·) is Lipschitz continuous with constant λµ‖B‖2. That is, for any f1, f2 ∈ R
d
+ and b ∈ R

n

‖∇fH(f1, b)−∇fH(f2, b)‖S−1 ≤
‖g‖∞‖A‖

2
2‖S‖2

γ2
‖f1 − f2‖S (55)

and for any b1, b2 ∈ R
n and f ∈ R

d
+

‖∇fH(f, b1)−∇fH(f, b2)‖ ≤ λµ‖B‖2‖b1 − b2‖. (56)

Proof. Using (13) and the definition of the weighted norm, for any f1, f2 ∈ R
d
+ and b ∈ R

n, we have
that

‖∇fH(f1, b)−∇fH(f2, b)‖S−1 =

∥∥∥∥∥S
1
2A⊤

(
(AS

1
2S− 1

2 (f2 − f1))⊙ g

(Af1 + γ)⊙ (Af2 + γ)

)∥∥∥∥∥ .

It can be verified that

‖(Af1 + γ)⊙ (Af2 + γ)‖∞ ≥ γ
2 and ‖(AS

1
2S− 1

2 (f2 − f1))⊙ g‖ ≤ ‖A‖2‖S
1
2 ‖2‖g‖∞‖f1 − f2‖S ,

from which inequality (55) follows.
Inequality (56) follows directly from the expression of ∇fH given in (13).

Finally, we show the convergence of the sequence U := {(f (k), b(k)) : k ∈ N} generated by the
preconditioned alternating projection algorithm (23).

Theorem 4.7. Let λ, µ, γ be positive numbers, σ and τ be the numbers defined by (15), S ∈ S, ϕ
be a positive homogeneous convex function on R

n, and H be the function on R
d × R

n defined by
(12). If β and µ are chosen to satisfy the conditions

0 < β ≤
(1− ε)λγ2

2‖g‖∞‖A‖22‖S‖2
, 0 < βµ ≤

1− ε

2‖B‖22‖S‖2

for some ε ∈ (0, 1), then for any initial pair (f (0), b(0)) ∈ R
d
+ × R

n, the sequence U converges to a
solution of the coupled equations (21)-(22).
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Proof. We prove this theorem by employing Lemma 4.1. The conditions imposed on β and µ
together with Lemma 4.6 lead to that both 1 − 2τAj and 1 − 2τ‖B‖2‖S‖2Bj are bounded below
by ǫ for all j. Hence, Lemma 4.5 implies that the sequence {(f (j), b(j)) : j ∈ N} is bounded
and sequence {‖b(j+1) − b(j)‖ : j ∈ N} converges to 0 and moreover both the sequences {‖h(j) −
f (j)‖S : j ∈ N}, {‖f (j+1) − h(j)‖S : j ∈ N} converge to 0, which implies the convergence of the
sequence {‖f (k+1) − f (k)‖S : k ∈ N} to 0. Therefore, by Lemma 4.1, there exists a subsequence
{(f (ki), b(ki)) : i ∈ N} which converges to (f̂ , b̂) ∈ R

d
+ × (µ−1∂ϕ(0)), a solution of the equations

(21)-(22). It remains to show that the sequence U also converges to the same point (f̂ , b̂). Indeed,
inequality (54) ensures that

1

2τ
‖f (j+1) − f⋆‖

2
S +

1

2σ
‖b(j+1) − b⋆‖

2 ≤
1

2τ
‖f (j) − f⋆‖

2
S +

1

2σ
‖b(j) − b⋆‖

2. (57)

Replacing the point (f⋆, b⋆) in inequality (57) by the point (f̂ , b̂) and summing the resulting in-
equality for j from ki to k − 1 with k > ki lead to the inequality

1

2τ
‖f (k) − f̂‖2S +

1

2σ
‖b(k) − b̂‖2 ≤

1

2τ
‖f (ki) − f̂‖2S +

1

2σ
‖b(ki) − b̂‖2.

This clearly guarantees that the sequence U converges to the point (f̂ , b̂).

We remark that the conditions stated in the last theorem imposed on the parameter β and µ
are rather restricted. We shall demonstrate in Section 6 by numerical examples that choices of
significantly larger β and µ than those allowed by the theorem lead to convergence of the iteration.

5 TV-Regularized MAP ECT Reconstruction

In this section, we specialize the general preconditioned alternating projection algorithm developed
in Section 3 to the MAP ECT reconstruction by specifying the function ϕ, the matrices B and
the preconditioning matrix S in (23). In particular, we present explicit formulas of the proximity
operators for the two special convex functions involved in the algorithm. We also discuss the impor-
tance of the inner iteration for efficient computation in the context of MAP ECT reconstruction.
Finally, we compare differences and advantages of our proposed algorithm with those of several
existing algorithms for the Poisson-TV model (7).

We first present explicit expressions of ϕ and B according to the definition of the total-variation
[53]. The concrete expressions of ϕ and B depend on how three dimensional images are vectorized.
A three-dimensional image is assembled by a stack of two-dimensional images. For convenience of
exposition, we assume that an image considered in this paper has a size of p× p× q. The image is
treated as a vector in R

p2q in such a way that the ijk-th voxel of the image, where i, j ∈ Np and

k ∈ Nq, corresponds to the (i+(j−1)p+(k−1)p2)-th element of the vector in R
p2q. In the current

section, we set d := p2q. To define the matrix B, we define an α× α difference matrix Dα by

Dα :=




0
−1 1

. . .
. . .

−1 1


 .

In terms of the notion of the matrix Kronecker product ⊗, we define the 3d× d matrix B by

B :=



Iq ⊗ Ip ⊗Dp

Iq ⊗Dp ⊗ Ip
Dq ⊗ Ip ⊗ Ip


 .
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The convex function ϕ : R3d → R is defined at z ∈ R
3d as

ϕ(z) :=

d∑

i=1

∥∥∥[zi, zd+i, z2d+i]⊤
∥∥∥ . (58)

The isotropic total-variation of a vector f is then expressed as ϕ(Bf).
Execution of the iterative scheme (23) requires the availability of explicit formulas for the

proximity operators of functions ϕ defined in (58) and the indicator function Υ := ι
Rd+

. For a

positive number µ and a vector z ∈ R
3d, the components of the vector

y := proxµ−1ϕ(z)

can be computed by using the formula

[yi, yd+i, y2d+i]
⊤ = max

{
‖[zi, zd+i, z2d+i]

⊤‖ −
1

µ
, 0

}
[zi, zd+i, z2d+i]

⊤

‖[zi, zd+i, z2d+i]⊤‖
, i ∈ Nd.

With this formula, for any positive integer r and a vector h ∈ R
d, the operator Qrh defined by (29)

can be explicitly computed. The proximity operator of the indicator function Υ (the projection
operator onto the first octant Rd+) also has an explicit expression. That is, for x ∈ R

d
+,

(proxΥ(x))i = max{xi, 0}, i ∈ Nd.

Thus, both proxµ−1ϕ and proxΥ have close forms in the current context. These close forms are
convenient for numerical evaluation of the proximity operators of the two specific functions in the
sense that no further optimization problems are required to solve. These specific examples can be
evaluated numerically within the machine precision. While in general, computing the proximity
operator of a convex function requires solving an optimization problem by its definition. Even in
the situation when close forms of the proximity operators are available, some round-off errors may
be introduced during computation. In such a case, one needs to consider the stability issue of
computing the proximity operator.

Based on Proposition 3.4, we propose the following algorithm (Algorithm 1) for the MAP ECT
reconstruction.

Algorithm 1 (Alternating Projection Algorithm for MAP ECT Reconstruction with a Fixed
Matrix S)

1: Preparation: ∇fH, ∇bH, τ are defined in (13), (14) and (15), respectively. The parameter r
is a positive integer.

2: Initialization: f (0) = 1, b(0) = 0.
3: repeat

4: Step 1: h(k) ← proxΥ(f
(k) − τS∇fH(f (k), b(k)))

5: Step 2: b(k+1) ← Qr
h(k)

(b(k))

6: Step 3: f (k+1) ← proxΥ
(
f (k) − τS∇fH(f (k), b(k+1))

)

7: until “convergence”

The parameter r in Algorithm 1 is the iteration number for the inner iteration. When r is
chosen to be 1, three steps in Algorithm 1 correspond to the three equations in (24), respectively.
In Algorithm 1, both Steps 1 and 3 involve the matrices A and A⊤ while Step 2 involves matrix
B. In the context of the MAP ECT reconstruction, matrix A is a dense matrix of a large size and
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matrix B is a sparse matrix of a relatively small size. As a result, computation with the matrix A or
A⊤ is more costly than computation with the matrix B. To reduce the overall computational cost,
we suggest that the inner iteration be carried out with an appropriate choice of iteration number
r. By paying less computational effort with an appropriate r we could obtain a more accurate
estimate f (k+1) at the k-th outer iterate. We shall study in the next section by numerical examples
the choices of the iteration number r.

The preconditioning matrix S is not specified in Algorithm 1. The choice of the precondi-
tioning matrix is crucial in designing computationally efficient algorithms. One may choose the
preconditioning matrix S as the identity matrix, which corresponds to the trivial case without pre-
conditioning. More interesting cases are the nontrivial choices. The choice of the preconditioning
matrix S may be motivated from different ways with the same purpose of speeding up the con-
vergence of the algorithm. A possible nontrivial choice is motivated by the idea of the projected
Newton method. For more details of the projected Newton method, see [3, 6]. In passing, we point
it out that preconditioning techniques were used in the context of emission computed tomography
for other algorithms (see, for example, [15, 32, 34, 45]).

We propose a choice of the preconditioner S based on the classical expectation-maximization
(EM). Recall that EM is an iterative scheme for computing the maximum likelihood estimate.
According to [35], when the EM algorithm is applied to (1), we have for any f (0) ∈ R

d
+ that

f (k+1) = E(k)A⊤

(
g

Af (k) + γ

)
, (59)

where E(k) is a diagonal matrix defined by

E(k) := diag

(
f (k)

A⊤1

)
. (60)

In the EM algorithm, the matrix E(k) determines the direction for the next step of a search for the
minimizer, for the purpose of finding the maximum likelihood estimate. By comparing (59) with
the form of ∇fH given in (13), motivated by the matrix E(k) having the form (60) we suggest that
we choose the matrix S in Algorithm 1 as the diagonal matrix E(k) at the k-th iteration. This
choice of the preconditioning matrix allows the search of the minimizer to follow the direction of the
search in the classical EM algorithm for finding the maximum likelihood estimate while preserving
the advantage of the alternating projection nature in the proposed algorithm. In this way, the
preconditioning matrix is updated at every iterate step when a new value f (k) is available. This
leads to the following algorithm (Algorithm 2) for the MAP ECT reconstruction.

Since the choice of S is motivated from the EM algorithm (59), we shall call Algorithm 2 the
EM preconditioned alternating projection algorithm (PAPA) for MAP ECT reconstruction and
call the matrix E the EM-preconditioner. A numerical comparison of the proposed Algorithm 1
and Algorithm 2 will be presented in the next section. The numerical study shows that the EM-
preconditioner speeds up significantly the convergence of the alternating projection algorithm.

We further comment on the dynamics of the EM-preconditioner. The PAPA algorithm which we
described in Section 3 and for which we proved convergence in Section 4 has a fixed preconditioning
matrix S. The preconditioner in Algorithm 2 changes dynamically from step to step. In the next
section, we shall study the dynamics of the EM-preconditioner numerically and shall see that after
some iteration steps, the change in the EM-preconditioner is so small that it can be neglected. In
other wards, the EM-preconditioner tends to a fixed preconditioning matrix as the iteration number
increases. Therefore, in practise, we may fix the preconditioning matrix after some iteration steps
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Algorithm 2 (Preconditioned Alternating Projection Algorithm for MAP ECT Reconstruction)

Preparation: ∇fH, ∇bH, τ are defined in (13), (14) and (15), respectively. The parameter r
is a positive integer.
Initialization: f (0) = 1, b(0) = 0.
repeat

Step 1: S(k) ← diag
(
f(k)

A⊤1

)

Step 2: h(k) ← P
Rd+

(f (k) − τS(k)∇fH(f (k), b(k)))

Step 3: b(k+1) ← Qr
h(k)

(b(k))

Step 4: f (k+1) ← P
Rd+

(
f (k) − τS(k)∇fH(f (k), b(k+1))

)

until “convergence”

Algorithm 3 (Semi-Dynamic PAPA for MAP ECT Reconstruction)

Preparation: ∇fH, ∇bH, τ are defined in (13), (14) and (15), respectively. The parameters r
and l are positive integers.
Initialization: f (0) = 1, b(0) = 0.
Run Algorithm 2 until k > l.

Set S(l) = diag
(
f(l)

A⊤1

)
.

repeat

Step 1: h(k) ← P
Rd+

(f (k) − τS(l)∇fH(f (k), b(k)))

Step 2: b(k+1) ← Qr
h(k)

(b(k))

Step 3: f (k+1) ← P
Rd+

(
f (k) − τS(l)∇fH(f (k), b(k+1))

)

until “convergence”
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and propose the following semi-dynamic PAPA (Algorithm 3). In this way, the convergence theorem
established in Section 4 is still applicable.

To close this section we compare PAPA with four existing algorithms, namely, the alternating
extragradient method (AEM) [7], the nested EM-TV algorithm [54], the nested iterative algorithm
for convex constrained problem [13], and the preconditioned primal-dual algorithm (P-PD) [50, 56].

The AEM algorithm, which is a variant of the extragradient method, was developed to solve
the saddle-point formulation of the Poisson-TV model (7). We point out that the AEM appears
to be a special case of the proposed Algorithm 1 with the trivial preconditioner S = I and inner
iteration number r = 1, but it was developed based on a different principle. The introduction of
inner iteration number r and a nontrivial preconditioner S in PAPA allows us to develop more
efficient reconstruction algorithms.

We now compare PAPA with the nested EM-TV algorithm. Actually, the nested EM-TV
requires to solve an optimization problem of the form

argmin

{
1

2

〈
f − f (k+

1
2
),
A⊤1

f (k)
⊙ (f − f (k+

1
2
))

〉
+ λϕ(Bf) : f ∈ R

d
+

}

exactly in each outer iteration. While PAPA does not need to do this and it leads to a more efficient
algorithm. This will be demonstrated by numerical examples in the next section.

Next we compare PAPA with the nested iterative algorithm proposed in [13] for solving con-
vex constrained problems. The paper combined the forward-backward and the Douglas-Rachford
iterations together to minimize the sum of two functions over a convex set. The validity of the
resulting algorithm requires at least one of the two functions differentiable. While PAPA is devel-
oped based on a fixed-point characterization (in terms of the proximity operator) of the solutions
of the Poisson-TV model (7), which does not necessarily require any term of the objective function
to be differentiable.

Finally, we compare PAPA with the P-PD algorithm developed in [56], which prototyped sev-
eral convex optimization problems for computed tomography (CT) image reconstruction with the
primal-dual (PD) algorithm, proposed earlier in [12]. Within each complete iterate step, the PD
algorithm introduces an extrapolation step based on the current and previous iterates, which can
be seen as an approximate extragradient step. In contrast, PAPA computes the primal leading
point h(k) by taking an extragradient step based on the current iterate only. Besides, PAPA made
good use of the sparsity of the difference matrix B by carrying out the inner iteration to reduce
the overall computational cost, while reference [56] did not. Indeed, matrix A is much denser than
matrix B, and hence computation with A or A⊤ is more costly than that with B. As we have
pointed out earlier, by carrying out the inner iteration with an appropriate iteration number r we
could greatly accelerate the whole iterative scheme. Moreover, following the idea in [50], paper [56]
developed a P-PD algorithm for model (7) using fixed diagonal preconditioners. While in PAPA,
we proposed a dynamic preconditioner motivated from the EM algorithm, which proves to be more
efficient and converging faster in the numerical experiments presented in the next section.

6 Numerical Experiments

In this section, we report numerical results obtained from computational experiments for the pro-
posed algorithms. We compare our algorithms with the conventional EM-TV algorithm [48] and
the nested EM-TV algorithm [54] in terms of the reconstruction quality and computational perfor-
mance. We also compare the convergence speed of our proposed algorithms with that of the P-PD
algorithm developed in [56].

20



6.1 Simulated SPECT Projection Data

We created a digital cylindrical emission phantom with uniform mean background activity distri-
bution (that is, with uniform mean number of nuclear disintegrations per time unit and per unit
volume) and sets of 7 hot spheres and 7 cold spheres embedded in the cylinder. The hot and cold
spheres simulate hyperperfused and hypoperfused defects, respectively. Such defects are of interest
in nuclear medicine and one of the main tasks of ECT is detection of such defects. Mean activities
across all spheres are uniform. The mean activity ratios of hot:background:cold areas are 40:10:1,
respectively. The pixel size used is 0.172 cm. The phantom dimensions are: base radius 84 pixels
and length 128 pixels. The spheres radii are 3, 4, 5, 6, 7, 9 and 14 pixels. Their centers are in slices
33 and 97. The locations of spheres in transaxial and sagittal planes are shown in Figure 1. The
spheres are separated by a uniform region located between slices 47 and 82. The mean activity
distribution in the phantom represents the mean radiotracer distribution, that is, the image f in
(1). The parallel-collimator SPECT projection data for our experiments consist of 120 views in
256×128 matrix with pixel size 1.78 mm and were generated using analytical pixel-wise discretized
projector A in (1) with 20 rays per detector bin [59]. The generated data follow Poisson probability
distribution created by a random number generator and the total number of detector counts in 120
views equal to 1.79 × 106 and 1.947 × 107 corresponding to approximately 10 : 1 total activities
ratio. Neither attenuation nor scatter was modeled and an ideal detector was assumed. Each image
in these projection sets was then downsampled to a 128× 64 matrix with pixel size 3.56 mm. The
coefficient of variation (CV) defined as the ratio of the standard deviation to the mean in the pro-
jection image of a sufficiently large uniform region away from edges is used as a measure of Poisson
noise in the noisy projection data. Using such a definition, our projection sets are characterized at
56% and 15% noise levels, respectively (Figure 2). For the sake of convenience, the phantom with
higher (less noisy) and lower total activity (more noisy) is called“low-noise phantom” and “high-
noise phantom”, respectively. The low-noise phantom corresponds to clinically realistic SPECT
data, while the high-noise phantom SPECT data would result in clinically unacceptable high noise
in the reconstructed images if treated with conventional reconstruction techniques.

(a) (b) (c)

Figure 1: Morphology of numerical phantom used: (a) Transaxial cross-section (slice 17) through
the centers of all hot spheres; (b)Transaxial cross-section (slice 49) through the centers of all cold
spheres; (c) Sagittal cross-section through the centers of the two largest spheres. The mean activity
ratios of hot:background:cold areas are 40:10:1, respectively. The spheres radii are counterclockwise:
3, 6, 4, 5, 7, 9 and 14 (center) pixels, respectively. The pixel size used is 0.172 cm.

Examples of one noise realization for one projection view are shown in Figure 2.
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(a) (b)

Figure 2: Example of one parallel-beam collimator SPECT projection view, out of 120 views in
the projection set, simulated for one noise realization for a digital phantom shown in Figure 1: (a)
15% Poisson noise, 1.62 × 105 counts per view; (b) 56% Poisson noise, 1.49 × 104 counts per view.

6.2 Numerical Studies of the Proposed Algorithms

In this subsection, we assess the numerical performance of the proposed algorithms: Algorithms 1,
2 and 3 in image reconstruction for the SPECT projection data generated from the low-noise and
high-noise phantoms. Specifically, we consider three issues related to the proposed algorithms: the
necessity of the preconditioning, the convergence of the proposed preconditioner (60) and the role
of the multiple iteration steps in the inner iteration.

In our numerical experiments, the regularization parameter λ in the Poisson-TV model (7) is
chosen by adopting the Bias-Noise curve method. Specifically, we calculated bias and the coefficient
of variation (CV) in a reconstructed background region of interest for candidate regularization
parameters (ranging from 1 × 10−4 to 1), and obtained the bias-CV curve. When choosing the
optimal parameters, we consider the best trade-off between bias and CV. Furthermore, in order
to improve the statistical accuracy, we generated three SPECT projection data sets with different
noise realizations from the low-noise and the high-noise phantom, respectively, and evaluated the
mean values of bias and CV with respect to the three different noise realizations. In particular, in
our numerical experiments, the regularization parameter λ in the Poisson-TV model (7) is chosen
to be 0.1 and 0.2 for the SPECT projection data sets generated from low-noise and high-noise
phantom, respectively. The constant γ in the model is set to be 0.01 for both phantoms. Let
{f (k) : k ∈ N} be a sequence generated by either Algorithm 1, 2 or 3. For a pre-given tolerance tol,
the iterative process of an algorithm is terminated if the following requirement is satisfied

‖f (k) − f (k+1)‖/‖f (k+1)‖ ≤ tol. (61)

The parameters in Algorithms 1, 2 and 3 are specified as follows. For Algorithm 1 without precon-
ditioning (S = I) we choose β to be 107 times of the upper bound suggested by Theorem 4.7, and
µ := 1/(2β‖B‖22). For Algorithm 1 with the fixed diagonal preconditioner diag

(
1

A⊤1

)
, we set β = λ,

and µ = 1/(2λ‖B‖22‖
1

A⊤1
‖∞). For Algorithms 2 and 3 we set β = λ, and µ = 1/(2λ‖B‖22‖

f(k)

A⊤1
‖∞)

in their k-th iterations.
In the first experiment, we compare the performance of Algorithm 1 without preconditioning

(S = I) with that of Algorithm 1 with the fixed diagonal preconditioner diag
(

1
A⊤1

)
and that of

Algorithms 2 and 3. The parameter r for all the algorithms is fixed at 10 and the other parameters
for each algorithm are chosen as discussed above. When implementing Algorithm 3, in the first
100 iterations, we use the dynamic preconditioner and after 100 iterations, we fix the precondi-
tioner. Table 1 gives a summary of the CPU times (process times) and numbers of the complete
iterations for reconstructing images from the noisy SPECT projection data set generated from low-
noise phantom. It clearly shows that Algorithms 2 and 3, which have dynamic and semi-dynamic
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Table 1: The pair (·, ·) represents the CPU time and the number of the complete iterations used in
Algorithms 1, 2, 3 and P-PD algorithm with different choices of tol for the noisy SPECT projection
data set generated from low-noise phantom. T represents the diagonal matrix diag

(
1

A⊤1

)
.

P
P
P
P
P
P

Alg.
tol

10−1 10−2 10−3 10−4 10−5 10−6 10−7

Alg. 1 (S = I) (5.4, 2) (70.2, 27) (250.9, 99) (1359.6, 525) (4300.9, 1653) (10241.8, 3940) (-, -)
Alg. 1 (S = T ) (5.4, 2) (57.5, 23) (210.5, 85) (1088.5, 445) (3204.9, 1301) (7383.4, 3000) (-, -)

Alg. 2 (12.6, 5) (35.0, 14) (109.6, 44) (291.1, 117) (768.6, 309) (1915.6, 770) (5435.0, 2109)
Alg. 3 (12.3, 5) (34.8, 14) (109.6, 44) (305.7, 123) (759.5, 307) (1464.3, 592) (3954.8, 1599)

P-PD Alg. (6.6, 2) (75.9, 23) (292.7, 89) (1569.1, 479) (4357.6, 1331) (9885.1, 3024) (-, -)

EM-preconditioners respectively, converge significantly faster than Algorithm 1 with either precon-
ditioner. We remark that Algorithm 1 with either preconditioner cannot meet the stopping criteria
for the last tolerance level. This phenomenon is marked by (−,−) in the table. Therefore, in
the remaining part of this section, only Algorithm 3 will be used to compare with other existing
algorithms for the Poisson-TV model (7). For comparison, we include in Table 1 the numerical
results for the P-PD algorithm [56] which also uses a fixed preconditioner. Its performance is even
worse than that of Algorithm 1 with the fixed diagonal preconditioner diag

(
1

A⊤1

)
.

The proposed preconditioner (60) depends on the current iterate and is updated at each iterate
step. The second experiment explores numerically how the preconditioner (60) changes in iterations
in terms of its ℓ2-norm and Frobenius-norm. Figure 3 presents the curves of both norms versus
iteration numbers for the low-noise and high-noise phantoms. From the figure we conclude that
after a few iterations, the change of the preconditioner (60) is neglectable. This suggests that
except for the first few iterations, the preconditioner may be chosen to be the same. In this regard,
the convergence result (Theorem 4.7) that we establish for the fixed preconditioner is applicable to
the practical situation.

(a) (b)

Figure 3: Curves of (a) ℓ2-norm and (b) Frobenius-norm of the preconditioner (60) versus iteration
numbers for low-noise and high-noise phantoms.

The third experiment tests numerically the choice of the parameter r in the inner iteration for
Algorithm 3 (PAPA) in terms of the CPU time that the algorithm requires to reach the stopping
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criteria (61) for different tolerances. We perform PAPA with r from 6 to 15 for the noisy SPECT
projection data sets generated from low-noise and high-noise phantoms with the tolerance tol =
10−6. The numerical results for the noisy SPECT projection data set generated from the low-noise
phantom show that the algorithms with the parameter r ranging from 7 to 11 perform comparably
and are better than those with other ranges of r. The numerical results for the noisy SPECT
projection data set generated from the high-noise phantom indicate that the algorithms with the
parameter r ranging from 10 to 12 perform comparably and are better than those with other
ranges of r. According to this numerical observation, in the remaining part of this section, we fix
the parameter r for PAPA at 10.

6.3 Comparison of PAPA with the EM-TV Algorithm

We now compare performance of the proposed PAPA with that of the conventional EM-TV [48],
in terms of the CPU time, local image quality metrics: the coefficient-of-variation (CV) measured
within the uniform region of interest, contrast-to-noise ratio (CNR), and a global image quality
metric: the normalized mean-squared error (NMSE).

We first recall the conventional EM-TV algorithm. For a given positive number δ, the smoothed
version of the total variation is a function R : Rd → R defined at u ∈ R

d as

R(u) :=
d∑

i=1

∥∥∥[(Bu)i, (Bu)d+i, (Bu)2d+i, δ]⊤
∥∥∥ . (62)

With this function R, the conventional EM-TV algorithm [48] is described in Algorithm 4.

Algorithm 4 (Conventional EM-TV Algorithm for MAP ECT Reconstruction)

Initialization: f (0) = 1.
repeat

f (k+1) ← diag
(

f(k)

A⊤1+λ∇R(f(k))

)
A⊤
(

g

Af(k)+γ

)
.

until “convergence”

For reconstructions with the conventional EM-TV algorithm, following [48] we choose δ = 0.001
which is less than 1% of the maximum value of the phantom. Moreover, we note that when λ
vanishes the conventional EM-TV algorithm reduces to the EM algorithm (59).

We now evaluate the quality of the reconstructed images. First, we compare noise in the
reconstructed images. We use the coefficient of variation (CV) within a uniform region of interest
as a surrogate of noise measure in the reconstructed images obtained using Algorithm 2 and the
conventional EM-TV. The CV of an image f∞ reconstructed by an algorithm is defined by

CV :=
SDΩ(f

∞)

EΩ(f∞)
,

where SDΩ(·) and EΩ(·) denote the standard deviation and the mean of the reconstructed activities
over a region Ω. In our case, the region Ω is a cylinder with the radius of base and the height equal
to 25 and 8 pixels, respectively. This cylindrical region lies between the hot spheres and the cold
spheres (please refer to Figure 1 (c)) and does not intersect with any hot or cold spheres. Under
these circumstances, the means of CVs (with respect to 5 different noise realizations) for PAPA
and the conventional EM-TV are 0.12% and 3.81%, respectively, for the low-noise phantom, and
are 4.09% and 13.15%, respectively, for the high-noise phantom. From these numerical results, we
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find out that PAPA performs considerably (factor of 31 for low-noise phantom data and factor of
3 for high-noise phantom data) better than the conventional EM-TV in terms of the noise.

Next, a local quality metric, contrast-to-noise ratio (CNR), of images will be used to measure
the quality of the reconstructed hot or cold spheres. Too low CNR might result in inability to
detect the lesion by an observer. The contrast-to-noise ratio (CNR) for a reconstructed image f∞

is defined as a ratio of a lesion contrast to the background noise [4, 40, 51]

CNR :=
|EΩT (f

∞)− EΩB(f
∞)|

SDΩB (f
∞)

.

Here EΩT (f
∞) is the mean reconstructed activity in the region ΩT where a specific hot (resp. cold)

sphere is located, while ΩB is a spherical region with the same diameter as the hot (resp. cold)
sphere but located within the uniform region of the cylindrical phantom that does not intersect
with any hot or cold sphere. The CNR metric is important in Radiology because it allows to asses
detectability of a lesion that is one of the main tasks of ECT. It is well established by human
observer studies that the lesion contrast and the background noise influence lesion detectability
[40]. We note that even when the signal-to-noise ratio is high, the presence of a significant bias in
the reconstructed image might result in the lesion contrast being too low for a lesion to be detected.
Very high noise or correlation of the noise will contribute to low detectability of the lesion even
if the lesion contrast is high [46]. The curves of the means of CNRs (with respect to 5 different
noise realizations again) versus diameters of spheres are plotted in Figure 4. Again, we observe
that PAPA very significantly (factor of 7-14 for high-noise phantom) outperforms the conventional
EM-TV in terms of the CNR values.

We use the normalized mean-squared error (NMSE) to assess accuracy of reconstructions. The
NMSE is a global image quality metric. It quantifies the difference between the activity reconstruc-
tion f∞ and the true mean activity f in the whole object. It is defined by

NMSE :=
‖f − f∞‖2

‖f‖2
.

The mean values of NMSE (with respect to 5 different noise realizations) for the images recon-
structed by PAPA and the conventional EM-TV are 0.485 and 0.787, respectively, for the low-noise
phantom, and 2.55 and 3.93, respectively, for the high-noise phantom. Once again, PAPA signifi-
cantly outperforms the conventional EM-TV in terms of the NMSE values.

6.4 Comparison of PAPA with the Nested EM-TV Algorithm

In this subsection, we compare performance of PAPA with the nested EM-TV algorithm, the
algorithm recently described in [54].

In Algorithm 5, we describe the nested EM-TV algorithm for ECT reconstruction. This al-

Algorithm 5 (Nested EM-TV Algorithm for MAP ECT Reconstruction)

Initialization: f (0) = 1.
repeat

EM Step: f (k+
1
2
) ← diag

(
f(k)

A⊤1

)
A⊤
(

g

Af(k)+γ

)
.

TV Step: f (k+1) ← argmin
{

1
2

〈
f − f (k+

1
2
), A

⊤1
f(k)
⊙ (f − f (k+

1
2
))
〉
+ λϕ(Bf) : f ∈ R

d
+

}
.

until “convergence”

gorithm has two major steps: the EM step and the TV correction step, and they are performed
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alternatively. The EM step is identical to (59). The TV correction step is a modified version of the
Rudin-Osher-Fatemi (ROF) model and was implemented by exploiting an existing scheme for the
ROF model. In fact, it was stated in [54] that the TV correction step in Algorithm 5 was carried
out by adopting Chambolle’s method originally reported in [11]. We shall follow the suggestion
made in [54] to apply Chambolle’s method with 10 iterations for each TV correction step to achieve
an approximate solution.

In Table 2, we list the CPU time expended and the number of the complete iterations used
by PAPA, the nested EM-TV and the conventional EM-TV, for the two SPECT projection data
sets. After examining the table, we conclude that under the same stopping criteria PAPA is better
than the nested EM-TV, and significantly better than the conventional EM-TV in terms of the
convergence speed. We remark that the conventional EM-TV algorithm cannot even meet the
stopping criteria for most of the given tolerance levels.

Table 2: Comparison of performance of PAPA, the conventional EM-TV and the nested EM-TV
for the test data. The pair (·, ·) represents the CPU time and the number of the complete iterations
used.

X
X
X
X
X
X
XX

Algorithm
tol

10−1 10−2 10−3 10−4 10−5 10−6 10−7

low-noise phantom
PAPA (12.3, 5) (34.8, 14) (109.6, 44) (305.7, 123) (759.5, 307) (1464.3, 592) (3954.8, 1599)

Nested EM-TV (14.1, 5) (40.0, 14) (122.8, 43) (333.1, 117) (872.4, 307) (2207.3, 777) (6184.5, 2179)
EM-TV (7.15, 4) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -)

high-noise phantom
PAPA (12.4, 5) (35.3, 14) (106.2, 42) (295.3, 117) (724.7, 289) (1451.6, 580) (4349.4, 1741)

Nested EM-TV (13.2, 5) (38.1, 14) (115.2, 42) (304.5, 111) (798.8, 291) (2024.3, 737) (5593.6, 2045)
EM-TV (9.01, 5) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -)

In addition to the CPU time and the number of complete iterations, we further estimate the
number of arithmetic operations for PAPA and the nested EM-TV algorithm. We list in Table 3
the number of total arithmetic operations required by PAPA and the nested EM-TV, under various
stopping criteria.

Table 3: Comparison of arithmetic operations of semi-dynamic PAPA and the nested EM-TV for
the test data. The number · represents · × 220 arithmetic operations required.

X
X
X
X
X
X
X
X
XX

Algorithm
tol

10−1 10−2 10−3 10−4 10−5 10−6 10−7

low-noise phantom
PAPA 3380 9464 29744 83148 207532 400192 1080924

Nested EM-TV 3795 10626 32637 88803 233013 589743 1653861
high-noise phantom

PAPA 3380 9464 28392 79092 195364 392080 1176916
Nested EM-TV 3795 10626 31878 84249 220869 559383 1552155

Furthermore, we compare the image quality metrics of the reconstructed images obtained by
using PAPA and by the nested EM-TV. The means of CVs for the reconstructions by PAPA and
the conventional EM-TV are reported in Table 4. The means of CNRs with respect to 5 different
noise realizations versus the diameters of the hot spheres (resp. cold spheres) for PAPA, the nested
EM-TV, and the conventional EM-TV are listed in Table 5 (resp. 6). Moreover, the means of
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NMSEs with respect to 5 different noise realizations for the images of the low-noise phantom and
the high-noise phantom are presented in Table 7. We conclude from these tables that both PAPA
and the nested EM-TV outperform the conventional EM-TV in terms of the values of CV, CNR
and NMSE while PAPA performs comparably with the nested EM-TV.

Table 4: Means of CVs for the reconstructions by PAPA, the nested EM-TV and the conventional
EM-TV.

Phantom low-noise phantom high-noise phantom
PAPA 0.12% 4.09%

nested EM-TV 0.14% 4.54%
EM-TV 3.81% 13.15%

Table 5: Means of CNRs for 7 hot spheres reconstructed using PAPA, the nested EM-TV and the
conventional EM-TV.

Diameters of Spheres 14 9 7 6 5 4 3
low-noise phantom

PAPA 1915.768 1590.557 1574.134 1451.297 1280.732 1043.835 611.271
nested EM-TV 1912.141 1587.496 1571.388 1448.454 1277.969 1041.962 610.677

EM-TV 65.801 55.159 56.717 51.872 47.284 40.451 28.124
high-noise phantom

PAPA 52.171 41.019 37.525 31.919 28.247 13.939 5.448
nested EM-TV 52.149 41.002 37.510 31.905 28.234 13.932 5.445

EM-TV 17.007 13.116 11.885 9.815 8.389 4.237 2.232

Table 6: Means of CNRs for 7 cold spheres reconstructed using PAPA, the nested EM-TV and the
conventional EM-TV.

Diameters of Spheres 14 9 7 6 5 4 3
low-noise phantom

PAPA 543.563 427.444 330.512 283.982 229.776 97.887 14.505
nested EM-TV 542.524 426.538 330.087 283.587 229.380 97.331 14.437

EM-TV 18.721 15.195 12.599 11.744 10.610 6.785 3.993
high-noise phantom

PAPA 14.378 10.106 6.577 8.570 1.543 0.424 0.764
nested EM-TV 14.373 10.105 6.576 8.568 1.542 0.424 0.762

EM-TV 4.929 3.544 2.484 3.128 1.310 0.724 0.839

In order to qualitatively compare the image reconstruction quality, in Figures 5 and 6 we
present selected transaxial cross-sections through the reconstructed images of the hot and cold
spheres, respectively. Images reconstructed by PAPA, the nested EM-TV, and the conventional
EM-TV for two noise levels (56% and 15%) are shown. We observe much higher background noise
in the images reconstructed by the conventional EM-TV, as compared to PAPA and the nested
EM-TV. The quality of images reconstructed by PAPA and the nested EM-TV is similar. The hot
sphere with 4-pixel radius cannot be detected in the images reconstructed from high-noise data
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Table 7: Means of NMSEs for the reconstructions by PAPA, the nested EM-TV and the conventional
EM-TV.

Phantom low-noise phantom high-noise phantom
PAPA 0.48469 2.54701

nested EM-TV 0.48481 2.54794
EM-TV 0.78670 3.92571

by the conventional EM-TV. But, it is detectable in the reconstructions performed using PAPA
and the nested EM-TV. The cold spheres with 6 and 7-pixel radii are poorly visible in the images
reconstructed from high-noise data by the conventional EM-TV. However, they are easily detectable
in the reconstructions performed using PAPA and the nested EM-TV.

To better access the differences between images reconstructed using PAPA and the nested EM-
TV, we obtain line profiles through selected transaxial cross-sections of the reconstructed images
containing the hot and cold spheres. They are shown in Figures 7 and 8 for hot and cold spheres,
respectively. We observe that for hot spheres reconstructions PAPA provides images with slightly
better contrast and spatial resolution, as compared to the nested EM-TV. For cold spheres recon-
structions both algorithms perform similarly. The conventional EM-TV reconstructions are inferior
in any case.

7 Concluding Remarks

There is a great need to reduce radiation dose to the patients undergoing ECT examinations. This
could be accomplished by lowering the total amount of activity in the radiotracer administered.
However, it would lead to very high Poisson noise in the raw ECT data. In turn, such very noisy
data if treated by conventional techniques, such as EM-TV or OSEM, would lead to very noisy
and clinically unacceptable reconstructed images. To attain good quality ECT reconstructions from
low-dose ECT examinations, we propose a preconditioned alternating projection algorithm (PAPA)
for solving the maximum a posteriori (MAP) ECT reconstruction problem. We prove that the al-
gorithm enjoys nice theoretical convergence results in the case that the preconditioner is fixed. Mo-
tivated by the classical EM algorithm, we propose dynamic and semi-dynamic EM-preconditioners
for PAPA to accelerate convergence of the original iterative scheme, which is the main contribution
of this work. We demonstrate in the numerical experiments that the EM-preconditioner converges
fast to a fixed preconditioning matrix, which in turn confirms the applicability of the convergence
result to the practical situation. Since the total-variation (TV) based penalty function can well pre-
serve the edges and details of the reconstructed object, we particularly concentrate on the example
with TV regularization. Based on the numerical experiments performed in this work, we observe
that the alternating projection algorithm with the EM-preconditioner significantly outperforms the
conventional EM-TV in all aspects including the convergence speed, the noise in the reconstructed
images and the image quality. It also outperforms the recently developed algorithm - the nested
EM-TV - in the convergence speed while having a comparable image quality.

We conclude that the developed alternating projection algorithm with dynamic or semi-dynamic
EM-preconditioner might allow very significant reduction in the radiation dose to the patients
imaged using ECT by providing the same contrast-to-noise ratio for hot and cold lesions as con-
ventional EM-TV, but with the total administered radiotracer activity 2 to 6 times lower than
presently used in ECT examinations reconstructed using the conventional EM-TV.
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(a) (b)

(c) (d)

Figure 4: Reconstructed image quality assessment for hot and cold spheres: Plots of mean (with
respect to 5 different noise realizations) contrast-to-noise ratio (CNR) vs. diameter of sphere. The
vertical error bars denote the calculated standard deviation of the mean. For the EM-TV the error
bars are smaller than the symbols used: (a) hot spheres in low-noise phantom; (b) cold spheres in
low-noise phantom; (c) hot spheres in high-noise phantom; (d) cold spheres in high-noise phantom.
Open squares - the conventional EM-TV. Open circles - PAPA.
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(a) (b) (c)

(d) (e) (f)

Figure 5: Transaxial cross-sections through the centers of the hot spheres (slice 17) in images re-
constructed for low-noise phantom: (a) PAPA; (b) the nested EM-TV; and (c) the conventional
EM-TV. Transaxial cross-sections through the centers of the hot spheres (slice 17) in images re-
constructed for high-noise phantom: (d) PAPA; (e) the nested EM-TV; and (f) the conventional
EM-TV. The calibration bars indicates the linear mapping between reconstructed activity and the
gray scale used.
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(a) (b) (c)

(d) (e) (f)

Figure 6: Transaxial cross-sections through the centers of the cold spheres (slice 49) in images
reconstructed for low-noise phantom: (a) PAPA; (b) the nested EM-TV; and (c) the conventional
EM-TV. Transaxial cross-sections through the centers of the cold spheres (slice 49) in images
reconstructed for high-noise phantom: (d) PAPA; (e) the nested EM-TV; and (f) the conventional
EM-TV. The calibration bars indicates the linear mapping between reconstructed activity and the
gray scale used.
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(a) (b)

(c) (d)

Figure 7: One-pixel wide line profiles through the centers of hot spheres with 7, 14 and 3-pixel
radii in transaxial cross-sections (slice 17) of: (a) the high-noise phantom; (b) image reconstructed
using PAPA from the high-noise phantom data; (c) image reconstructed using the nested EM-TV
from the high-noise phantom data; and (d) image reconstructed using conventional EM-TV from
the high-noise phantom data.
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(a) (b)

(c) (d)

Figure 8: One-pixel wide line profiles through the centers of cold spheres with 7, 14 and 3-pixel
radii in transaxial cross-sections (slice 49) of: (a) the high-noise phantom; (b) image reconstructed
using PAPA from the high-noise phantom data; (c) image reconstructed using the nested EM-TV
from the high-noise phantom data; and (d) image reconstructed using conventional EM-TV from
the high-noise phantom data.
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