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Abstract

This paper presents the Moreau envelope viewpoint for the L1/TV image denoising model.
The main algorithmic difficulty for the numerical treatment of the L1/TV model lies in the non-
differentiability of both the fidelity and regularization terms of the model. To overcome this
difficulty, we propose five modified L1/TV models by replacing one or two the non-differentiable
functions in the L1/TV model with their corresponding Moreau envelopes. We prove that
several existing approaches for the L1/TV model essentially solve some of the modified models,
but not the original L1/TV model. Algorithms for the L1/TV model and its five variants are
proposed under a unified framework based on the proximity operator. Depending upon whether
we smoothen the regularization term or not, two different types of proximity algorithms are
presented. The convergence rates of both types of the algorithms are improved significantly
by exploring either the strategy of Gauss-Seidel iteration, or the FISTA, or the both. We
compare the performance of various modified L1/TV models for the problem of impulsive noise
removal, and make recommendations based on our numerical experiments for using these models
in applications.

1 Introduction

Given a noisy image x which was contaminated by impulsive noise, we consider a denoised image
of x as a minimizer of the following L1/TV model

min
u
{λ‖u− x‖1 + ‖u‖TV}, (1.1)

where ‖ · ‖1 represents the ℓ1-norm, ‖ · ‖TV denotes the total-variation, and λ is the regularization
parameter balancing the fidelity term ‖ · −x‖1 and the regularization term ‖ · ‖TV. It is well
accepted that the ℓ1-norm fidelity term can effectively suppress the effect of outliers that may
contaminate a given image, and is therefore particularly suitable for handling non-Gaussian additive
noise such as impulsive noise [4]. The L1/TV model (1.1) has many distinctive and desirable
features. For example, the model does not erode geometric structures of the images under processing
and possesses properties such as contrast invariant, data driven parameter selection, multiscale
image decomposition, and morphological invariance [8, 21, 27]. Applications of the L1/TV model
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include computer vision [10], biomedical imaging [26], optical flow and object tracking [28], and
shape denoising [28].

In light of the useful features of the L1/TV model and its successful applications, it is highly
desirable to develop efficient and fast algorithms for numerical treatment of the model. An algorith-
mic difficulty for the numerical treatment of the L1/TV model is the non-differentiability of both
the fidelity and regularization terms in the objective function of (1.1). To overcome the difficulty,
several numerical approaches were proposed recently for solving the L1/TV model. Depending on
how the non-differentiability of the both terms is treated, these approaches can be roughly divided
into two categories. In the first category, prior to developing a numerical scheme for the model,
additional quadratic terms with some auxiliary variables are added to the objective function of the
L1/TV model to tackle either the non-differentiability of its fidelity or regularization term, or the
both. For instance, a quadratic term involving an auxiliary variable was introduced to overcome the
non-differentiability of the fidelity term in [1]. Depending on whether we view the total variation
itself as a whole the non-differentiable function or as a composition of a non-differentiable function
with a first order difference matrix, quadratic terms were added to the model in two different ways
for the purpose of remedying the regularization term in [11, 19]. Non-differentiability of both the
fidelity and regularization terms was handled simultaneously by introducing two extra quadratic
terms into the primal formulation of the L1/TV model in [15, 25] and the dual formulation of the
model in [13]. Such techniques will certainly benefit the development of the numerical treatment of
the model, but change the original L1/TV model to its various modified versions. These modified
models may lose the desirable features of the L1/TV model. Unlike the ones in the first category,
algorithms in the second category are to faithfully solve the L1/TV model directly without intro-
ducing additional terms to the model. The algorithms in this category are developed by using the
proximity operator [17, 19], the primal-dual formulation [7, 16], and the augmented Lagrangian
method [24].

The main purpose of this paper has twofold. On one hand, the models corresponding to the
all approaches classified into the first category can be reformulated in terms of the notion of the
Moreau envelope. This, in turn, allows us to develop algorithms for these models in a unified way
based upon the proximity operator. On the other hand, we compare the performance of various
modified L1/TV models for the problem of impulsive noise removal and make recommendations
for the use of these models in applications.

By replacing the non-differentiable functions in the L1/TV model with their corresponding
differentiable Moreau envelopes, we obtain a total of six modified L1/TV models including the
original one. Based on our previous work in [17, 19], all of the modified L1/TV models are solved
under a unified framework based on the proximity operator. In this framework, a solution of a
model is characterized in terms of the proximity operators of the convex functions associated with
the fidelity and regularization terms. Depending on whether the regularization term of a model
is differentiable or not, characterizations to the solutions of the models are presented separatively.
The characterization for models having a non-differentiable regularization term motivates us to
develop the corresponding algorithms for the models that could be implemented by exploring a
strategy of the Gauss-Seidel (GS) iteration to speed up its rate of convergence. For the models
having a differentiable regularization term, the well-known algorithm FISTA in [3] could be applied.

The performance of the proposed algorithms for the original L1/TV model and its variants is
evaluated for the problem of impulsive noise removal. We confirm that for removing impulsive noise
the fidelity term of a model should be the ℓ1-norm of the difference of the image to be sought and
the given noisy image. A choice of the regularization term of a model relies upon the nature of the
underlying image. It was pointed out in [17] that the original L1/TV model is particularly suitable
for cartoon-like images which are approximately piecewise constants. For nature images which
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can be viewed as piecewise smooth functions, we comment in this paper via intensive numerical
experiments that a model with the ℓ1-norm fidelity term and a smoothed total-variation as its
regularization term is more suitable for the problem of impulsive noise removal. As mentioned in
the above, the total-variation can be viewed as a composition of a non-differentiable function with a
first order difference matrix. Here, the smoothed total-variation is derived from the total-variation
by simply replacing the non-differentiable function by its Moreau envelope.

The outline of this paper is as follows: In Section 2 we propose several possible modified
L1/TV models by approximating the non-smooth ℓ1 fidelity term or the total variation term by
their corresponding Moreau envelopes. These modified L1/TV models can have several splitting
based models in the literature as their special cases. In Section 3, the solutions to the L1/TV
models are characterized via fixed-point equations. The corresponding algorithms based on these
characterizations and their convergence analysis and accelerating schemes are given in Section 4 for
the models having a non-differentiable regularization term and in Section 5 for the models having
a differentiable regularization term. In Section 6 we report the numerical experiments, discuss the
difference of the modified L1/TV models and compare the performance of the proposed algorithms
in restoring images from those corrupted by impulsive noise. We draw our conclusions in the last
section.

2 The L1/TV Model and Its Moreau Envelope Variants

In this section, we first explain the suitability of model (1.1) for impulsive noise removal from the
viewpoint of statistics. We then give five modified versions of model (1.1) in terms of the Moreau
envelope. Finally, we point out the connection of the modified L1/TV models with several existing
models for solving the original model (1.1).

We begin with a statistical explanation on the L1/TV denoising model for the problem of
impulsive noise removal. impulsive noise is caused by malfunctioning pixels in camera sensors,
faulty memory locations in hardware, or transmission in a noisy channel [5]. We denote by u ∈ R

d

the original image. Its noisy version x corrupted by salt-pepper noise (a special type of impulsive
noise) with a noise level 0 < r < 1 is modeled as

xi =





0, with probability r
2 ,

255, with probability r
2 ,

ui, with probability 1− r,
(2.1)

where xi, ui are the i-th pixel values of x and u, respectively. A maximum a posteriori expectation-
maximization could be used to find an estimate of u by maximizing the conditional a posteriori
probability p(u|x), the probability that u occurs when x is observed. Using Bayes’ theorem, we
have that

p(u|x) = p(u) · p(x|u)
p(x)

.

By taking the negative logarithm of the above equation, the estimate is a solution of the following
minimization problem

min
u
{− log p(x|u)− log p(u)}. (2.2)

The expression − log p(x|u) in (2.2) can be viewed as a fidelity term measuring the discrepancy
between the estimate u and the noisy image x. The term − log p(u) is used to regularize a solution
that has a low probability.
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The choice of the likelihood p(x|u) depends upon the property of noise. For salt-pepper noise
given in (2.1), we have that

p(x|u) =
(r
2

)|{i: xi 6=ui}| · (1− r)|{i: xi=ui}|,

where |S| denotes the number of elements in the set S. Note that |{i : xi 6= ui}| = ‖u−x‖0, where
‖ · ‖0 denotes the number of non-zero elements in a vector. Then the above equation becomes

p(x|u) = (1− r)d ·
(
2

r
− 2

)−‖u−x‖0

. (2.3)

A Gibbs prior of the total-variation is used in (2.2) for p(u) due to the fact that the total-
variation is sensitive to geometric features of images, such as edges. This prior has a form

p(u) =
1

Z
exp−σ‖u‖TV , (2.4)

where Z is a normalization factor, σ is a positive number, and ‖ · ‖TV denotes the total-variation
of an image. The precise definition of ‖ · ‖TV will be provided in the later of this section.

Putting the expressions of p(x|u) and p(u) given in (2.3) and (2.4) into (2.2) and ignoring a
constant, we obtain

min
u
{λ‖u− x‖0 + ‖u‖TV}, (2.5)

where λ is a positive number related to parameters r, σ and the factor Z. Since the function
‖ · −x‖0 is not convex, it will introduce numerical difficulties in solving the minimization problem
(2.5). Since ‖ · −x‖1 is a nice convex approximation of ‖ · −x‖0, we replace ‖ · −x‖0 in (2.5) by
‖ ·−x‖1 that yields model (1.1). We remark that the ℓ1-norm data fidelity term was first proposed
by Nikolova for the total variation regularization of images corrupted by impulsive noise [21]. Its
effectiveness in handling impulsive noise can be also found in [9].

Next we propose several modified models of the L1/TV denoising model (1.1) via smoothing
the non-differentiable functions involved in the model in terms of the Moreau envelope. To this
end, we begin with presenting the precise definition of the total-variation. In what follows, when
we say an image u in R

d, we always mean that this vector is formed from a q × q square image by
sequentially concatenating the columns of the image. Here we assume that d = q2. To define the
total-variation of the image u, we need a q × q difference matrix

D :=




0
−1 1

. . .
. . .

−1 1


 .

Through the notion of matrix Kronecker product ⊗, we define a 2d× d matrix B by

B :=

[
Id ⊗D
D ⊗ Id

]
, (2.6)

where Id denotes the d× d identity matrix. We further define a convex ϕ : R2d → R at z ∈ R
2d as

ϕ(z) :=

d∑

i=1

(z2i + z2d+i)
1/2. (2.7)
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Table 1: The L1/TV denoising model and its five variants.

Case Fidelity term Regularization term Model

1 ‖u− x‖1 ϕ(Bu) min
u
{λ‖u− x‖1 + ϕ(Bu)}

2 envα‖·‖1(u− x) ϕ(Bu) min
u
{λ envα‖·‖1(u− x) + ϕ(Bu)}

3 ‖u− x‖1 envβϕ(Bu) min
u
{λ‖u− x‖1 + envβϕ(Bu)}

4 envα‖·‖1(u− x) envβϕ(Bu) min
u
{λ envα‖·‖1(u− x) + envβϕ(Bu)}

5 ‖u− x‖1 envβϕ◦B(u) min
u
{λ‖u− x‖1 + envβϕ◦B(u)}

6 envα‖·‖1(u− x) envβϕ◦B(u) min
u
{λ envα‖·‖1(u− x) + envβϕ◦B(u)}

With the above preparation, ‖u‖TV the total-variation of u can be written as ϕ(Bu). Hence, the
L1/TV image denoising model in (1.1) has the form of

min
u
{λ‖u− x‖1 + ϕ(Bu)}. (2.8)

Notice that in the formulation (2.8) of the L1/TV denoising model the functions ‖ · −x‖1 and ϕ
are convex, but, not differentiable. To deal with this difficulty we propose a smooth version of the
L1/TV denoising model by smoothing either ‖ · −x‖1 or ϕ, or both.

A typical way of smoothing a non-smooth convex function is to use the Moreau envelope. We
denote by Γ0(R

d) the class of all lower semicontinuous convex functions ψ : Rd → (−∞,+∞] such
that the domain dom(ψ) := {x ∈ R

d : ψ(x) < +∞} of ψ, is nonempty. For a positive number β
and a function ψ ∈ Γ0(R

d), the Moreau envelope of ψ with index β at z ∈ R
d is defined as

envβψ(z) := min
y∈Rd

{
1

2β
‖y − z‖22 + ψ(y)

}
, (2.9)

which is still in Γ0(R
d) (see, e.g., [20, 22]). For any positive number β the Moreau envelope envβψ

is bounded above by ψ and it converges to ψ as β → 0+ (see, e.g. [23]). More importantly, the
Moreau envelope of a convex function is always differentiable and its gradient is given by

▽(envβψ) =
1

β
(I − proxβψ), (2.10)

where

proxβψ := arg min
y∈Rm

{
1

2
‖y − ·‖22 + βψ(y)

}
(2.11)

is called the proximity operator of ψ with index β.
Considering the non-differentiability of the ℓ1-norm and the function ϕ in (2.8) and the above

remarkable properties of the Moreau envelope, we may propose several smoothed variants of the
original model (2.8). For its fidelity term ‖ · −x‖1, we can keep it unchanged or replace it by its
envelope envα‖·‖1(·−x). For the regularization term ϕ◦B, besides keeping it unchanged, depending
on whether we view the non-differentiable total variation as a whole ϕ ◦ B or as a composition of
the non-differentiable function ϕ with the difference matrix B, we have two other alternatives:
envβϕ◦B(u) and envβϕ(Bu). Considering all of the possible choices, we have five different modified
models listed in Table 1, in addition to the original model.

In the rest of this section, we shall point out that our proposed modified L1/TV models in
Table 1 are consistent with several existing models which use the splitting technique dealing with
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the original L1/TV model. In [1], by introducing an auxiliary variable v to replace the difference
u− x in the L1/TV model (2.8) and then imposing a condition to penalize the closeness between
v and u− x, a model of the form

min
u,v

JAGCO(u, v) (2.12)

is considered, where

JAGCO(u, v) := λ‖v‖1 +
1

2γ
‖v − (u− x)‖22 + ϕ(Bu), (2.13)

with γ being a positive number.

Proposition 1. Let λ and γ be positive, let x be a noisy image in R
d, let B be the 2d × d matrix

defined by (2.6), and let ϕ be the function defined by (2.7). Then the solution set of the optimization
problem (2.12) is nonempty. If the pair (u⋆, v⋆) is a solution of the optimization problem (2.12),
then v⋆ = proxα‖·‖1(u⋆ − x) where α = λγ. Furthermore, the pair (u⋆, v⋆) is a solution of the
optimization problem (2.12) if and only if u⋆ is that of the optimization problem

min
u
J2(u), (2.14)

where
J2(u) := λ envα‖·‖1(u− x) + ϕ(Bu), (2.15)

Proof. We first show the non-emptiness of the solution set of the optimization problem (2.12).
Since the negative functions ‖ · ‖1, ‖ · ‖2, and ϕ are convex, so is JAGCO. Further, since

lim
‖(u,v)‖2→∞

(
λ‖v‖1 +

1

2γ
‖v − (u− x)‖22

)
= +∞,

then lim‖(u,v)‖2→∞ JAGCO(u, v) = +∞, that is, JAGCO is coercive. Hence, the existence of mini-
mizers of the objective function JAGCO follows.

Now, assume that the pair (u⋆, v⋆) is a solution of the optimization problem (2.12). It follows
immediately that JAGCO(u⋆, v⋆) ≤ JAGCO(u⋆,proxα‖·‖1(u⋆ − x)). For ease of exposition, we write

P (v) := λ‖v‖1 + 1
2γ ‖v− (u⋆−x)‖22. Then the above inequality yields P (v⋆) ≤ P (proxα‖·‖1(u⋆−x)).

By the definition of the Moreau envelope, we know that proxα‖·‖1(u⋆ − x) is the unique point such

that P (v) ≥ P (proxα‖·‖1(u⋆ − x)) for all v ∈ R
2d. Hence, v⋆ = proxα‖·‖1(u⋆ − x).

Using the definition of the Moreau envelope again, we know that P (proxα‖·‖1(u − x)) =

λ envα‖·‖1(u− x) for all vectors u ∈ R
d. Therefore, it holds that

JAGCO(u,proxα‖·‖1(u− x)) = J2(u). (2.16)

If the pair (u⋆, v⋆) is a solution of the optimization problem (2.12), we can show that u⋆ is a solution
of the optimization problem (2.14). If not, there exists a vector ũ such that J2(ũ) < J2(u⋆). By
(2.16), we have JAGCO(ũ,proxα‖·‖1(ũ − x)) < JAGCO(u⋆,proxα‖·‖1(u⋆ − x)), this contradicts the
assumption of (u⋆, v⋆) being the solution of the optimization problem (2.12).

Now, if u⋆ is a solution of the optimization problem (2.14), we show that the pair (u⋆,proxα‖·‖1(u⋆−
x)) is a solution of the optimization problem (2.12). Indeed, if this statement is not true, then there
exists a vector ũ such that JAGCO(ũ,proxα‖·‖1(ũ − x)) < JAGCO(u⋆,proxα‖·‖1(u⋆ − x)). This, by
(2.16), implies that J2(ũ) < J2(u⋆), which violates the assumption of u⋆ being a solution of the
optimization problem (2.14).
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By Proposition 1, we conclude that the model (2.12) is “Case 2” in Table 1.
In model (2.12), when an additional auxiliary variable w is introduced to replace Bu, we have

the following model
min
u,v,w

JYZY(u, v, w), (2.17)

where

JYZY(u, v, w) := λ‖v‖1 +
1

2γ
‖v − (u− x)‖22 + ϕ(w) +

1

2β
‖w −Bu‖22, (2.18)

with γ and β being positive. Model (2.17) was originally introduced in [25].

Proposition 2. Let λ, γ and β be positive, let x be a noisy image in R
d, let B be the 2d × d

matrix defined by (2.6), and let ϕ be the function defined by (2.7). Then the solution set of the
optimization problem (2.17) is nonempty. If the triple (u⋆, v⋆, w⋆) is a solution of the optimization
problem (2.17), then v⋆ = proxα‖·‖1(u⋆ − x) and w⋆ = proxβϕ(Bu⋆), where α = λγ. Furthermore,
the triple (u⋆, v⋆, w⋆) is a solution of the optimization problem (2.17) if and only if u⋆ is that of the
optimization problem

min
u
J4(u),

where
J4(u) := λ envα‖·‖1(u− x) + envβϕ(Bu).

Proof. In a similar way that leads to (2.16), we have that JYZY(u,proxα‖·‖1(u−x),proxβϕ(Bu)) =
J4(u) for all vectors u ∈ R

d. With this equation, the rest proof of this result is similar to that of
Proposition 1, and it is omitted.

By Proposition 2, model (2.17) is “Case 4” in Table 1.
In [15], the model

min
u,v,w

JGLN(u, v, w) (2.19)

was proposed, where

JGLN(u, v, w) := ‖u− w‖22 + α1‖u− v‖22 + α2‖w − x‖1 + α3ϕ(Bv) (2.20)

with α1, α2, and α3 being positive numbers.

Proposition 3. Let α1, α2, and α3 be positive, let x be a noisy image in R
d, let B be the 2d × d

matrix defined by (2.6), and let ϕ be the function defined by (2.7). Then the solution set of the
optimization problem (2.19) is nonempty. If the triple (u⋆, v⋆, w⋆) is a solution of the optimization
problem (2.19), then v⋆ = proxβϕ◦B(u⋆) and w⋆ = x+proxα‖·‖1(u⋆−x), where α = α2

2 and β = α3

2α1
.

Furthermore, the triple (u⋆, v⋆, w⋆) is a solution of the optimization problem (2.19) if and only if
u⋆ is that of the optimization problem

min
u
J6(u),

where
J6(u) := λ envα‖·‖1(u− x) + envβϕ◦B(u)

with λ = α2

α3
.

Proof. By using the definitions of the proximity operator and the Moreau envelope, we have that
for all vectors u ∈ R

d JGLN(u,proxβϕ◦B(u), x+proxα‖·‖1(u−x)) = α3J6(u). Using this equation, the
proof of this proposition is similar to that of Proposition 1. Therefore, we omit its proof here.
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We conclude from Proposition 3 that the alternative model (2.19) is “Case 6” in Table 1.
In [11], the model

min
u,v

JCJK(u, v), (2.21)

was discussed, where

JCJK(u, v) := λ‖u− x‖1 + ϕ(Bv) +
1

2β
‖u− v‖22 (2.22)

with λ and β being positive numbers.

Proposition 4. Let λ and β be positive, let x be a noisy image in R
d, let B be the 2d× d matrix

defined by (2.6), and let ϕ be the function defined by (2.7). Then the solution set of the optimization
problem (2.21) is nonempty. If the pair (u⋆, v⋆) is a solution of the optimization problem (2.21), then
v⋆ = proxβϕ◦B(u⋆). Furthermore, the pair (u⋆, v⋆) is a solution of the optimization problem (2.21)
if and only if u⋆ is that of the optimization problem

min
u
J5(u),

where
J5(u) := λ‖u− x‖1 + envβϕ◦B(u).

Proof. By using the definitions of the proximity operator and the Moreau envelope, we have
that JCJK(u,proxβϕ◦B(u)) = J5(u) for all vectors u ∈ R

d. Using this equation, the proof of this
proposition is similar to that of Proposition 1, and we skip the details.

Proposition 4 says that model (2.21) is “Case 5”.
In summary, the key difference of the work in [1, 11, 15, 25] is that where the splitting happens.

We remark that the splitting technique in these work was initially motivated for convenience in
applying alternating minimization approaches to the generated alternative L1/TV models or the
corresponding dual models. However, as we pointed out above, the splitting technique is essentially
to replace the non-differentiable functions in the original L1/TV model by their corresponding
differentiable Moreau envelopes. This understanding provides us an opportunity to numerically
consider all the six models in a unified framework based on the proximity operator.

3 Characterization of Solutions to the L1/TV Models

In this section, we characterize the solutions of the modified L1/TV models listed in Table 1. All
these models can be cast into the following general form

min
u
{λF (u− x) +R(Wu)} (3.1)

by specifying the functions F and R and the matrix W properly. The correspondence between a
model listed in Table 1 and a choice of F , R and W is illustrated in Table 2.

We first provide a characterization of a solution of model (3.1). This characterization will be
further refined if the function R is differentiable. To characterize a solution of model (3.1), we need
to briefly review the concept of subdifferential in convex analysis.

The subdifferential of a proper convex function ψ ∈ Γ0(R
d) at a given vector u ∈ R

d is the set
defined by

∂ψ(u) := {v : v ∈ R
d and ψ(w) ≥ ψ(u) + 〈v,w − u〉 for all w ∈ R

d}. (3.2)

8



Table 2: Relations of model (3.1) to modified L1/TV models

Case F R W

1 ‖ · ‖1 ϕ B
2 envα‖·‖1 ϕ B

3 ‖ · ‖1 envβϕ B
4 envα‖·‖1 envβϕ B

5 ‖ · ‖1 envβϕ◦B I
6 envα‖·‖1 envβϕ◦B I

The subdifferential and the proximity operator of the function ψ are related in the following way
(see, e.g. [18]): For u in the domain of ψ and v ∈ R

d

v ∈ ∂ψ(u) if and only if u = proxψ(u+ v). (3.3)

With the help of the relationship between the subdifferential and the proximity operator, we
can characterize a solution of model (3.1) via fixed-point equations.

Proposition 5. Let x be in R
d and let λ be a positive number. If u ∈ R

d is a solution of model
(3.1), where F ∈ Γ0(R

d), R ∈ Γ0(R
m), and W is a m× d matrix, then for any γ, σ > 0, there exist

two vectors v, b in R
m such that

u = x+ proxλ
γ
F

((
I − σ

γ
W⊤W

)
u− σ

γ
W⊤(b− v)− x

)
(3.4)

v = prox 1

σ
R(b+Wu) (3.5)

b = b+Wu− v (3.6)

Conversely, if there exist γ > 0, σ > 0, v ∈ R
m, b ∈ R

m, and u ∈ R
d satisfying equations (3.4),

(3.5), and (3.6), then u is a solution of model (3.1).

Proof. We first assume that u ∈ R
d is a solution of model (3.1). By the Fermat rule in convex

analysis, we have that
0 ∈ ∂(λF )(u − x) +W⊤∂R(Wu).

For any positive numbers γ, σ, we can select a vector a ∈ 1
γ∂(λF )(u−x) and a vector b ∈ 1

σ∂R(Wu)

such that 0 = γa+ σW⊤b, that is, a = −σ
γW

⊤b. Hence, −σ
γW

⊤b ∈ 1
γ∂(λF )(u − x). By equation

(3.3), we have that

u = x+ proxλ
γ
F

(
u− σ

γ
W⊤b− x

)
. (3.7)

By equation (3.3) again, from the inclusion b ∈ 1
σ∂R(Wu) we have that Wu = prox 1

β
R(Wu + b).

Set
v := prox 1

β
R(Wu+ b), (3.8)

which is equation (3.5). Clearly, Wu = v, therefore, equation (3.6) holds. Substituting b in
equation (3.7) by b+Wu− v leads to equation (3.4).

Conversely, suppose that there exist γ > 0, σ > 0, v, b ∈ R
m and u ∈ R

d satisfying equations
(3.4)-(3.6). By equation (3.6), it holds that Wu = v. With this relation, by equation (3.3),
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equations (3.4) and (3.5) ensure that −σ
γW

tb ∈ 1
γ∂(λF )(u − x) and b ∈ 1

σ∂R(Wu) respectively.
Combining these two inclusion relations yields that

0 = γ(−σ
γ
W⊤b) + σW⊤b ∈ ∂(λF )(u − x) +W⊤∂R(Wu)

This in turn implies that u ∈ R
d is a solution of model (3.1).

We remark that the characterization given in Proposition 5 reduces to the one given in [17]
when the function F in model (3.1) is the ℓ1-norm. The integer m, the number of the rows of the
matrix W , is 2d for “Case 1”-“Case 4” and d for “Case 5”-“Case 6”.

Next, we show that if the convex function R is differentiable, a solution of model (3.1) can be
characterized with only one fixed-point equation.

Proposition 6. Let x be in R
d, let λ be a positive number, let F ∈ Γ0(R

d), let W be a m × d
matrix, and let R be in Γ0(R

m) and differentiable. If u ∈ R
d is a solution of the model (3.1), then

for any γ > 0

u = x+ proxλ
γ
F

(
u− 1

γ
W⊤∇R(Wu)− x

)
. (3.9)

Conversely, if u ∈ R
d satisfies equations (3.9) for some γ > 0, then u is a solution of model (3.1).

Proof. According to Proposition 5, we need only proof the fixed-point equations (3.4)-(3.6) can
be refined to equation (3.9) when R is differentiable. Notice that, by omitting v, equations (3.5)
and (3.6) imply that Wu = prox 1

σ
R(b +Wu). Hence, b ∈ ∂R(Wu) by equation (3.3). Recall that

the subdifferential of a differentiable function R at a given point z ∈ R
m is a singleton set, that is

∂R(z) = {∇R(z)}, where ∇R(z) denotes the gradient of R at z. Hence, we have that b = ∇R(Wu).
Substituting this result into (3.4) and eliminating variables b and v yield the fixed-point equation
(3.9). This completes the proof.

4 Proximity Algorithms

In this section, we present proximity algorithms for solving the model (3.1) based on the charac-
terizations of solutions given in the previous section, and establish their convergence results.

According to Proposition 5, a solution of the model (3.1) is characterized by the fixed-point
equations (3.4)-(3.6). Based on these fixed-point equations, we can naturally propose an iterative
algorithm that generates three sequences {uk : k ∈ N}, {vk : k ∈ N}, and {bk : k ∈ N}, from
arbitrary initial vectors u0 ∈ R

d, v0 ∈ R
m, and b0 ∈ R

m. Here N is the set of all natural numbers.
This iterative procedure is stated as follows:





uk+1 = x+ proxλ
γ
F

((
I − σ

γW
⊤W

)
uk − σ

γW
⊤(bk − vk)− x

)
,

vk+1 = prox 1

σ
R(b

k +Wuk+1),

bk+1 = bk +Wuk+1 − vk+1.

(4.1)

The following theorem establishes the convergence result of the proposed iterative scheme (4.1).
Its proof is omitted here since it follows directly from that of Theorem 3.5 in [17].

Theorem 1. Let x be in R
d, let λ be a positive number, let F ∈ Γ0(R

d), let W be a m× d matrix,
and let R ∈ Γ0(R

m). If the positive numbers γ and σ are chosen to satisfy

σ

γ
<

1

‖W‖22
(4.2)
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then the sequence {uk : k ∈ N} generated by the iterative scheme (4.1) converges to a solution of
model (3.1).

Implementing the iterative procedure (4.1) requires the availability of two proximity operators
proxλ

γ
F and prox 1

β
R. We shall show that for F being either ‖ · ‖1 or envα‖·‖1 and R being either

ϕ or envβϕ, where ϕ is given in (2.7), both proxλ
γ
F and prox 1

β
R have explicit forms. Therefore,

the scheme (4.1) is particularly suitable for solving models for “Case 1”-“Case 4” listed in Table 1.
However, it is not suitable for solving the modified L1/TV models for “Case 5” and “Case 6” due
to the fact that the proximity operator of envβϕ◦B is lack of an explicit expression.

We first give the closed-form solutions of the proximity operators of ‖ · ‖1 and its Moreau
envelope envα‖·‖1 . For t > 0 and u ∈ R

d, set y := proxt‖·‖1(u) and z := proxt envα‖·‖1
(u). Then yi

and zi, the i-th component of y and z, are given by

yi = max{|ui| − t, 0} · sign(ui) and zi =





ui − t, if ui > t+ α,
α
α+tui, if |ui| ≤ t+ α,

ui + t, if ui < −t− α,
(4.3)

respectively, for i = 1, 2, . . . , d.
The proximity operators of the function ϕ defined by (2.7) and its Moreau envelope envβϕ

have closed-form solutions as well. For t > 0 and b ∈ R
2d, we denote y := proxtϕ(b) and z :=

proxt envβ‖·‖2
(b). Write b̃i =

[
bi, bd+i

]⊤
. Then for i = 1, 2, . . . , d we have that

[
yi
yd+i

]
= max

{
‖b̃i‖2 − t, 0

} b̃i

‖b̃i‖2
and

[
zi
zd+i

]
=

{
β
β+t b̃i, if ‖b̃i‖2 ≤ β + t,

(1− t

‖b̃i‖2
)̃bi, otherwise.

(4.4)

From equations in (4.3), we notice that both the proximity operators of ℓ1-norm and envα‖·‖1
can be performed component-wise. This allows us to exploit a Gauss-Seidel strategy to implement
the first equation in the iterative scheme (4.1) for models “Case 1”-“Case 4”. For these four cases,
the matrix W is always equal to B. Hence, in view of the first equation of (4.1), the i-th entry
uki and those from its neighbor have an impact to the i-th entry uk+1

i of uk+1. By bkU we denote
the upper half of the vector bk and bkL its lower half of bk. Likewise, we define vkU and vkL. For
convenience of exposition, we shall view all vectors uk, uk+1, bkL, b

k
U , v

k
L, v

k
U in the iterative scheme

(4.1) as q × q matrices for the time being. The component-wise expression of the first equation in
the iterative scheme (4.1) for the interior pixel at the (i, j)-th location can be rewritten as

uk+1
ij = xij + proxλ

γ
f ((1 −

4σ

γ
)ukij +

σ

γ
(uki−1,j + uki+1,j + uki,j−1 + uki,j+1)

− σ

γ
((bkU )ij − (bkU )i,j+1 + (bkL)ij − (bkL)i+1,j)

+
σ

γ
((vkU )ij − (vkU )i,j+1 + (vkL)ij − (vkL)i+1,j)− xij), (4.5)

where f is either the |·| or the envα|·|1 depending on whether F is the ℓ1-norm or its Moreau envelope
envα‖·‖1 . Similar expressions can be derived for boundary pixels. The proximity operator of f has

been explicitly given in equations (4.3). It can be seen from equation (4.5) that the pixel uki,j and

its four neighboring pixels uki−1,j , u
k
i,j−1, u

k
i+1,j, u

k
i,j+1 all contribute to the updated pixel uk+1

i,j .
However, in the iterative scheme (4.1), one does not use the most recently available information
when computing uk+1

i . For example, if the order for updating pixels at the k-th iteration to obtain
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uk+1 at the (k+1)-th iteration accords to an order of top-to-bottom and column by column, uki−1,j

and uki,j−1 are used in the calculation of uk+1
i,j even though uk+1

i−1,j and uk+1
i,j−1 have already been

known. Therefore, following the idea of the Gauss-Seidel iteration, we revise the calculation of the
pixel uk+1

i,j so that we always use the most current estimations of the pixels ui−1,j and ui,j−1. That

is, uk+1
i,j can be computed by

uk+1
ij = xij + proxλ

γ
f ((1 −

4σ

γ
)ukij +

σ

γ
(uk+1
i−1,j + uki+1,j + uk+1

i,j−1 + uki,j+1)

− σ

γ
((bkU )ij − (bkU )i,j+1 + (bkL)ij − (bkL)i+1,j)

+
σ

γ
((vkU )ij − (vkU )i,j+1 + (vkL)ij − (vkL)i+1,j)− xij). (4.6)

This modification will not increase any computational complexity compared to equation (4.5) and
is expected to speed up the convergence. With such a modification in the first equation of iterative
scheme (4.1), we have Algorithm 1 which can be used for solving the models of Cases 1-4. Note
that we could choose σ

γ <
1
8 because the norm ‖B‖22 is always less than 8 (see, e.g., [18]).

Algorithm 1 Proximity algorithm for Case 1 - Case 4 accelerated by GS iteration

Given: A noisy image x in R
d; λ > 0, β > 0, γ > 0, σ > 0 such that σ

γ <
1
8

Initialization: u0 = x, v0 = 0, b0 = 0

repeat

(a) Update the components of uk+1 according to equation (4.6)

(b) vk+1 ← prox 1

σ
R(b

k +Buk+1)

(c) bk+1 ← bk +Buk+1 − vk+1

until uk+1 converges or satisfies a stopping criteria.

To close this section, we point out the relation between our proposed iterative algorithm (4.1)
and the CPPD method proposed in [7]. The CPPD method is a primal-dual based algorithm
developed for solving the associated saddle-point formulation of a minimization problem. The
saddle-point formulation of the model (3.1) has the form of

min
u

max
s
{λF (u− x) + 〈s,Wu〉 −R∗(s)} (4.7)

The iterative scheme of the CPPD algorithm for solving model (4.7) is





sk+1 = argmin
s
{R∗(s) + 1

2δ‖s − sk − δWuk‖22},
uk+1 = argmin

u
{λF (u− x) + 1

2τ ‖u− uk + τW⊤sk+1‖22},
uk+1 = 2uk+1 − uk,

(4.8)

where δ, τ are two positive numbers, R∗ is the convex conjugate function of R.
We rewrite the iterative scheme in (4.1) to establish the relationship between the CPPD and

our algorithm. From the third step of the iterative scheme (4.1), we can get vk =Wuk+ bk−1− bk.
Substituting this equation into the first equation in (4.1), and combining the second and third
equations in (4.1) together, the iterative scheme (4.1) can be rewritten as
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{
uk+1 = x+ proxλ

γ
F (u

k − σ
γW

⊤(2bk − bk−1)− x),
bk+1 = (I − prox 1

σ
R)(b

k +Wuk+1).
(4.9)

Recall that the Moreau decomposition I = proxtR + t prox 1

t
R∗ ◦ 1

t I for any t > 0. Let sk := σbk,

then the iterative scheme in (4.9) has the equivalent form of





uk+1 = argmin
u
{λF (u− x) + γ

2 ‖u− uk + 1
γW

⊤sk‖22},
sk+1 = argmin

s
{R∗(s) + 1

2σ‖s − sk − σWuk+1‖22},
sk+1 = 2sk+1 − sk,

(4.10)

which is exactly the iterative scheme of CPPD applied to the following saddle-point formulation

min
s

max
u
{R∗(s) + 〈u,−W⊤s〉 − λF (u− x)} (4.11)

of the dual problem of model (3.1). Therefore, our proposed iterative algorithm (4.1) for solving the
primal problem (3.1) is algebraically equivalent to the CPPD algorithm applied to the saddle-point
formulation of its dual problem. But they are not algorithmically equivalent. As pointed out in
[17], the component-wise Gauss-Seidel iteration applied to CPPD will not result in acceleration of
convergence.

5 Special Proximity Algorithms for Model (3.1) with a Differen-

tiable R

This section is devoted to present proximity algorithms for model (3.1) when the convex function
R is differentiable. The last four modified L1/TV models for “Case 3”-“Case 6” summarized in
Table 1 possess this property.

Recall that Proposition 6 presents a characterization to solutions of model (3.1) when the
function R in the regularization term is differentiable. From the fixed-point equation (3.9), for any
initial value u0 ∈ R

d, we propose the following iterative scheme for finding a solution of the model
(3.1)

uk+1 = x+ proxλ
γ
F

(
uk − 1

γ
W⊤∇R(Wuk)− x

)
. (5.1)

We remark that the fixed-point equation (3.9) can be viewed as a special case of the proxima
forward-backward splitting described in [12]. Furthermore, if the gradient ∇R is Lipschitz contin-
uous with Lipschitz constant L, that is

‖∇R(y)−∇R(z)‖2 ≤ L‖y − z‖2,

for all y, z ∈ R
m and if γ is chosen to satisfy

1

γ
<

2

L‖W‖22
,

then it was proved in [12] that for any initial guess u0 ∈ R
d, the sequence {uk : k ∈ N} generated

from the iterative scheme (5.1) converges to a fixed-point of equation (3.9), which, by Proposition
6, is a solution of model (3.1).

The iterative scheme (5.1) can be applied to the models “Case 3”-“Case 6”. Implementing
the iterative procedure (5.1) requires the availability of the proximity operator proxλ

γ
F and the
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gradient ∇R. Since the function F is either the ℓ1-norm or the Moreau envelope envα‖·‖1 , its
proximity operator proxλ

γ
F can be explicitly computed according to equations (4.3). We know

from Table 2 that R is the Moreau envelope of either ϕ or ϕ ◦ B. If R is envβϕ (i.e. Case 3 and
Case 4), by equation (2.10) we have that

∇envβϕ =
1

β
(I − proxβϕ). (5.2)

Hence, the iterative algorithm (5.1) applied to Case 3 and Case 4 has the form of

uk+1 = x+ proxλ
γ
F

(
uk − 1

γβ
B⊤(I − proxβϕ)(Bu

k)− x
)
. (5.3)

Since the proximity operator proxβϕ can also be explicitly computed according to equation (4.4),

the calculation of uk+1 in the iterative scheme (5.3) has a closed-form. Furthermore, due to the
non-expansiveness of the proximity operator [2], the gradient of envβϕ in equation (5.2) is Lipschitz
continuous with Lipschitz constant 1

β . That is, if the parameter γ is chosen to satisfy

1

γβ
<

1

4
,

then the sequence {uk : k ∈ N} generated from the iterative scheme (5.3) for any initial value
u0 ∈ R

d converges to a solution of the model corresponding to Case 3 or Case 4. The flow of
finding this solution is described in Algorithm 2.

Algorithm 2 Proximity algorithm for Case 3 and Case 4

Given: A noisy image x in R
d; λ > 0, β > 0, γ > 0 such that 1

γβ <
1
4

Initialization: u0 = x

repeat

(a) uk+1 = x+ proxλ
γ
F

(
uk − 1

γβB
⊤(I − proxβϕ)(Bu

k)− x
)

until uk+1 converges or satisfies a stopping criteria.

If R is envβϕ◦B (Case 5 or Case 6), by equation (2.10) we have that∇envβϕ◦B = 1
β (I−proxβϕ◦B),

whose gradient is Lipschitz continuous with Lipschitz constant 1
β . Hence the iterative algorithm

(5.1) applied to Case 5 or Case 6 has the form of

uk+1 = x+ proxλ
γ
F

(
βγ − 1

βγ
uk +

1

βγ
proxβϕ◦B(u

k)

)
. (5.4)

The sequence {uk : k ∈ N} generated from iterative scheme (5.4) converges to a solution of Case 5
or Case 6 if the number γ is chosen to satisfy 1

γβ < 2.

In the iterative scheme (5.4), the proximity operator of ϕ◦B at uk needs to be evaluated at each
iteration. Although this proximity operator has no closed-form, algorithms proposed in [6, 14, 18]
can be directly applied to evaluate the proximity operator proxβϕ◦B . In this paper, we apply the

approach proposed in [18] to compute proxβϕ◦B(u
k). In [18], it was shown that

proxβϕ◦B(u
k) = uk − δβB⊤bk, (5.5)
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where δ is positive and bk is a solution of the fixed-point equation

b =
(
I − prox 1

δ
ϕ

)
(Buk + (I − δβBB⊤)b). (5.6)

It was proved in [18] that if we choose the number δ > 0 such that δβ < 1
4 , then for any initial

guess bk,1 ∈ R
2d the sequence {bk,j : j ∈ N} generated from

bk,j+1 =
(
I − prox 1

δ
ϕ

)
(Buk + (I − δβBB⊤)bk,j) (5.7)

converges to a fixed-point bk of equation (5.6). As pointed out in [18], a Gauss-Seidel strategy can
be used to accelerate the rate of convergence of the iterative scheme (5.7). With these preparation,
the detail of the implementation for Case 5 or Case 6 is described in Algorithm 3.

Algorithm 3 Proximity algorithm for Case 5 and Case 6

Given: A noisy image x in R
d; λ > 0, β > 0, γ > 0, δ > 0 such that 1

γβ < 2, δβ < 1
4

Initialization: u0 = x

repeat

(a) Initialization bk,1 = 0

for j from 1 to n− 1

Computes bk,j+1 from bk,j by the Gauss-Seidel variation of iterative scheme (5.7)

end

(b) uk+
1

2 = uk − δβB⊤bk,n

(c) uk+1 = x+ proxλ
γ
F

(
βγ−1
βγ uk + 1

βγu
k+ 1

2 − x
)

until uk+1 converges or satisfies a stopping criteria.

We would like to elaborate a connection between Algorithm 2 and Algorithm 3. We shall show
that if we set n = 2 in Algorithm 3, that is, we use

uk+
1

2 := uk − δβB⊤bk,2

as an approximate solution of proxβϕ◦B(u
k), then it reduces to Algorithm 2 for a specific model.

Now, we give a detailed explanation for this statement. Since the initial value bk,1 = 0, we have

that bk,2 =
(
I − prox 1

δ
ϕ

)
(Buk) which implies that

uk+
1

2 = uk − δβB⊤
(
I − prox 1

δ
ϕ

)
(Buk). (5.8)

Substituting equation (5.8) into step (c) of Algorithm 3, we get

uk+1 = x+ proxλ
γ
F

(
βγ − 1

βγ
uk +

1

βγ
(uk − δβB⊤(I − prox 1

δ
ϕ)(Bu

k))− x
)

= x+ proxλ
γ
F

(
uk − δ

γ
B⊤(I − prox 1

δ
ϕ)(Bu

k)− x
)
. (5.9)
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By comparing with (5.4), we know that if δ
γ <

1
4 , the sequence {uk : k ∈ N} generated from the

iterative scheme (5.9) converges to a solution of the problem

argmin
u

{
λF (u− x) + env 1

δ
ϕ(Bu)

}
,

which is exactly the situation of Case 3 or Case 4 depending on whether F is the ℓ1-norm or its
envelope envα‖·‖1 .

Finally, we would like to emphasize that both Algorithms 2 and 3 can be accelerated by em-
ploying FISTA technique [3]. Recall that the function R in models for “Case 3”-“Case 6” is the
Moreau envelope of either ϕ or ϕ ◦B. Hence, the function R has a Lipschitz continuous gradient.
This property allows us to accelerate the convergence of the iterative scheme (5.1) by using the
FISTA in [3]. To this end, we write the procedures of Algorithms 2 and 3 into a unified form

uk+1 = P (uk), (5.10)

where P denotes step (a) in Algorithm 2 or steps (a)-(c) in Algorithm 3. However, the FISTA
applies P on a point yk which uses a very specific linear combination of the previous two points
{uk, uk−1}. The detailed iterative scheme of the FISTA is described as

uk = P (yk),

tk+1 =

√
1+4(tk)2+1

2 ,

yk+1 = uk + tk−1
tk+1 (u

k − uk−1),

(5.11)

where t1 = 1. Clearly the main computational effort in both equations (5.10) and (5.11) remains
the same. The required additional computation for the last two steps of equation (5.11) is clearly
marginal. The procedures of Algorithm 2 and Algorithm 3 accelerated by FISTA are described in
Algorithm 4 and Algorithm 5, respectively.

Algorithm 4 Proximity algorithm for Case 3 or Case 4 accelerated by FISTA

Given: A noisy image x in R
d; λ > 0, β > 0, γ > 0 such that 1

γβ <
1
4

Initialization: y1 = u0 = x, u−1 = 0, t1 = 1

repeat

(a) uk = x+ proxλ
γ
F

(
yk − 1

γβB
⊤(I − proxβϕ)(By

k)− x
)

(b) tk+1 =

√
1+4(tk)2+1

2

(c) yk+1 = uk + tk−1
tk+1 (u

k − uk−1)

until uk converges or satisfies a stopping criteria.

We note that step (a) in Algorithm 4 can be written as

yk+1 = x+ proxλ
γ
F

((
I − 1

γβB
⊤B

)
yk + 1

γβB
⊤proxβϕ(By

k)− x
)
,

uk = yk+1.

By doing so, in a way similar to what we have done for the first equation in (4.1), a Gauss-Seidel
iteration can be applied. To do this, we let

wk := proxβϕ(By
k)
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Algorithm 5 Proximity algorithm for Case 5 or Case 6 accelerated by FISTA

Given: A noisy image x in R
d; λ > 0, β > 0, γ > 0, δ > 0 such that 1

γβ < 2, δβ < 1
4

Initialization: y1 = u0 = x, u−1 = 0, t1 = 1

repeat

(a) Initialization bk,1 = 0

for j from 1 to n− 1

Computes bk,j+1 from bk,j by the Gauss-Seidel variation of iterative scheme (5.7)

end

(b) yk+
1

2 = yk − δβB⊤bk,j+1

(c) uk = x+ proxλ
γ
F

(
βγ−1
βγ yk + 1

βγ y
k+ 1

2

)

(d) tk+1 =

√
1+4(tk)2+1

2

(e) yk+1 = uk + tk−1
tk+1 (u

k − uk−1)

until uk+1 converges or satisfies a stopping criteria.

and denote by wkU and wkL the upper and the lower half of the vector wk, respectively. We view
all vectors x, yk, yk+1, wkU and wkL in equation (5.12) as q × q matrices momentarily. Then, the
interior pixel yk+1

ij of yk+1 is updated in the following way

yk+1
ij = xij + proxλ

γ
|·|1

((1− 4

γβ
)ykij +

1

γβ
(yk+1
i−1,j + yki+1,j + yk+1

i,j−1 + yki,j+1)

+
1

γβ
((wkU )ij − (wkU )i,j+1 + (wkL)ij − (wkL)i+1,j)− xij). (5.12)

Similar calculation for the boundary pixels of yk+1 can be proceeded. The proximity algorithm for
solving Case 3 or Case 4 accelerated by both the FISTA and the Gauss-Seidel iteration is described
in Algorithm 6.

Algorithm 6 Proximity algorithm for Case 3 or Case 4 accelerated by FISTA and GS iteration

Given: A noisy image x in R
d; λ > 0, β > 0, γ > 0 such that 1

γβ <
1
4

Initialization: y1 = u0 = x, u−1 = 0, t1 = 1

repeat

(a) Update the components of yk+1 according to equation (5.12).

(b) uk = yk+1

(b) tk+1 =

√
1+4(tk)2+1

2

(c) yk+1 = uk + tk−1
tk+1 (u

k − uk−1)

until uk converges or satisfies a stopping criteria.

We close this section with Table 3. This table summarizes the proposed algorithms and accel-
eration techniques that could be applied for solving the L1/TV model and its variants.
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Table 3: The algorithms towards solving the L1/TV models

Case Algorithms for choice Acceleration

1 Algorithm 1 GS
2 Algorithm 1 GS
3 Algorithms 1, 4, 6 FISTA & GS
4 Algorithms 1, 4, 6 FISTA & GS
5 Algorithm 5 FISTA
6 Algorithm 5 FISTA

6 Numerical Experiments

In this section we present numerical results to demonstrate the difference of various modified L1/TV
models and compare the performance of the proposed algorithms on restoring images from those
corrupted by salt-pepper noise. We choose the “Cameraman” and “Lena” as our test images. Both
of the images are of size 256 × 256. The quality of the restored image is evaluated in terms of the
peak-signal-to-noise ratio (PSNR) defined by

PSNR := 10 log10
2552d

‖u− ũ‖22
(dB),

where ũ denotes the restored image with respect to the original image u ∈ R
d. Each PSNR-value

reported in all tables in this section is the average over five runs. For all numerical experiments, the
regularization parameters λ are determined experimentally for the restored images to achieve the
best possible PSNR-values. All the experiments are performed under Windows 7 and MATLAB
7.6 (R2008a) running on a PC equipped with an Intel Core 2 Quad CPU at 2.66 GHz and 4G RAM
memory.

In our first experiment, by fixing the regularization term, we test whether replacing the fidelity
term ‖ · ‖1 with envα‖·‖1 can yield better performance in terms of values of PSNR. To this end, we
compare the performance of model “Case 1” with that of “Case 2”. Both the models in these two
cases use the total variation as the regularization term. To see the effect of the smooth parameter
α in “Case 2”, we set five different values for α (1, 2, 3, 5, and 10). The numerical results are listed
in Table 4. All of the PSNR-values are obtained by implementing Algorithm 1 with large enough
iteration numbers which can guarantee the convergence. We observe that the PSNR-values of the
restored images by “Case 1” are higher than those by “Case 2”. Furthermore, the PSNR-values of
the restored images by “Case 2” decrease as the smooth parameter α increases. This is essentially
because

lim
α→0

envα‖·‖1(u− x) = ‖u− x‖1, for all u ∈ R
d

and the use of ‖ · −x‖1 is based on the statistical analysis of the salt-pepper noise in Section 2.
This experiment confirms that the ℓ1-norm fidelity term should not be changed for the purpose of
removing impulsive noise.

In our second experiment the fidelity term is fixed to be ‖ · ‖1. We shall compare the total
variation regularization term with its two smoothed versions envβϕ(Bu) and envβ◦B(u). To this
end, we compare the performance of model “Case 1” with those of “Case 3” and “Case 5”. Similarly,
we set different values for the smooth parameter β in model “Case 3” and model “Case 5” to see
its effect on restored images. We solve model “Case 3” by Algorithm 1 with large enough iteration
numbers to guarantee its convergence. Model “Case 5” is solved by Algorithm 5 in which the
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Table 4: The summary of the restoration results of the models “Case 1” and “Case 2”.

Case Cameraman Lena
10% 30% 50% 10% 30% 50%

1 28.83 24.74 22.55 31.01 27.42 24.60

2 with α = 1 28.79 24.72 22.55 30.94 27.38 24.58
2 with α = 2 28.74 24.70 22.54 30.86 27.33 24.55
2 with α = 3 28.68 24.68 22.53 30.78 27.27 24.52
2 with α = 5 28.60 24.61 22.45 30.70 27.19 24.43
2 with α = 10 28.41 24.44 22.23 30.51 27.05 24.30

parameter n is chosen as 50. It was shown numerically in [18] that this value for n is accurate
enough to evaluate proxϕ◦B(u). We summarize the numerical results in Table 5. Unlike ϕ and
envβϕ, the proximity operators of ϕ ◦ B and envβϕ◦B have no closed-forms which introduce more
difficulty in numerical treatment of model “Case 5”. Moreover, model “Case 5” could not improve
the quality of restored images in comparison with model “Case 1”. We therefore conclude that
replacing the total variation ϕ ◦ B by envϕ◦B(u) is not a favorable choice. However, model “Case
3” with the smoothed regularization term envβϕ(Bu) can outperform model “Case 1” when the
parameter β is properly selected (usually in the range of 10 to 20). This is mainly because this
smoothed regularization term uses envβϕ rather than ϕ to penalize the gradients of the image. For
z ∈ R

2d, we denote y := envβϕ(z) and let z̃i := [zi, zd+i]
⊤. Then for i = 1, 2, . . . , d, by the definition

of ϕ in equation (2.7) and the closed-form solution of its proximity operator in equation (4.4), we
have that

yi =

{
1
2β‖z̃i‖22, ‖z̃i‖2 ≤ β,
‖z̃i‖2 − β

2 , ‖z̃i‖2 > β.
(6.1)

As can be seen from equation (6.1), the smoothed function envβϕ differs from ϕ by discriminating
gradients with small magnitudes and penalizing them quadratically. As a result, it has an effect on
smoothing small gradients of the restored image while keeping the sharp edges well. Consequently,
the staircasing effects usually caused by the total variation term can be removed to some extent.
The parameter β is used to specify the gradient value at which the regularization term envβϕ(Bu)
switches from penalizing quadratically to behaving like the total variation. When β is too small,
the regularization term envβϕ(Bu) performs like the total variation, while it gradually imitates
the Tikhonov regularization with β increases. Hence, we recommend envβϕ(Bu) as the preferred
regularization term in applications. The experiment results in Table 5 show that the best value for
β is usually in the range of 10 to 20.

Based on the above numerical study for models with various fidelity and regularization terms,
model “Case 3” is a favorable choice for impulsive noise removal. Since the function envβϕ in model
“Case 3” is differentiable and its proximity operator has a closed-form, the model can be solved by
the algorithms accelerated by either the Gauss-Seidel iteration or FISTA, or the both, presented
in Section 4 and Section 5. A detailed comparison of the algorithms for impulsive noise removal is
presented in the rest of this section.

We first validate the acceleration of the Gauss-Seidel iteration and FISTA. To see whether the
Gauss-Seidel iteration can accelerate the convergence, we compare the performance of the iterative
scheme given by (4.1), the CPPD algorithm in equation (4.8) and Algorithm 1 in restoring the
“Cameraman” image corrupted by salt-pepper noise with the level of 30%. We select three different
values 1,10, and 20 for β to investigate its effect on the acceleration. The PSNR-values of the
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Table 5: The summary of the restoration results of the models “Case 1”, “Case 3” and “Case 5”.

Case Cameraman Lena
10% 30% 50% 10% 30% 50%

1 28.83 24.74 22.55 31.01 27.42 24.60

3 with β = 5 28.93 24.86 22.66 31.09 27.62 24.79
3 with β = 10 28.97 24.95 22.71 31.10 27.72 24.88

3 with β = 15 28.94 24.98 22.71 30.98 27.71 24.87
3 with β = 20 28.84 24.96 22.65 30.74 27.59 24.77
3 with β = 25 28.70 24.88 22.53 30.41 27.37 24.57
3 with β = 30 28.55 24.74 22.36 28.99 27.06 24.30
3 with β = 35 28.34 24.57 22.15 29.52 27.69 23.97

5 with β = 1 28.83 24.72 22.55 30.92 27.36 24.42
5 with β = 2 28.77 24.69 22.54 30.71 27.20 24.31
5 with β = 3 28.65 24.63 22.48 30.43 27.03 24.16
5 with β = 4 28.50 24.53 22.42 30.09 26.83 23.99
5 with β = 5 28.31 24.41 22.33 29.72 26.59 23.81

restored images obtained by three approaches at each iteration are plotted in Figure 1. We observe
that the proposed algorithm in equation (4.1) has performance similar to the CPPD algorithm.
This does not surprise to us as these algorithms are closely related as discussed at the end of
Section 4. However, applying the Gauss-Seidel iteration in Algorithm 1 can obviously improve the
convergence rate and the restored image can be approximatively solved within 20 iterations by
Algorithm 1. It can also be seen from Figure 1 that the parameter β does not affect much the rate
of convergence of these three algorithms.

We then discuss the acceleration effects of the FISTA and Gauss-Seidel iteration on the Algo-
rithm 2. To this end, we apply Algorithms 2, 4 and 6 to restore the same noisy image (“Cameraman”
corrupted by salt-pepper noise with the noise level 30%) that we used above. Three different val-
ues 1, 10, and 20 are also selected for β to investigate its effect on the rate of convergence of the
algorithms. Figure 2 shows the PSNR-values of the restored images obtained by three algorithms
at each iteration. We can make two conclusions from the results in Figure 2. One is the Algorithm
4 using the FISTA can yield much faster convergence rate than Algorithm 2, and the use of Gauss-
Seidel iteration in Algorithm 6 could further speed up the convergence of Algorithm 4. Secondly,
the convergence rates of three algorithms heavily depend on the value of β, the larger we select for
β, the faster convergence rate can be achieved.

As we already have seen that model “Case 3” can be solved by employing the proposed al-
gorithms in equation (4.1) and Algorithm 2 which have the corresponding accelerated schemes
described in Algorithm 1 and Algorithm 6. A natural question follows immediately: which accel-
erated scheme should we choose for solving model “Case 3”? To answer this question, we compare
below the performance of Algorithm 1 and Algorithm 6 in details. The stopping criterion of both
algorithms in this experiment is that the relative error between the successive iterates of the re-
stored images should satisfy the following inequality ‖ui+1 − ui‖22/‖ui‖22 < 0.001, where ui is the
denoised image at the i-th iteration. We set six different values 1, 5, 10, 15, 20 and 25 for the
parameter β. Considering restoring the “Cameraman” image corrupted by the salt-pepper noise
with three different levels at 10%, 30% and 50%, we show in Figure 3 the running time consumed,
the PSNR-values of the restored images and the needed iteration numbers of both algorithms. The
first observation is that the convergence rates of both algorithms can be improved when increasing
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Figure 1: Acceleration results of applying Gauss-Seidel iteration to the algorithm in (4.1) when
restoring a noisy “Cameraman” image corrupted by salt-pepper noise with the noise level 30%.

0 50 100 150
5

10

15

20

25

 

 

Algorithm 2
Algorithm 4
Algorithm 6

0 50 100 150
5

10

15

20

25

 

 

Algorithm 2
Algorithm 4
Algorithm 6

0 50 100 150
5

10

15

20

25

 

 

Algorithm 2
Algorithm 4
Algorithm 6

β = 1 β = 10 β = 20

Figure 2: Acceleration results of applying FISTA and Gauss-Seidel iteration to Algorithm 2 when
restoring noisy “Cameraman” image corrupted by salt-pepper noise with the noise level 30%.
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the parameter β. However, the performance of Algorithm 6 is much more dependent on this pa-
rameter than that of Algorithm 1. Specifically, we prefer using Algorithm 1 when β is less than 10,
while tend to like the Algorithm 6 when β becomes larger. We also observe that the best choice for
the parameter β that can generate the restored image with the highest PSNR-value usually locates
in the range 10 to 20. The higher the level of noise in an image is, the larger β will be preferred.
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Figure 3: The numerical results of Algorithms 1 and 6 when restoring the “Cameraman” images
corrupted by the salt-pepper noise with 10% (Row 1), 30% (Row 2), and 50% (Row 3) different
noise levels.

7 Concluding remarks

We propose several modified L1/TV models by replacing the non-differentiable functions in the
objective function of the original L1/TV model with their corresponding differentiable Moreau
envelopes. Some existing approaches for the L1/TV model in the literature are intrinsically to
solve one of our modified models. A unified proximity algorithm framework is developed for the
numerical treatment of all models. The algorithms are motivated by the fixed-point equations
characterizing the solutions of the models. The corresponding accelerated schemes that can speed
up the convergence rates of the proposed algorithms are given. We compare the performance of
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the modified models in the applications of impulsive noise removal, and single out a model as the
best choice for this purpose. Two types of the proximity algorithms that can solve this model are
compared in details, some recommendations on which algorithm should be used are made based on
the numerical experiments.
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