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Abstract.

Sparse logistic regression is an important linear classifier in statistical learning,

providing an attractive route for feature selection. A popular approach is based on

minimizing an ℓ1-regularization term with a regularization parameter λ that affects

the solution sparsity. To determine an appropriate value for the regularization

parameter, one can apply the grid search method or the Bayesian approach. The

grid search method requires constructing a regularization path, by solving a sequence

of minimization problems with varying values of the regularization parameter, which is

typically time consuming. In this paper, we introduce a fast procedure that generates a

new regularization path without tuning the regularization parameter. We first derive

the direct Bregman method by replacing the ℓ1-norm by Bregman divergence, and

contrast it with the grid search method. For faster path computation, we further derive

the linearized Bregman algorithm, which is algebraically simple and computationally

efficient. Finally we demonstrate some empirical results for the linearized Bregman

algorithm on benchmark data and study feature selection as an inverse problem.

Compared with the grid search method, the linearized Bregman algorithm generates

a different regularization path with comparable classification performance, in a much

more computationally efficient manner.
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1. Introduction

1.1. Inverse problems and sparsity

Sparsity has emerged as an important model assumption for inverse problems, especially

in compressive sensing, machine learning, statistics and related fields. Minimization

of the ℓ1 norm, due to its sparsity promoting property and convexity, has led to a

tremendous amount of algorithm development in the past few years. It fits into the

general framework of regularized inverse problems, where we promote sparsity on the

latent variables,

argminλJ(u) +H(u), (1)

where J(u) is the regularization term, H(u) is the data fidelity term and λ is a

regularization parameter. The regularization term can take the form of ℓ1 regularization,

J(u) = ‖u‖1. The ℓ1 regularization promotes sparsity, based on the hypothesis that

only a subset of the independent variable u is informative about the dependent variable

y. The data fidelity term models the consistency between independent variable u and

dependent variable y. Depending on the application and form of dependent variable y,

the fidelity term can take different forms. In general, the fidelity term can be written as

H(u) = L(Au, y). (2)

• Real data

If y is real data, the fidelity term typically takes the form of quadratic function.

Statistical regression belongs to this form. Compressive sensing is a special case,

when A is the sensing matrix.

• Categorical data

If y is categorical data, the fidelity term takes the form of some loss function. The

choice of loss function depends on the decision boundary. Such a form arises often

in machine learning, where the goal is to perform classification.

1.2. ℓ1-regularized logistic regression

Despite the fact that our methodology can be generalized to various fidelity terms,

we focus in this paper on the ℓ1-regularized logistic regression [28], a popular linear

decoder in the field of machine learning. The inputs are a set of training data

X = [x1, · · · , xm]
⊤ ∈ R

m×n, where each row of X is a sample and samples of either

class are assumed to be independently identically distributed, and class labels y ∈ R
m

are of −1/+1 elements.

We seek a hyperplane {x : w⊤x+ v = 0} that separates the data belonging to two

classes, where w ∈ R
n is a set of weights and v ∈ R is the intercept. The ℓ1-regularized

logistic regression applies the ℓ1-penalty on the weights w:

argmin
w,v

λJ(w) + lavg(w, v), (3)
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where J(w) = ‖w‖1, and λ > 0 is a regularization parameter. The empirical loss

function is

lavg(w, v) =
1

m

m
∑

i=1

θ
(

(wTxi + v)yi
)

, (4)

where θ is the logistic transfer function, θ(z) := log(1 + exp(−z)).

It is well-known that ℓ1 minimization tends to give sparse solutions. The ℓ1
regularization results in logarithmic sample complexity bounds (number of training

samples required to learn a function), making it an effective learner even under an

exponential number of irrelevant features [21, 22]. Furthermore, ℓ1 regularization also

has appealing asymptotic sample consistency for feature selection [36].

Various algorithms exist for solving the ℓ1-regularized logistic regression, including

Gl1ce [19], Grafting [25], GenLASSO [26], and SCGIS [13], IRLS-LARS [9, 18], BBR

[12], Glmpath [24], interior point method [17], fixed point continuation (FPC) [16],

sparse reconstruction by separable approximation (SpaRSA) [31], hybrid iterative

shrinkage (HIS) [27], and accelerated block-coordinate relaxation [30].

1.3. Computing the full regularization path

The regularization parameter λ determines the level of sparsity, which is typically

unknown a priori. In order to determine an appropriate level of sparsity, one may

need to generate a regularization path. In many scenarios, the appropriate level of

sparsity can refer to the optimal level sparsity where the corresponding solution gives

rise to the best generalization performance for classification. We define two types of

regularization paths here:

• Solution-vs-sparsity

Solution path where solution is a function of sparsity level.

• Solution-vs-lambda

Solution path where solution is a function of regularization parameter λ.

One ideally wants to obtain the optimal solution-vs-sparsity path, where each

point on the path is the solution that achieves the best classification performance

with the given sparsity. However, minimizing or confining the solution sparsity leads

to combinatorial problems, which are generally very hard to solve. Therefore in the

grid search method, one typically approximates the solution-vs-sparsity path using

the solution-vs-lambda path. More specifically, one constructs a regularization path

by varying the regularization parameter λ and solving a sequence of minimization

problems corresponding to each λ. The optimal λ can be determined via cross validation.

However, one needs to solve each minimization accurately. It is not difficult to see the

grid search method is time costly. This is especially true when the cardinality of the true

solution support is large, since usually the smaller λ is, the lesser sparse solution is and

the longer it takes for an algorithm to converge. In this paper, we devise a methodology



Linearized Bregman 4

to efficiently approximate the solution-vs-sparsity path, using the linearized Bregman

algorithm.

Some related work along the line of regularization parameter selection can be

found in the Bayesian literature. The Bayesian approach provides an alternative,

where the regularization parameter is treated as a parameter of the prior distribution

in a hierarchical framework. One strategy is to integrate out the prior parameter to

obtain the marginal likelihood, which is used in algorithms such as automatic relevance

determination [20], relevance vector machine [29]. Such a Bayesian approach was used

for ℓ1-regularization [10], and ℓ2-regularization [11].

1.4. Our contribution

We propose a new approach for computing the solution-vs-sparsity path, which is much

more computationally efficient than the grid search method while achieving comparable

solution quality. Our approach is based on the linearized Bregman algorithm, using all

of the intermediate solutions to form the path. The linearized Bregman algorithm is

based on solving a sequence of minimization subproblems by introducing the Bregman

divergence. Each iteration of the algorithm minimizes the sum of certain Bregman

divergence of the ℓ1 norm, the linearization of the loss function, and a proximity term.

The minimizer of each subproblem can be obtained in closed form, resulting in an

algebraically simple and computationally efficient algorithm. Unlike the grid search

method which solves for the regularization path of (3), our new regularization path

does not require tuning the regularization parameter λ and solving each subproblem

corresponding to each parameter value. However, like the regularization path of (3),

our new regularization path is roughly monotonic in solution sparsity. The linearized

Bregman algorithm creates a new regularization path, starting from a big λ, which

results in highly sparse solution; as the algorithm proceeds, the sparsity of solution

increases, as well as the classification performance on training data. Empirical results

demonstrate that the generalization performance of the linearized Bregman algorithm

is comparable with the grid search method.

2. Prior art for Bregman related algorithms

2.1. Bregman divergence

The Bregman divergence [2], based on a convex functional J : Rn → R, is formally

defined by

Dp
J(u, v) = J(u)− J(v)− 〈u− v, p〉, p ∈ ∂J(v). (5)

For a continuously differentiable functional, such as ℓ2 norm, there exists a unique

element p in the subdifferential and consequently a unique Bregman divergence. For a

non-differentiable yet convex functional, such as the ℓ1 norm, p ∈ ∂J(v) is an element in

the subgradient of J at the point v. It is worth noting that the Bregman divergence is

not a distance in the usual sense, since in general Dp
J(u, v) 6= Dp

J(v, u), nor is the triangle
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inequality satisfied. However, the Bregman divergence measures the closeness between

u and v in the sense that Dp
J(u, v) ≥ 0 and Dp

J(u, v) ≥ Dp
J(w, v) for all points w on

the line segment connecting u and v. Moreover, Bregman divergence has the following

properties:

• If J is convex, Dp
J(u, v) ≥ 0;

• If J is strictly convex, Dp
J(u, v) > 0 for u 6= v;

• If J is strongly convex, there exists a constant ν > 0 such thatDp
J(u, v) ≥ ν‖u−v‖22.

Furthermore, the subgradient p ∈ ∂J(v) is not unique, when J(v) = ‖v‖1.

2.2. Earlier work using Bregman divergence

Some earlier work concerning Bregman divergence, logistic regression and Adaboost can

be found in [7]. Such a Bregman divergence framework was extended to ℓ1-regularized

logistic regression in [15]. Both applied the Bregman divergence to the logistic loss term.

On the other hand, application of Bregman divergence to the ℓ1 term was introduced

in [23], where an inverse problem of signal and noise decomposition was considered. In

that model, J(u) =
∫

|∇u| is the total variation functional of u, and H(u) = 1
2
‖Au−y‖22.

The key idea was to solve a sequence of minimization subproblems, where the Bregman

divergence was applied to total variation (TV). Such methodology was later applied to

wavelet denoising [32] and image deblurring. Recently, the Bregman regularization was

applied to the following ℓ1-regularized basis pursuit problem [35],

min
u

λ‖u‖1 +
1

2
‖Au− y‖22, (6)

where the regularization term is the ℓ1 term J(u) = ‖u‖1, and the fidelity term takes

the quadratic form. This optimization problem is at the core of compressive sensing.

More recently, a linearized Bregman algorithm was derived in [35], which is simple

and fast. Interesting analysis was done in [33] for compressive sensing. Some theoretical

results regarding convergence was established in [4, 5]. In all these papers, the authors

focused on seeking the solution of (6) with small λ via linearized Bregman algorithm,

which is simple and fast. What makes Bregman regularization interesting is its error

canceling property of Bregman divergence, when applied to the ℓ1 norm [34]. The

authors were interested in the final solution of the algorithm, instead of the solution

path, using the linearized Bregman algorithm. The solution path was documented in

the direct Bregman algorithm for TV [23] and the inverse scale space [3].

3. New regularization path for sparse learning

In the sparse learning problem below, we are interested in the full solution path.

Computing the full regularization path fits nicely with the cross validation or early

stopping procedure in the machine learning community. We first show a new

regularization path using the Bregman divergence in Section 3.1, and compare it with
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the traditional grid search method. We then describe a revised regularization path

generated by the linearized Bregman algorithm, which is much faster, in Section 3.2.

3.1. New regularization path through Bregman divergence

We first introduce a new regularization path using the Bregman divergence, resulting

in the direct Bregman method. The difference between the grid search method and the

direct Bregman method is illustrated below.

• Grid Search Method

Given a sequence of regularization parameters λ0 > λ1 > . . . > λk > . . . > λn, we

solve a sequence of minimization subproblems corresponding to each λk,

(wk, vk)← argmin
w,v

λkJ(w) + lavg(w, v), (7)

for k = 0, 1, . . . , n.

• Direct Bregman Method

Given a fixed regularization parameter λ0, which is large enough so that w1 will be

sufficiently sparse, we solve a sequence of minimization subproblems,

(wk+1, vk+1)← argmin
w,v

λ0D
p
J(w,w

k) + lavg(w, v), (8)

for k = 0, 1, . . . , n− 1, with initial conditions w0 = 0, v0 = 0, and p0 = 0.

In the above direct Bregman method, {(wk, vk)} is a sequence of solutions, and

pk ∈ ∂J(wk) is the subgradient of J(wk), where J(wk) = ‖wk‖1. By substituting the

definition of Bregman divergence, we arrive at

(wk+1, vk+1)← argmin
w,v

λ0

(

J(w)− J(wk)− 〈w − wk, pk〉
)

+ lavg(w, v). (9)

One can further simply this expression to

(wk+1, vk+1)← argmin
w,v

λ0J(w)− λ0〈w, p
k〉+ lavg(w, v). (10)

Fig. 1 illustrates the difference between these two methods. Note in Eqn. (10),

the first two terms λ0J(w) − λ0〈w, p
k〉 together determine the contribution of the

regularization term. Roughly speaking, the amount of regularization decreases along

the new regularization path.

Given that (wk+1, vk+1) satisfies the first-order optimality condition of problem (8),

0 ∈ ∂
(

λ0J(w
k+1)− λ0〈w

k+1, pk〉+ lavg(w
k+1, vk+1)

)

0 = λ0p
k+1 − λ0p

k +∇wlavg(w
k+1, vk+1),

where pk is the subgradient of J(wk), not single-valued due to the non-differentiability

of ℓ1 norm. Hence we arrive at the iterate for updating pk+1,

pk+1 = pk −
1

λ0

∇wlavg(w
k+1, vk+1). (11)
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Grid Search Method

Direct Bregman Method

existing regularization path

new regularization path

successive relaxation of J(w)

lambda decreases

λ0

λ1

λk

λn

λ0

λ0

λ0

λ0

(wk, vk)← argmin
w,v

λkJ(w) + lavg(w, v)

(wk+1, vk+1)← argmin
w,v

λ0J(w)− λ0〈w, p
k〉+ lavg(w, v)

Figure 1. Comparison between the grid search method and the direct Bregman

method. These two methods generate different regularization paths. In the grid search

method, a sequence of decreasing lambdas are generated as the input to the algorithm,

and each subproblems solves for the original optimization problem with each lambda.

In the direct Bregman method, lambda is fixed, and each subproblem solves for the

Bregman regularized optimization problem.

Algorithm 1 Direct Bregman Method

Input: d ata X ∈ R
m×n and label y ∈ R

m.

Initialize k = 0, w0 = 0, v = 0, p0 = 0, λ0 > 0.

while stopping criterion not satisfied do

(wk+1, vk+1)← argmin
w,v

λ0J(w)− λ0〈w, p
k〉+ lavg(w, v)

pk+1 ← pk − 1
λ0

∇wlavg(w
k+1, vk+1)

k ← k + 1

end while

So far, (8) and (11) constitute the direct Bregman method. We summarize it in

Algorithm 1.

The direct Bregman procedure generates a regularization path. Compared to the

grid search method, where a sequence {λk} controls the regularization path, the direct

Bregman procedure generates a regularization path without tuning the regularization

parameter λ. This is the key insight of this algorithm, illustrated in Fig. 1. Note the

grid search method and direct Bregman method generate two different regularization

paths. We will discuss the difference between these two regularization paths from the

perspective of inverse scale space in Section 6.
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Since each subproblem (10) needs to be solved accurately, the direct Bregman

method turns out to be computationally expensive. Therefore we derive a simpler and

more efficient algorithm called linearized Bregman in the next section.

3.2. Linearized Bregman algorithm

Recall our goal is to improve the regularization path, especially in terms of

computational efficiency. During the direct Bregman procedure, each subproblem needs

to be solved accurately. Suppose each subproblem can be solved easily, then our goal is

achieved; we do so via linearization. By linearizing the loss function, we can obtain a

close-form solution for each subproblem (10). This will result in the linearized Bregman

algorithm, as well as a different regularization path.

The linearized version of the direct Bregman algorithm can be derived by

approximating the loss function lavg(w, v) using first-order Taylor expansion at (wk, vk),

which is lavg(w
k, vk) + 〈∇wlavg(w

k, vk), w〉, and adding a proximal term ‖w−wk‖22/(2α)

to the objective function,

(wk+1, vk+1)← argmin
w,v

λ0D
p
J(w,w

k) + 〈w,∇wlavg(w
k, vk)〉+

1

2α
‖w − wk‖22. (12)

Now we can further group w from the last two terms and get

(wk+1, vk+1)← argmin
w,v

λ0D
p
J(w,w

k) +
1

2α
‖w − (wk − α∇wlavg(w

k, vk))‖22. (13)

In order to derive the update rule for pk+1, we use the optimality condition for the

objective function of the linearized Bregman procedure (13), which leads to

pk+1 = pk −
1

λ0
∇wlavg(w

k, vk)−
1

λ0α
(wk+1 − wk). (14)

Hence the iterates (13) together with (14) constitute the linearized Bregman iterative

algorithm, summarized in Algorithm 2.

Algorithm 2 Linearized Bregman Iterative Algorithm

Input: data X ∈ R
m×n and label y ∈ R

m.

Initialize k = 0, w0 = 0, v0 = 0, p0 = 0, λ0 > 0, α > 0.

while stopping criterion not satisfied do

(wk+1, vk+1)← argmin
w,v

λ0D
p
J(w,w

k) + 1
2α
‖w − (wk − α∇wlavg(w

k, vk))‖22

pk+1 ← pk − 1
λ0

∇wlavg(w
k, vk)− 1

λ0α
(wk+1 − wk)

k ← k + 1

end while

We further simplify the linearized Bregman iterative algorithm below.
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Theorem 3.1. The solution to the original linearized Bregman iterative algorithm,

(wk, vk), solves a sequence of minimizers (13) along with subgradient update (14). Such

an algorithm can be further reduced to updating a sequence of (wk, vk, zk), involving

zk+1 = zk −
1

λ0
∇wlavg(w

k, vk),

wk+1 = λ0αS(z
k+1, 1),

vk+1 = vk −
1

λ0
∇vlavg(w

k, vk), (15)

where S is the shrinkage operator.

Proof. The objective function for each subproblem for the linearized Bregman iterative

algorithm (13) can be reduced as

⇒ argmin
w,v

λ0D
p
J(w,w

k) +
1

2α
‖w − (wk − α∇wlavg(w

k, vk))‖22

⇒ argmin
w,v

λ0J(w)− λ0J(w
k)− λ0〈w − wk, pk〉+

1

2α
‖w − (wk − α∇wlavg(w

k, vk))‖22

⇒ argmin
w,v

λ0J(w)− λ0〈w, p
k〉+

1

2α
‖w − (wk − α∇wlavg(w

k, vk))‖22.

We hence have the following update,

(wk+1, vk+1)← argmin
w,v

λ0J(w) +
1

2α
‖w − (wk + λ0αp

k − α∇wlavg(w
k, vk))‖22. (16)

The updating rule for the subgradient pk ∈ ∂J(wk), where J(wk) = ‖wk‖1, can be

obtained from the first-order optimality condition of (13),

⇒ 0 ∈ ∂
(

λ0D
p
J(w,w

k) +
1

2α
‖w − (wk − α∇wlavg(w

k, vk))‖22
)

⇒ 0 ∈ ∂
(

λ0J(w)− λ0J(w
k)− λ0〈w − wk, pk〉+

1

2α
‖w − (wk − α∇wlavg(w

k, vk))‖22
)

⇒ 0 ∈ λ0p
k+1 − λ0p

k +
1

α
wk+1 −

1

α
(wk − α∇wlavg(w

k, vk)).

Now we have the following update for subgradient,

pk+1 +
1

λ0α
wk+1 = pk +

1

λ0α
wk −

1

λ0
∇wlavg(w

k, vk). (17)

In order to simply these two equations further, we introducing a new variable

zk = pk + 1
λ0α

wk. Now Eqn. (17) can be rewritten as

zk+1 = zk −
1

λ0

∇wlavg(w
k, vk). (18)

Eqn. (16) can be rewritten as

⇒ argmin
w,v

λ0J(w) +
1

2α
‖w − (λ0αz

k − α∇wlavg(w
k, vk))‖22

⇒ argmin
w,v

λ0α‖w‖1 +
1

2
‖w − λ0αz

k+1‖22.
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Algorithm 3 Linearized Bregman Algorithm

Input: data X ∈ R
m×n and label y ∈ R

m.

Initialize k = 0, w0 = 0, v = 0, p0 = 0, λ0 > 0, α > 0.

while stopping criterion not satisfied do

zk+1 ← zk − 1
λ0

∇wlavg(w
k, vk)

wk+1 ← λ0αS(z
k+1, 1)

vk+1 ← vk − 1
λ0

∇vlavg(w
k, vk)

k ← k + 1

end while

The above minimization has closed-form solution using shrinkage,

wk+1 = S(λ0αz
k+1, λ0α) = λ0αS(z

k+1, 1), (19)

where the shrinkage operator is also referred to as soft thresholding,

S(z, α) := sgn(z)⊙max{|z| − α, 0} =















z − α if z ∈ (α,∞)

0 if z ∈ [−α, α]

z + α if z ∈ (−∞,−α),

(20)

with ⊙ denoting element-wise product.

Therefore we arrive at a three line code, summarized in Algorithm 3.

The linearized Bregman algorithm constructs a well-defined sequence {(wk, vk, zk)},

essentially a regularization path starting from w0 = 0, v0 = 0, z0 = 0. Following this

path, the penalization on the ℓ1 regularization is weakened due to linearization 〈w, pk〉,

resulting in less sparse solutions, as if the regularization parameter λ is reduced in

model (3). The linearized Bregman algorithm is very straightforward to implement,

and only involves matrix multiplication and scalar shrinkage. Again, we note that the

regularization paths generated by the grid search method, direct Bregman method,

and linearized Bregman method are different. Note the update of subgradient is not

computationally explicit in Algorithm 3 due to the introduction of new variable zk. One

attractive property of the linearized Bregman algorithm is that it starts from a big λ

and achieves denser solutions without actually tuning λ. The solution to the linearized

Bregman algorithm, appears to get closer, in the Bregman sense, to the minimizer of

the empirical logistic loss function. Such a result was observed and analyzed formally

for image denoising, where the fidelity term is quadratic, in [23].

4. Numerical results

4.1. Forward model for data generation

Consider two Gaussian classes with n dimensions, both with covariance matrices equal

to identify. Means of the two classes are µ1 = [c, 0, ..., c, 0, c, 0, ..., 0]T , where only k
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elements are nonzero and the remaining n − k elements are zero, and µ2 = −µ1. The

ground truth of these data is known, i.e. the k dimensions with non-zero means are

the informative features for a linear classifier. To introduce noise in the data, we add

Gaussian noise with zero mean.

4.2. Convergence

We demonstrate some numerical results for the linearized Bregman algorithm concerning

algorithm convergence. In this example, n = 100, m = 100 (50 samples per class).

(a) loss term (b) regularization term

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Iteration k

L(
w

k ,v
k )

0 200 400 600 800 1000
0

50

100

150

Iteration k

λ 0 J
(w

k )

Figure 2. Linearized Bregman algorithm. (a) Logistic loss term lavg(w
k, vk) as

function of k. (b) Regularization term λ0J(w) as function of iteration k, where λ0 = 10.

The data used in this experiment is simulated, with m = 100 samples (50 samples per

class) and n = 100 dimensions.

Fig. 2(a) shows the evolution of loss function lavg(w
k, vk) as function of iteration

k. This shows that lavg(w, v) monotonically decreases and converges to the minimum as

k → ∞. Fig. 2(b) shows the evolution of the regularization term λ0J(w
k) as function

of k. The solution gets less and less sparse along the regularization path.

Let’s denote residual as ‖wk − w∗‖, where w∗ is the optimal solution where

w∗ = argminw lavg(w, v). We plot ‖wk−w∗‖ as a function of iteration k in Fig. 3(a). One

can observe empirically that the convergence is at least linear. Fig. 3(b) shows how the

solution wk evolves as function of iteration k. The new regularization path generated by

the linearized Bregman algorithm is finely grained, evidenced by the smooth evolution

of each component in wk.

4.3. Computing the full regularization path

As mentioned earlier, practical usage of the ℓ1-regularized logistic regression for

classification problems requires running the algorithm on a regularization path with
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(a) solution residual (b) solution path
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Iteration k

||w
k −

w
* ||

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

Iteration k

w
k

Figure 3. Linearized Bregman algorithm. (a) The residual of solution ‖wk − w∗‖ as

a function of iteration k. (b) Solution wk evolves as function of iteration k. One can

observe the evolution is very smooth along the regularization path. The data used in

this experiment is simulated, with m = 100 samples (50 samples per class) and n = 100

dimensions.

a sequence of decreasing λ, through the grid search approach. In general, the

regularization parameter λ affects the number of iterations to converge for most solvers.

Since the linearized Bregman algorithm has first-order accuracy, it is fair to compare

it with the fixed point continuation (FPC) algorithm, which is an iterative soft-

thresholding algorithm (ISTA) [6, 8, 1] with acceleration by parameter continuation.

The solution and computation time of FPC for each λ are given in Fig. 4.

Fig. 4(a) illustrates how the solution component evolves along a regularization path.

As λ becomes smaller, the cardinality of the solution support goes up, however the

computation time needed for convergence also increases, an apparent computational

disadvantage, shown in Fig. 4(b).

We then compare solution paths generated by the linearized Bregman algorithm and

the grid search method. We run these two algorithms independently on the same data,

and record the accumulated computational time. Fig. 5 contrasts the computational

efficiency and quality of solution paths between these two algorithms. Fig. 5(a) and

(b) show how the cardinality of solution support evolves as function of accumulated

computational time. One can see that linearized Bregman is much more efficient in

generating the full solution path. Fig. 5(c) and (d) illustrate the evolution of solution

path for both algorithms. One can see the solution path generated by the linearized

Bregman algorithm is much more finely grained compared with the grid search method.

We note the magnitude of the solutions generated by the linearized Bregman algorithm

and the grid search emthod are different. The differences are due to the fact that the

linearized Bregman algorithm iteratively applies linear relaxations the ℓ1 regularization

term J(w), and the particular form of ℓ1-induced Bregman divergence frees nonzero
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Figure 4. Regularization parameter selection using the grid search method. We show

the effect of regularization parameter on FPC algorithm. (a) Solution w evolves along

a regularization path, following a geometric progression from 1 to 0.0001. As the λ

becomes smaller, the cardinality of the solution goes up. (b) Computation time along

such a regularization path, where the smaller λ requires more computation time. Data

used in this simulation is the ionosphere data from the UCI repository of machine

learning databases.

entries in the last iteration from being penalized in the current iteration, so their values

become larger. On the other hand, all entries in the grid search method are penalized

equally by ℓ1 regularization, so the nonzero entries in the solution are smaller due to

the ℓ1 penalty.

The linearized Bregman iterative algorithm can solve a problem starting from a

big λ, and create a new regularization path that “effectively” decreases the amount

of regularization without tuning λ. More importantly, each iterate of the linearized

Bregman is exact. This indicates an important advantage of using the Bregman iterative

algorithm.

When one runs the linearized Bregman algorithm, the notion of regularization

parameter selection becomes obsolete. The algorithm starts from a big regularization

parameter λ and converges to the true solution. In the grid search method, one needs

to construct a regularization path varying λ. Therefore, it requires solving a sequence

of minimization subproblems with different λ. Such an approach can be extremely time

costly. We can thus gain a tremendous amount of speed-up using the linearized Bregman

algorithm. Secondly, one can see that linearized Bregman algorithm gives a finer grain

regularization path. In the case of grid search method, one can miss the true solution

if one does not fine tune λ.
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Linearized Bregman Grid Search
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Figure 5. Comparison of solution paths between the linearized Bregman algorithm

and the grid search method. (a) & (b) show the evolution of support cardinality plotted

against accumulated computation time. We ran the two algorithms independently and

recorded computation time, and compare against each other. (c) & (d) show the

evolution of solution wk plotted against the evolution of card(wk). One can see the

linearized Bregman algorithm generates a solution path much more efficiently and is

more finely grained.

4.4. Algorithm scaling

In order to test whether the proposed algorithm is scalable for large-scale data, we

compare the linearized Bregman algorithm with the grid search method, on data of

different dimensions. We note such a comparison is dependent on data, and how

the regularization parameters are chosen for the grid search. In order to make a fair

comparison, we simulate data under the same distribution (see Section 4.1). For all

cases, we run the linearized Bregman algorithm for 100 time steps, and run the FPC
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for 100 different regularization parameters.

In the grid search method, a geometric progression is used for constructing the

sequence of regularization parameters. We compute the maximum regularization

parameter using

λmax =
1

m

∥

∥

m−

m

∑

bi=+1

ai +
m+

m

∑

bi=−1

ai
∥

∥

∞
, (21)

where m− is the number of training samples with label −1 and m+ is the number of

training samples with label +1 [17]. λmax is an upper bound for the useful range of

regularization parameters, which is the smallest regularization parameter that gives rise

to trivial solution. In the linearized Bregman algorithm, we use λ0 which gives rise to

over-smoothed initial solution and stable solution path.

All computation is done using MATLAB R2010a, on a MacBook Pro laptop with

Mac OSX 10.6.5, with 2.66 GHz Intel Core i7, and 8 GB 1067 MHz DDR3 memory.

Clearly linearized Bregman algorithm is almost 100 times more efficient compared with

the grid search method.

n m k Linearized Bregman Grid Search

10 10 8 0.05 s 14.57 s

100 100 80 0.13 s 33.74 s

1000 1000 800 3.16 s 319.15 s

10000 10000 8000 208.68 s 16085.32 s

Table 1. This table summaries the scaling of both algorithms. We test the

computational efficiency of both algorithms for data with different dimensions. The

data used in this experiment is simulated, see Section 5.1 for details. Here n = #

dimensions, m = # samples, and k = # nonzeros within the dimensions of the original

data.

Table 1 is a summary of computational efficiency. We note linearized Bregman

induces almost 100 times speedup, compared with the grid search method. Such a result

suggests that linearized Bregman can facilitate computational efficiency for large-scale

learning problems.

4.5. Generalization performance

In order to prevent overfitting, the optimal level of sparsity is typically not when the

classification performance achieves its maximum on the training data, but on testing

data. Therefore, it is important to examine the quality of generalization performance

of the algorithm. We thus compare the generalization performance for the linearized

Bregman algorithm and the grid search method.

This is done using cross validation traditionally; recently early stopping has been

quite popular in large-scale learning. The classification performance can be evaluated
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Figure 6. Comparison of generalization performance between the linearized Bregman

algorithm (LB) and the grid search method (GS). We run both algorithms on training

and testing dataset. The curves are labeled in different colors: (red) training LB,

(blue) training GS, (cyan) testing LB, (green) testing GS. In (a)-(d), noise level in the

data are increased.

using the receiver operating characteristic (ROC) analysis and K-fold cross validation.

In this case, we used two-fold cross validation, similar to early stopping technique in

the machine learning community. In signal detection theory, a ROC curve plots the

true positive rate versus false positive rate, as the discrimination threshold varies, for

a binary classifier system [14]. The area under the ROC curve is termed Az value,

Az ∈ [0, 1]. The higher the Az value, the better the classification performance.

Fig. 6 shows the generalization performance for data with varying noise level. We

split the data into training and testing sets, and run both linearized Bregman algorithm

and the grid search method on them. The generalization performance for the dataset

is determined when the testing Az reaches its maximum. The numerical results show

that linearized Bregman always achieves comparable, if not better, testing performance
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compared with the grid search method. More specifically, the maximum of testing Az

value using linearized Bregman algorithm is the same as, or sometimes slightly higher

than, that of the grid search method. Fig. 6(a)-(d) shows the consistency of such a

result for increasing noise level.

4.6. Algorithm parameters

We note that there are two parameters for the linearized Bregman algorithm, λ0 and

α. Here we study the impact of these two parameters on the algorithm performance in

terms of stability and solution path. Fig. 7 illustrates such an idea.

On one hand, α needs to be sufficiently small. When α is too big, the algorithm

can become unstable. Fig. 7(b) shows some oscillations in the testing Az curve. Note

that α controls the proximal term for linearized Bregman algorithm. This term should

be small to make sure the linearization is accurate.

On the other hand, λ0 needs to be large enough. This is because the step size for

gradient descent is 1
λ0

in Algorithm 3. In Fig. 7(e), we also notice that the solution path

becomes more finely grained when λ0 becomes larger.

5. Feature selection as inverse problem

It is instrumental to test the feature selection behavior of the algorithm, in a manner

where the ground truth is known. The forward model for data generation is described

in Section 4.1. We set up feature selection as an inverse problem. We run the

linearized Bregman algorithm on the training data, and use cross-validation to obtain

the generalized classification performance.

We would like to design a stopping criterion for the linearized Bregman algorithm.

According to the generalized discrepancy principle, this can be achieved by finding the

minimal cardinality in the regularization path that achieves maximum classification

performance generalized on the testing data.

(wopt, vopt) =: min
card(w)

max
Az

Az(w, v,Xtest, ytest), (22)

where card denotes the cardinality of support, i.e. the number of nonzero elements in

a vector, essentially the ℓ0-norm.

5.1. Feature selection for noise-free data

We first study the case where there is no noise in the input data. As described in

Section 5.1, we generate data where dimension n = 100, sample numbers m = 100, and

the number of support in the data is 50. Cross validation is used when we evaluate the

classification performance. ROC analysis is employed to compute Az value, which is a

measurement of solution quality in learning theory.
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Loss Function Solution Path
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(e) λ0 = 100 α = 0.01 (f) λ0 = 100 α = 0.01
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Figure 7. Impact of parameters on algorithm stability and solution path for the

linearized Bregman algorithm. Left column compares the loss function against solution

cardinality, between linearized Bregman (LB) and grid search (GS) methods. Right

column compares the generalization performance. (a) & (b) λ0 = 10, α = 0.1. (c) &

(d) λ0 = 10, α = 0.01. (e) & (f) λ0 = 100, α = 0.01.
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Noise-free Case
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Figure 8. Linearized Bregman algorithm for noise-free data. (a) Cardinality of the

solution wk as a function of iterate k. (b) Classification performance for the linearized

Bregman algorithm on both (blue) training data and (red) testing data. (c) Bregman

divergence between wk and the w∗. (d) Bregman divergence between wk and wopt

based on ground truth.

Note when the linearized Bregman algorithm converges, we denote the converged

solution as (w∗, v∗). In the numerical experiments below, we will study the following

two Bregman divergences, D(wk, w∗) and D(wk, wopt).

Fig. 8 illustrates the solution quality as a function of iterates k. Linearized Bregman

algorithm converges extremely fast, where the cardinality of the solution reaches the true

dimension and yielding perfect separation for the testing data. Both training and testing

Az values asymptotes perfect classification performance (Az = 1).
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Low Noise Case
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Figure 9. Linearized Bregman algorithm for data with low noise. (a) Cardinality

of the solution wk as a function of iterate k. (b) Classification performance for the

linearized Bregman algorithm on both (blue) training data and (red) testing data. (c)

Bregman divergence between wk and the w∗. (d) Bregman divergence between wk and

wopt based on ground truth.

5.2. Feature selection for noisy data

We then test the case where the input data is corrupted by noise, in this case, Gaussian

noise. Depending on the amount of noise, the linearized Bregman algorithm appears to

have different behaviors.

In the low noise case, linearized Bregman algorithm yields a regularization path,

where the solution reaches the optimal solution and eventually asymptotes. Fig. 9

illustrates such an idea. Fig. 9(a) shows along the regularization path, the cardinality

of the solution support wk crosses 50 and asymptotes 94. Fig. 9(b) shows the Az value
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High Noise Case
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Figure 10. Linearized Bregman algorithm for data with high noise. (a) Cardinality

of the solution wk as a function of iterate k. (b) Classification performance for the

linearized Bregman algorithm on both (blue) training data and (red) testing data. (c)

Bregman divergence between wk and the w∗. (d) Bregman divergence between wk and

wopt based on ground truth.

after cross validation (red curve) asymptotes the optimal classification performance.

Fig. 9(c) shows when k →∞, the Bregman divergence between wk and w∗ diminishes.

We study the Bregman divergence between each iterative of the solution wk with the

true solution. In the low noise case, we show in Fig. 9(d) that the Bregman divergence

between solution wk and wopt, D(wk, wopt) diminishes after a finite number of iterations.

In the high noise case, linearized Bregman appears to get closer to the true solution

and becomes noisy again. Fig. 10(a) shows that the cardinality of the solution starts

from 0, passes the true dimension 50 and then goes up. It indicates data overfitting.

Fig. 10(b) shows the classification performance has a bell curve (as expected), reaching
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its maximum approximately at the iterate where the cardinality of solution recovers

the true dimension. Fig. 10(c) shows the Bregman divergence between wk and w∗. As

expected, D(wk, w∗) diminishes as k → ∞. We also study the Bregman divergence

between each iterative of the solution wk with the true solution. Fig. 10(d) shows the

Bregman divergence between solution wk and wopt, D(wk, wopt) gets smaller and then

goes up again (it is too subtle to see on the plot, but can be observed on a log scale).

Such a result indicates that the solution wk gets closer to the true solution, in the sense

of Bregman divergence, and becomes noisy again.

6. Solution path explained via inverse scale space flow

There exists a connection between linearized Bregman algorithm and the inverse scale

space. Such a connection was examined carefully for the compressive sensing problem,

where the fidelity term takes the quadratic form [3].

6.1. Connection with inverse scale space flow

For the direct Bregman method, recall Eqn. (11), the update equation is

pk+1 = pk −
1

λ0
∇wlavg(w

k+1, vk+1). (23)

Denote ∆t = 1
λ0

and consider it as a time stepping. When taking the limit ∆t→ 0, we

can view the above as time evolution and arrive at the following PDE,

dp(t)

dt
= −∇wlavg(w(t), v(t)), p(t) ∈ ∂J(w(t)). (24)

Such a PDE is called inverse scale space flow. Note in the asymptotic behavior, we view

the direct Bregman iteration as a backward-Euler (implicit) discretization of the above

inverse scale space flow.

For the linearized Bregman algorithm, recall Eqn. (14), the update equation is

pk+1 = pk −
1

λ0
∇wlavg(w

k, vk)−
1

λ0α
(wk+1 − wk). (25)

This corresponds to the following inverse scale space flow,

dp(t)

dt
+

1

α

dw(t)

dt
= −∇wlavg(w(t), v(t)), p(t) ∈ ∂J(w(t)). (26)

In contrast, we view the linearized Bregman iteration as a forward-Euler (explicit)

discretization of the inverse scale space flow.

We note that linearized Bregman algorithm is not the first algorithm to compute

the full regularization path. The earliest path generating algorithm goes back to the

least angle regression (LARS) [9]. The authors proposed an algorithm that solves for a

sequence of minimizers to the problem of LASSO,

uk = argmin
u

J(u) +
tk
2
‖Au− f‖22, (27)
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with t0 < t1 < t2 < · · · < tk. The asymptotic behavior of the above approaches the

following inverse scale space flow,

p(t)

t
= −AT (Au(t)− f), p(t) ∈ ∂J(u(t)). (28)

Although this model was not applied to logistic regression, one can potentially generalize

the LARS algorithm to ℓ1-regularized logistic regression,

p(t)

t
= −∇wlavg(w(t), v(t)), p(t) ∈ ∂J(w(t)). (29)

Thus far, we can see the regularization paths generated by the direct Bregman

method (24), linearized Bregman algorithm (26), and least angle regression (29) are

different.

6.2. Behavior of solution path

As mentioned earlier, the solution paths generated by the linearized Bregman algorithm

and least angle regression are quite different. Formal analysis of the linearized Bregman

algorithm in terms of convergence and solution path is nontrivial, and will be the subject

of a future paper. Since linearized Bregman algorithm is a linearized (and accelerated)

version to the direct Bregman method, we illustrate the difference between the direct

Bregman method and least angle regression through a toy example below.

Consider a simple case where we minimize the following objective function,

argmin
u

λJ(u) +
1

2
‖u− f‖22, J(u) = ‖u‖1. (30)

We point out the difference between solution paths for the direct Bregman method and

least angle regression by analyzing the corresponding inverse scale space flows:

• Flow for Direct Bregman Method

dp

dt
= −(u− f), p ∈ ∂J(u), (31)

starting from u(0) = 0, and p(0) = 0.

• Flow for Least Angle Regression

p

t
= −(u − f), p ∈ ∂J(u), (32)

starting from u(0) = 0, and p(0) = 0.

Flow for Direct Bregman Method: Formal analysis for the inverse scale space

flow Eqn. (31) was discussed in [3] when the right hand side is −A⊤(Au− f). To make

it more intuitive, we set A = I and demonstrate the behavior of solution path for the

toy example below.
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Theorem 6.1. There exists a sequence of time steps 0 < t1 < t2 < · · · < tk < · · · < tK,

such that the inverse scale space flow Eqn. (31) converges in a finite number of iterations.

The number of iterations K is upper bounded by ‖f‖0. In addition, the solution converges

to uk = f when k = K.

Proof. We first note p ∈ ∂J(u) satisfies the following:

pi := ∂J(u)















= −1 if ui < 0

∈ [−1, 1] if ui = 0

+1 if ui > 0.

(33)

Given the inverse scale space flow dp(t)
dt

= f − u(t), and initial conditions u(0) = 0,

p(0) = 0, we have

p(t) = t(f − u(0)) = tf. (34)

Therefore, for 0 < t < t1, where t1 =
1

‖f‖∞
, we have

‖p(t)‖∞ = t‖f‖∞ < t1‖f‖∞ = 1. (35)

Based on the property of subgradient p(t) ∈ ∂J(u) mentioned above, it leads to the

fact u(t) = 0. This result indicates that for large time step up to t1, u(t) stays zero. In

other words, changes in u(t) only occur at t1 when elements in p(t) reache +1 or −1;

otherwise, p(t) behaves linearly in the intermediate time.

Such a result extends to all elements in u. For each element i ∈ supp(f), ui(t) = 0

as long as 0 ≤ t < 1
|fi|

. Once t ≥ 1
|fi|

, the ith element converges to ui(t) = fi. For each

element i /∈ supp(f), it stays constant throughout the flow ui(t) = 0.

With such a conclusion, we can construct the following time iterations 0 < t1 <

t2 < · · · < tk < · · · < tK . Denote the support set of f as supp(f). We can simply sort

the following quantities,

{t1, t2, · · · , tk, · · · , tK} = sort{
1

|fi|
}, for i ∈ supp(f), (36)

where sort denotes sorting the elements of a set in an ascending order. It is easy to see

K ≤ ‖f‖0.

Since ‖f‖0 is finite, we have K ≤ ‖f‖0 < ∞. Therefore, the algorithm converges

to the solution uk = f in a finite number of iterations.

Flow for Least Angle Regression: Again we explain the behavior of solution

path using the toy example where A = I.

Theorem 6.2. For any nontrivial f , the inverse scale space flow for least angle

regression does not obtain u(tk) = f in a finite number of iterations; it converges to

u(tk) = f as tk →∞.
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Proof. Upon discretization of Eqn. (32) using 0 < t1 < t2 < · · · < tk < · · · < tK , we

have the following equation at each iteration,

J(u) = −tk‖u− f‖22. (37)

One can obtain closed-form solution for ‖u(tk)‖1 + tk‖u(tk)− f‖22 = 0,

u(tk) = S(f, 1/tk). (38)

Note that S is the shrinkage operator, we have

u(tk) =















f − 1/tk if f ∈ (1/tk,∞)

0 if f ∈ [−1/tk, 1/tk]

f + 1/tk if f ∈ (−∞,−1/tk).

(39)

For any nontrivial f , if f > 0, then u(tk) = f − 1/tk; if f < 0, then u(tk) = f + 1/tk.

It is easy to see that as long as K < ∞, u(tk) 6= f . In other words, the algorithm

does not obtain u(tk) = f in a finite number of iterations. Only when tk →∞, 1/tk → 0,

the algorithm converges to u(tk) = f .

7. Conclusions

We have presented a Bregman regularized model and an efficient linearized Bregman

algorithm to generate a solution path for sparse logistic regression. The resulting

algorithm accelerates the computation of the regularization path, compared to that of

the traditional grid search method. We have tested both algorithms on feature selection

problems. The linearized Bregman algorithm achieves comparable classification

accuracy on noise-free data, while giving out better classification performance on noisy

data. In conclusion, we have found the linearized Bregman algorithm very attractive

for seeking the optimal level of sparsity in feature selection problems.

Extension of this work can be applied to support vector machine. We will

investigate linearized Bregman algorithm for sparse support vector machine. Many

kernel tricks can also be integrated into our framework.
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