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Abstract. We study the shape optimization problem where the objective function is a convex
combination of three sequential Laplace-Dirichlet eigenvalues. That is, for α ≥ 0, β ≥ 0, and α+

β ≤ 1, we consider inf
{
αλk(Ω) + βλk+1(Ω) + (1− α− β)λk+2(Ω): Ω open set inR2 and |Ω| ≤ 1

}
.

Here λk(Ω) denotes the k-th Laplace-Dirichlet eigenvalue and | · | denotes the Lebesgue measure.
For k = 1, 2, the minimal values and minimizers are computed explicitly when the set of admissible
domains is restricted to the disjoint union of balls. For star-shaped domains with smooth boundary,
we show that for k = 1 and α+2β ≤ 1, the ball is a local minimum. For k = 1, 2, several properties
of minimizers are studied computationally, including uniqueness, connectivity, symmetry, and
eigenvalue multiplicity.

1. Introduction

Let Ω ⊂ R2 be an open, bounded domain and {(λk(Ω), ψk(x; Ω)}∞k=1 denote the eigenpairs of the
Laplace-Dirichlet operator for the domain Ω (listed with multiplicity), satisfying

−∆ψ(x) = λψ(x), x ∈ Ω,(1.1)
ψ(x) = 0, x ∈ ∂Ω.

The eigenvalues λk(Ω) are characterized by the Courant-Fischer formulation

(1.2) λk(Ω) = min
Ek ⊂ H1

0 (Ω)
subspace of dim k

max
ψ∈Ek,ψ 6=0

´
Ω
|∇ψ|2dΩ´
Ω
ψ2dΩ

,

where Ek is in general a k-dimensional subspace ofH1
0 (Ω) and at the minimizer, Ek = span({ψj(x; Ω)}kj=1).

The ratio in (1.2) is referred to as the Rayleigh quotient. General references for Laplace-Dirichlet
eigenvalues can be found in [5, 6, 8].

In this work, we consider the shape optimization problem where the objective function is a convex
combination of three sequential Laplace-Dirichlet eigenvalues. That is, we consider the following
(α, β)-parameterized optimization problem:

(1.3) Cj∗α,β = inf
Ω∈A

Cjα,β(Ω) and Ω̂jα,β = {Ω ∈ A : Cjα,β(Ω) = Cj∗α,β},

where

T := {(α, β) ∈ R2 : α ≥ 0, β ≥ 0, α+ β ≤ 1},
A := {Ω ⊂ R2 : Ω quasi-open and |Ω| ≤ 1},

Cjα,β(Ω) := αλj(Ω) + βλj+1(Ω) + (1− α− β)λj+2(Ω), (α, β) ∈ T and Ω ∈ A.

We will also consider several reduced admissible classes. Let B ⊂ A, be the set of balls, i.e.,

B := {Ω ∈ A : Ω is a ball}.
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We’ll use the notation B t B to denote the class of domains consisting of the disjoint union of two
balls. We say a domain Ω is FN representable if

(1.4) Ω = {(r, θ) : r ≤ RN (θ), θ ∈ [0, 2π]}, where RN (θ) =

N∑
k=−N

ake
ıkθ and a−k = ak.

Define the set of all FN representable domains by

(1.5) FN = {Ω ∈ A : Ω is FN representable}.
Note that F∞ is the class of star-shaped, bounded domains with smooth boundary. Finally, we use
the notation FN t FN to denote the class of domains consisting of the disjoint union of two FN
representable domains.

In what follows, we give previous results for this problem and state our own results with an outline
of this paper.

Previous Results. The simplest problem of the general form (1.3) is the minimization of a single
eigenvalue, i.e.,

min
Ω
λj = min

Ω∈A
Cj1,0(Ω).

The existence of a minimizer for general j was recently shown to exist and have finite perimeter
[10, 4]. It is well known that among all open, two-dimensional domains of equal area, the unique
minimizer of λ1(Ω) is a ball (Faber-Krahn inequality) and the unique minimizer of λ2(Ω) is the
disjoint union of two equal-area balls (Krahn-Szegö inequality); see [6]. Wolf and Keller [15] showed
the minimizer of λ3(Ω) is connected and that a ball is a local minimizer. It remains as a conjecture
that a ball is a global minimizer of λ3(Ω); see [6]. The minimizer of λ4(Ω) is conjectured to be the
disjoint union of two balls with radii which have ratio j0,1/j1,1 where jm,n is the n− th zero of the
m − th order Bessel function Jm; see [6]. There are no theoretical results for the explicit optimal
shapes for j ≥ 5, however there are several computational studies in this area. In [13], minimizers
for the first ten Laplace-Dirichlet eigenvalues were found numerically. Here, a level set approach was
used to represent the domain and a relaxed formulation of the Laplace-Dirichlet problem was used
to compute the eigenvalues. In [2], the same problem for j ≤ 15 was studied using a high-accuracy
meshless method for the eigenpair computation and the boundaries were parameterized using Fourier
coefficients. The results were very similar to those in [13], except that an improved domain was found
for the seventh eigenvalue. It was also observed that the minimizer for the thirteenth eigenvalue is
not symmetric. The multiplicity of λj for the optimal domains was also investigated.

The shape optimization problem where the objective function is a convex combination of two
sequential Laplace-Dirichlet eigenvalues, i.e., taking α+ β = 1 in Cjα,β :

(1.6) min
Ω∈A

Cjα,1−α(Ω) for α ∈ [0, 1],

has also been studied. In [15], the range of the first two Laplace-Dirichlet eigenvalues (λ1 (Ω) , λ2 (Ω))
for a planar domain Ω of unit area was explored. The boundary of the range consists of the two
rays

{
(λ1, λ2) : λ2 = λ1 and λ1 ≥ πj2

0,1

}
and

{
(λ1, λ2) : λ2 =

j21,1
j20,1

λ1 and λ2 ≥ 2πj2
0,1

}
and a curve

connecting their endpoints which was determined numerically by studying (1.6) with j = 1. It was
observed computationally that for α > 0, the minimizer is connected, while it is known that for
α = 0, the minimizer is the disjoint union of two equal-area balls (Krahn-Szegö inequality). Thus,
there is a topological change in the minimizer as α ↓ 0. In [1], the means of sequential eigenvalues are
studied, i.e., (1.6) with (α, β) = (0.5, 0.5), and the connectivity of optimal domains is investigated. In
particular, for j = 1 and 2, using an argument similar to that of Wolf and Keller [15], it is established
that the minimizers are connected. In [12], (1.6) is studied and it is shown Cj∗α,1−α is a Lipschitz
continuous, non-increasing, concave function of α and the minimizer is upper hemicontinuous in α.
Furthermore, for j ≤ 5, properties of the minimizer (e.g., the number of connected components) are
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studied computationally as a function of α. For j = 2, it is shown that for α ∈
[
0, 1

2

]
, the ball is a

local minimizer.
The present work is motivated by [7], where (1.3) is considered for j = 1. They show that

a minimizer of C1
α,β has no more than 2 connected components and prove that for a subset of

(α, β) ∈ T , the minimizer is connected. They also conjecture that the minimizer of (1.3) for j = 1
is connected unless β = 1.

For a more extensive discussion of related work in this area, please consult [12].

Results and Outline. In §2 we give some continuity results for the minimum values and minimizers
of Cjα,β(Ω) over the admissible class A. We also show (in Prop. 2) that a ball is a local minimizer
of Cjα,β(Ω) for α + 2β ≤ 1 in the admissible class F∞. In §3, we discuss the minimizers of Cjα,β(Ω)
over the admissible class, B t B, consisting of the disjoint union of balls. Here, the solution can
be written explicitly in terms of zeros of Bessel functions. In §4, we describe a computational
method for minimizing Cjα,β(Ω) over the admissible class, FN tFN , consisting of the disjoint union
of two FN representable domains. The method is used to numerically investigate several properties
of the minimizers for (1.3). In particular, for j = 1 and 2, we answer the following questions (1)
For what values of (α, β) ∈ T is the minimizer unique, have symmetry, or is connected? (2) Are
there values (α, β) ∈ T for which the minimizer does not vary continuously? (3) For varying values
of (α, β) ∈ T , what are the multiplicities of the first few Dirichlet-Laplacian eigenvalues for the
minimizing domains? (4) For what values of (α, β) ∈ T does the optimal solution agree with the
optimizer over the admissible class B t B? In §5, we conclude with a brief discussion.

2. Results for the minimum of Cjα,β(Ω) over the admissible sets A and F∞
In this section we give some analytical results for the shape optimization problem of minimizing

Cjα,β(Ω) over the admissible classes A and F∞.
Since Cjα,β(Ω) is a non-decreasing and Lipschitz continuous function of the Laplace-Dirichlet

eigenvalues, the recent results of [4, 10] show that the infimum in (1.3) exists and that every minimizer
has finite perimeter. For a parameterized optimization function, such as in (1.3), the optimal value
and minimizing set, when viewed as a function of the parameter, inherit some continuity properties
from the objective function. We make these statements precise for (1.3) in the following proposition,
which is a direct generalization of [12, Prop. 1] and we state without proof. Recall that a set valued
function Γ: A → B is upper hemicontinuous at a point a ∈ A if for all sequences {an}n such that
an → a and all sequences {bn}n such that bn ∈ Γ(an), there exist a b ∈ Γ(a) such that bn → b.

Proposition 1. Consider the (α, β)-parameterized shape optimization problem (1.3). For each j ∈ N
the following statements hold:

(1) For each (α, β) ∈ T , Cj,∗α,β exists and Ω̂jα,β is a non-empty and closed set. Furthermore, every
Ω ∈ Ω̂jα,β has finite perimeter.

(2) The optimal value, Cj,∗α,β , is a non-increasing, Lipschitz continuous, and concave function in
both α and β.

(3) As a set-valued function of (α, β), Ω̂jα,β is upper hemicontinuous.

We now restrict our attention to F∞ ⊂ A, the class of domains which are star-shaped and bounded
with smooth boundary. The following proposition shows that for j = 1 and a large subset of (α, β)-
values in T , the ball is a local minimizer. Our computational results, presented in §4, suggest it is
a global minimizer.

Proposition 2. The ball is a local minimizer of C1
α,β(Ω) over the admissible class F∞ for the set

{(α, β) ∈ T : α+ 2β ≤ 1}.



4 BRAXTON OSTING AND CHIU-YEN KAO

Proof. Our proof is a generalization of the proof that the ball is a local minimum of λ3(Ω) given
in [15, Thm. 8.3], to which we refer the reader for details. Consider the nearly circular domain
Ωε = {(r, θ) : r < R(θ, ε), θ ∈ [0, 2π]}, where

R(θ, ε) := 1 + ε

∞∑
k=−∞

ake
ikθ + ε2

∞∑
k=−∞

bke
ikθ +O(ε3), an = a−n and bn = b−n.

Using the asymptotic formulas for |Ωε|λk(Ωε) given in [15, App.A], the following holds. If a2 6= 0,

(2.1) C1
α,β(Ωε) = π

[
αj2

0,1 + (1− α)j2
1,1

]
+ 2επj2

1,1 (1− α− 2β) |a2|+O(ε2)

and if a2 = 0,

(2.2) C1
α,β(Ωε) = π

[
αj2

0,1 + (1− α)j2
1,1

]
+Aαε2 +B(1− α)ε2 + (1− α− 2β)Cε2 +O(ε3)

where

A = 4πj2
0,1

∞∑
n=1

(
1 + j0,1

J ′n(j0,1)

Jn(j0,1)

)
|an|2

B = 2πj2
1,1

∑
`

(
1 + j1,1

J ′`−1(j1,1)

J`−1(j1,1)

)
|a`|2

C = 2πj2
1,1

∣∣∣∣∣b2 −∑
`

(
1

2
+ j1,1

J ′`(j1,1)

J ′`(j1,1)

)
a1+`a1−`

∣∣∣∣∣ .
Here, A and B are both non-negative constants, dependent on {an}, which vanish only if an = 0
for all n. C is a non-negative constant, dependent on both {an} and b2. In both (2.1) and (2.2), if
α + 2β ≤1 and 0 ≤ α ≤ 1, any perturbation of the ball increases C1

α,β , showing that the ball is a
local minimizer. �

3. Minimum of C1
α,β(Ω) and C2

α,β(Ω) over the union of two disjoint balls, B t B

Consider the disjoint union of two balls, Dr∈ B t B, with radii given by r1 := r and r2 :=√
π−1 − r2 where r2 ∈ [0, (2π)−1]. Note that the measure of Dr is exactly one and that the second

ball is larger than the first. The first eigenfunction is supported in the larger ball, so

λ1(Dr) = π(1− πr2)−1j2
0,1.

The second, third, and fourth eigenvalues depend on the ratio of the ball sizes. We compute

λ2(Dr) = λ3(Dr) =
πj2

1,1

1− πr2
and λ4(Dr) =

πj2
2,1

1− πr2
for r2 ∈ I1 :=

[
0,

1

π

j2
0,1

j2
2,1 + j2

0,1

]

λ2(Dr) = λ3(Dr) =
πj2

1,1

1− πr2
and λ4(Dr) =

j2
0,1

r2
for r2 ∈ I2 :=

[
1

π

j2
0,1

j2
2,1 + j2

0,1

,
1

π

j2
0,1

j2
1,1 + j2

0,1

]

λ2(Dr) =
j2
0,1

r2
and λ3(Dr) = λ4(Dr) =

πj2
1,1

1− πr2
for r2 ∈ I3 :=

[
1

π

j2
0,1

j2
1,1 + j2

0,1

,
1

2π

]
.

For the domain Dr, the convex combination of eigenvalues of the first three eigenvalues, C1
α,β , is

(3.1) C1
α,β(Dr) =

{ [
αj2

0,1 + (1− α)j2
1,1

]
π

1−πr2 for r2 ∈ I1 ∪ I2
β
j20,1
r2 +

[
αj2

0,1 + (1− α− β) j2
1,1

]
π

1−πr2 for r2 ∈ I3
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Figure 3.1. (left) The value of C1◦
α,β := inf{C1

α,β(Dr) : r2 ∈
[
0, (2π)−1

]
} and

(right) the corresponding optimal parameter r for (α, β) ∈ T . See Prop. 3 and §3.

and the convex combination of eigenvalues of the second through fourth eigenvalues, C2
α,β , is

(3.2) C2
α,β(Dr) =


(α+ β)

πj21,1
1−πr2 + (1− α− β)

πj22,1
1−πr2 for r2 ∈ I1

(α+ β)
πj21,1

1−πr2 + (1− α− β)
j20,1
r2 for r2 ∈ I2

α
j20,1
r2 + (1− α)

πj21,1
1−πr2 for r2 ∈ I3.

Proposition 3. Define the partition, T = T 1
1 ∪ T 1

2 , by

T 1
1 := {(α, β) ∈ T : β ≤ j21,1

2(j21,1−j20,1)
− α

2 }

T 1
2 := {(α, β) ∈ T : β >

j21,1

2(j21,1−j20,1)
− α

2 }.

Then for C1
α,β(Dr) as defined in (3.1),

min
r2∈[0,(2π)−1]

C1
α,β(Dr) ≡ C1◦

α,β =

{
π
(
αj2

0,1 + (1− α)j2
1,1

)
if (α, β) ∈ T 1

1

2π((α+ β) j2
0,1 + (1− α− β)j2

1,1) if (α, β) ∈ T 1
2

with minimizer given by

r2 =

{
0 if (α, β) ∈ T 1

1
1

2π if (α, β) ∈ T 1
2

.

Remark 4. The optimal objective function values, C1◦
α,β , and corresponding optimal parameters, r,

are plotted in Fig. 3.1 for (α, β) ∈ T . The optimal objective function values for particular values
(α, β) ∈ T are given in Table 1(top).

Remark 5. In Prop. 3, we consider only the disjoint union of two balls. However, [7] has shown
that the minimizer has no more than two connected components, so in fact, we are considering the
disjoint union of an arbitrary number of balls.
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Proof. We first note that the value of C1
α,β(Dr) for r2 ∈ I1 ∪ I2 is a monotone increasing function

in r. Thus the minimum occurs for r = 0, which implies the minimizer over this interval is a single
ball, D0. The optimal value is C1

α,β(D0) = π
(
αj2

0,1 + (1− α)j2
1,1

)
. For fixed (α, β) ∈ T , we now find

the radius r which minimizes C1
α,β(Dr) for r2 ∈ I3. Since C1

α,β is a continuous function, this occurs

at critical values, r, where either dC1
α,β(Dr)

dr = 0 or values where C1
α,β(Dr) is not differentiable. For

the interval I3, the critical radius r∗1 , satisfying
dCα,β(Dr)

dr = 0, is

r∗21 =
1

π

√
βj0,1

√
βj0,1 +

√
αj2

0,1 + (1− α− β)j2
1,1

.

Thus we consider the following three critical values

(3.3) C1
α,β(Dr) =


C1
α,β(D0) = π

(
αj2

0,1 + (1− α)j2
1,1

)
if r2 = 0

π
(√

βj0,1 +
√
αj2

0,1 + (1− α− β)j2
1,1

)2

if r2 = r∗21

2π((α+ β) j2
0,1 + (1− α− β)j2

1,1) if r2 = 1
2π

.

The result now follows from a comparison of the values in (3.3). �

Proposition 6. Denote Q = [QL, QR] =
[

j20,1
j21,1+j20,1

,
j21,1

j21,1+j20,1

]
. We define the partition, T = T 2

1 ∪
T 2

2 ∪ T 2
3 ∪ T 2

4 , by

T 2
1 := {(α, β) ∈ T : β ≤

αj2
1,1 + (1− α)j2

2,1 −
(√
αj0,1 +

√
1− αj1,1

)2
(j2

2,1 − j2
1,1)

and α ∈ Q}

T 2
2 := {(α, β) ∈ T : β ≤

(3j2
1,1 − 2j2

0,1 − j2
2,1)α−

(
2j2

1,1 − j2
2,1

)
(j2

2,1 − j2
1,1)

and α ≥ QR}

T 2
3 := {(α, β) ∈ T : β ≥

j2
2,1 − j2

1,1 − j2
0,1

j2
2,1 − j2

1,1

− α and α ≤ QL,

β ≥
αj2

1,1 + (1− α)j2
2,1 −

(√
αj0,1 +

√
1− αj1,1

)2
(j2

2,1 − j2
1,1)

and α ∈ Q,

β ≥
(3j2

1,1 − 2j2
0,1 − j2

2,1)α−
(
2j2

1,1 − j2
2,1

)
(j2

2,1 − j2
1,1)

and α ≥ QR}

T 2
4 := {(α, β) ∈ T : β ≤

j2
2,1 − j2

1,1 − j2
0,1

j2
2,1 − j2

1,1

− α and α ≤ QL}

Then for C2
α,β(Dr) as defined in (3.2),

min
r2∈[0,(2π)−1]

C2
α,β(Dr) ≡ C2◦

α,β =


π
(√
αj0,1 +

√
1− αj1,1

)2
(α, β) ∈ T 2

1

2π(αj2
0,1 + (1− α)j2

1,1) (α, β) ∈ T 2
2

π
(
(α+ β)j2

1,1 + (1− α− β)j2
2,1

)
(α, β) ∈ T 2

3

π(j2
1,1 + j2

0,1) (α, β) ∈ T 2
4

with minimizer given by

r2 =


π
(√
αj0,1 +

√
1− αj1,1

)2
(α, β) ∈ T 2

1
1

2π (α, β) ∈ T 2
2

0 (α, β) ∈ T 2
3

1
π

j20,1
j21,1+j20,1

(α, β) ∈ T 2
4

.
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Figure 3.2. (left) The value of C2◦
α,β := inf{C2

α,β(Dr) : r2 ∈
[
0, (2π)−1

]
} and

(right) the corresponding optimal parameter r for (α, β) ∈ T . See Prop. 6 and §3.

Remark 7. The optimal objective function values, C2◦
α,β , and corresponding optimal parameters, r,

are plotted in Fig. 3.2 for (α, β) ∈ T . The optimal objective function values for particular values
(α, β) ∈ T are given in Table 2(top).

Proof. We first note that the value of C2
α,β(Dr), as defined in (3.2), for r2 ∈ I1 is a monotone

increasing function in r. Thus, the minimum occurs for r = 0, indicating the optimal domain is a
single ball D0. The optimal value is C2

α,β(D0) = (α+β)πj2
1,1 +(1−α−β)πj2

2,1. For fixed (α, β) ∈ T ,
we now find the radius r which minimizes C2

α,β(Dr) for r2 ∈ I2 and I3. For the interval I2, the

critical radius r∗2 satisfying dC2
α,β(Dr)

dr = 0 is

r∗22 =
1

π

√
(1− α− β)j0,1√

(1− α− β)j0,1 +
√

(α+ β)j1,1
.

For the interval I3, the critical radius r∗3 satisfying dC2
α,β(Dr)

dr = 0 is

r∗23 =
1

π

√
αj0,1√

αj0,1 +
√

1− αj1,1
.

Thus, we consider the following five critical values

(3.4) C2
α,β(Dr) =



π
(
(α+ β)j2

1,1 + (1− α− β)j2
2,1

)
if r2 = 0

π
(√

(1− α− β)j0,1 +
√

(α+ β)j1,1

)2

if r2 = r∗22

π(j2
1,1 + j2

0,1) if r2 = 1
π

j20,1
j21,1+j20,1

π
(√
αj0,1 +

√
1− αj1,1

)2 if r2 = r∗23

2π(αj2
0,1 + (1− α)j2

1,1) if r2 = 1
2π

The result now follows from a comparison of the values in (3.4). �

Remark 8. Along the curve separating T 2
3 from T 2

1 ∪ T 2
2 ∪ T 2

4 , there are two minimizers: one with a
single connected component and the other with two connected components.
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4. Computational method and results

In this section, we consider the minimization of Cjα,β(Ω) over the class FN t FN , where FN is
defined in (1.5),

(4.1) Cj?α,β = inf
Ω∈FN

Cjα,β(Ω) and Ω̂jα,β = {Ω ∈ FN t FN : Cjα,β(Ω) = Cj?α,β}.

We first describe a computational method for the solution of (4.1). In brief, a boundary integral
method is used for the solution of the eigenvalue problem (1.1) and a line search-based BFGS
method is used for the solution of (4.1). Similar algorithms appear in [11, 2, 1]. We then present
some computational results for (4.1).

Computational methods. The numerical optimization method is initialized with a choice of
Fourier coefficients {ak}Nk=0 in (1.4). We use N = 10 coefficients and choose the coefficients either
randomly or using the results from a previous computation. For a given domain, the first several
eigenpairs are computed using the Matlab toolbox mpspack [3]. The weighted-Neumann-to-Dirichlet
scaling method is chosen with the argument ‘ntd’ and M = 100 quadrature points are used. For
the optimization problem (4.1), we use the line-search-based BFGS algorithm implemented in HANSO
[14]. This quasi-Newton method has proven to be effective for non-smooth optimization problems
such as (4.1) [9]. If λj is simple, the derivatives of λj(Ω) with respect to the coefficients ak describing
Ω can be found in, e.g., [11] and are given by

(4.2)
∂λj
∂ak

= −
ˆ 2π

0

RN (θ)eıkθ |∇ψj(RN (θ), θ)|2 dθ.

In our computations, the Neumann data, ∇uj , is evaluated at the quadrature points and the integral
in (4.2) is evaluated via quadrature. We remark that while the derivative of an eigenvalue with
higher multiplicity can be computed (see, e.g., [6]), in numerical computations roundoff error causes
all eigenvalues to be simple.

To address the questions considered in this paper, we solve the (α, β)-parameterized optimization
problem (4.1) for many (≈ 300) values (α, β). We find the method described above to be extremely
effective for this. Solving (4.1) requires on the order of 40 BFGS iterations, each requiring approx-
imately 1-7 eigenvalue solutions for the line search. The solution to (4.1) takes approximately 2
minutes using Matlab 2012b on a 2.0 GHz Intel Core i7 Duo desktop computer with 8GB of RAM.

Computational results. For j = 1 and 2, we use the computational method described above to
solve (4.1) for approximately 50 specified values (α, β) ∈ T . The results for j = 1 are displayed in
Table 1(bottom) and Figure 5.1. The results for j = 2 are displayed in Table 2(bottom) and Figure
5.2. All reported values are rounded to four significant digits. Note that all values attained for the
admissible class F10 t F10 are at least as small as those for balls, B t B. In what follows, we refer
to numerically computed solutions as minimizers.

For j = 1, we observe the following.
(1) For (α, β)-values in the region {(α, β) ∈ T : α+ 2β ≤ 1}, the optimal solution is a ball. The

ball is shown to be a local minimizer in Prop. 2 (proven in §2).
(2) (Connectivity.) We observe that the optimal domain has one connected component except

for (α,β)=(0,1). This supports a conjecture of Iversen and Mazzoleni [7].
(3) We observe that the minimizer is unique and continuously varies with respect to α and β.
(4) (Symmetry.) For all (α, β) values considered, the minimizer has two axis of symmetry.
(5) (Eigenvalue multiplicity.) For (α, β)-values in the region {(α, β) ∈ T : α+ 2β ≤ 1}, the op-

timal solution is a ball with λ1 < λ2 = λ3 < λ4. For (α, β) = (0, 1), the optimal solution is
two balls of equal measure with λ1 = λ2 < λ3 = λ4. For all other (α, β)-values considered,
the first four eigenvalues of the optimal domain are each simple.
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(6) (Comparison to Prop. 3.) For Ω ∈ B tB and (α, β) ∈ T 1
1 as defined in Prop. 3, the optimal

shape is a ball with λ1 < λ2 = λ3 < λ4. For (α, β) ∈ T 1
2 , the minimizer is the disjoint union

of two balls of equal measure with λ1 = λ2 < λ3 = λ4.
For j = 2, we observe the following.

(1) For α + β = 1 and 0 ≤ β ≤ 1
2 , the ball is a local minimizer. This follows from the identity

C2
β,1−β = C1

0,β for β ∈ [0, 1] and Prop. 2.
(2) (Connectivity.) We observe that the optimal domain has one connected component except

for (α, β) = (1, 0) and in a neighborhood of (α, β) = (0, 0). We conjecture that the (α, β)-
region containing (1, 0) with disconnected minimizer consists only of the isolated point (1, 0).
To investigate the region near (α, β) = (0, 0) further, we solve (4.1) 121 additional times
for a selection of values (α, β) ∈ [0, 0.1] × [0, 0.5] ⊂ T . The optimal values and minimizers
are plotted in Fig. 5.3. The black line is the intersection of the linear interpolation of obj.
function values for one- and two-component regions. We observe that the optimal shape has
two connected components for α . 0.03 and β . 0.4.

(3) We observe that the minimizer is unique except along the (α, β)-curve shown in 5.3(left)
separating the minimizers with one and two connected components. For (α, β) values on
this curve, the optimal set Ω̂2

α,β consist of a domain with one connected component and a
two-connected component domain. Away from the curve, the minimizer varies continuously
with respect to α and β.

(4) (Symmetry.) For all (α, β) values considered, connected minimizers have two axis of sym-
metry. The disconnected minimizers for (α, β) values near (0, 0) have only one axis of
symmetry.

(5) (Eigenvalue multiplicity.) For (α, β)-values in the region
{

(α, β) ∈ T : α+ β = 1, α ≤ 1
2

}
,

the optimal solution is a ball with λ1 < λ2 = λ3 < λ4 = λ5. For (α, β)-values in the region
{(α, β) ∈ T : α . 0.03, β . 0.4}, the solution is the disjoint union of two balls of different
measure with λ1 < λ2 = λ3 = λ4 < λ5. For (α, β) = (1, 0), the optimal solution is two balls
of equal measure with λ1 = λ2 < λ3 = λ4 = λ5 = λ6. For all other (α, β)-values considered,
the first five eigenvalues of the optimal domain are each simple.

(6) (Comparison to Prop. 6.) For Ω ∈ B t B and (α, β) ∈ T 2
1 ∪ T 2

2 ∪ T 2
4 as defined in Prop.

6, the optimal shape has two connected components. For the more general admissible class
FN t FN however, the region where the optimal shape has two connected components is
relatively small. For example, for (α, β) = (0.5, 0), the optimal union of balls has two
components while the minimizer over FN t FN has just one. In Figure 3.2, the minimizer
has λ1 < λ2 < λ3 = λ4 < λ5 in region T 2

1 , λ1 = λ2 < λ3 = λ4 = λ5 = λ6 in region T 2
2 ,

λ1 < λ2 = λ3 < λ4 = λ5 in region T 2
3 , and λ1 < λ2 = λ3 = λ4 < λ5 in region T 2

4 .
When comparison is available, our results agree with those for minimizing single eigenvalues [13, 2],
the mean of sequential eigenvalues [1], and convex combinations of two sequential eigenvalues [15, 12].
In particular, we recover the results

λ?1 = πj2
0,1 ≈ 18.17, λ?2 = 2πj2

0,1 ≈ 36.34, λ?3 = πj2
1,1 ≈ 46.12, and λ?4 = π(j2

1,1 + j2
0,1) ≈ 64.29.

In [12], we numerically observed that for j = 2 : 5, Cj∗α,1−α is constant on the interval α ∈ [0, δ]

for some constant δ = δ(j) > 0. Recalling the identity Cj+1
α,1−α = Cj0,α, in the present con-

text, this implies that Cj∗α,β is constant on the line segments {(α, β) : α+ β = 1, α ∈ [0, δ]} and
{(α, β) : α = 0, β ∈ [0, δ]} for j = 2, 3, 4. For these larger j-values, it would be interesting to see
whether these line segments can be extended to regions α+ β < 1 and α > 0 respectively.

5. Discussion and further directions

We have studied the shape optimization problem of minimizing the convex combination of three
sequential Laplace-Dirichlet eigenvalues, Cjα,β(Ω) := αλj(Ω) + βλj+1(Ω) + (1− α− β)λj+2(Ω) over
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several different admissible sets. In particular, we compare the values and minimizers of Cjα,β(Ω) for
j = 1, 2 for the two admissible sets: disjoint unions of domains with smooth boundary, FN t FN ,
and disjoint unions of balls, B t B. We have tried to catalogue properties of the optimizers in hope
that our observations stimulate interesting future analytical development in this area.

We conclude with a brief qualitative comparison of the computational method used in the present
work and the method recently introduced in [12]. There are two primary differences between these
two approaches: (i) in the present work the eigenvalue problem is solved using boundary integral
methods, while in [12] it is solved using finite element methods and (ii) in the present work, we have
represented the domain using Fourier coefficients, while in [12] the domain is represented using the
level set method. We have found the finite element method to be more robust, but much slower and
less accurate than the boundary element method. The level set method has the advantage of not
fixing the topology of the domain. However, currently available methods for solving the eigenvalue
problem require either extracting points on the boundary or a parameterization of the boundary.
Thus, each iteration of a gradient-based optimization method requires a rootfinding algorithm to
find approximate points on the boundary. We view the problem of finding a method which utilizes
the level-set function representation of the domain, but doesn’t require such rootfinding at each
iteration to be a challenging extension of this work.
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Figure 5.1. (left) The value of inf{C1
α,β(Ω): Ω ∈ F10 t F10} and (right) corre-

sponding minimizer for (α, β) ∈ T . The values where (4.1) was solved are indicated
with an ‘x’. Other values are obtained by linear interpolation. See §4.

1 36.34
0.875 43.33 36.34
0.75 46.12 42.63 36.34
0.625 46.12 42.63 39.14 35.64
0.5 46.12 42.63 39.14 35.64 32.15
0.375 46.12 42.63 39.14 35.64 32.15 28.65
0.25 46.12 42.63 39.14 35.64 32.15 28.65 25.16
0.125 46.12 42.63 39.14 35.64 32.15 28.65 25.16 21.66
0 46.12 42.63 39.14 35.64 32.15 28.65 25.16 21.66 18.17
β/α 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

1 36.34
0.875 40.09 35.49
0.75 43.17 38.80 33.85
0.625 45.73 41.64 37.12 31.85
0.5 46.12 42.52 38.67 34.44 29.60
0.375 46.12 42.63 39.14 35.51 31.57 27.12
0.25 46.12 42.63 39.14 35.64 32.15 28.49 24.42
0.125 46.12 42.63 39.14 35.64 32.15 28.65 25.16 21.46
0 46.12 42.63 39.14 35.64 32.15 28.65 25.16 21.66 18.17
β/α 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

Table 1. (top) The value of inf{C1
α,β(Ω): Ω ∈ B t B} and (bottom)

inf{C1
α,β(Ω): Ω ∈ F10 t F10} for (α, β) ∈ T . Blue entries are values for which

Prop. 2 implies the ball is a local minimizer of C1
α,β(Ω) over F∞. See §4.
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Figure 5.2. (left) The value of inf{C2
α,β(Ω): Ω ∈ F10 t F10} and (right) corre-

sponding minimizer for (α, β) ∈ T . The values where (4.1) was solved are indicated
with an ‘x’. Other values are obtained by linear interpolation. See §4.

1 46.12
0.875 50.72 46.12
0.75 55.31 50.72 46.12
0.625 59.90 55.31 50.72 46.12
0.5 64.29 59.90 55.31 50.72 46.12
0.375 64.29 64.29 59.90 55.31 50.72 46.12
0.25 64.29 64.29 64.29 59.90 55.31 50.72 46.12
0.125 64.29 64.29 64.29 63.67 59.90 55.31 50.32 43.33
0 64.29 64.29 64.29 63.67 61.10 56.68 50.32 43.33 36.34
β/α 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

1 46.12
0.875 50.55 46.12
0.75 54.69 50.55 46.12
0.625 58.60 54.69 50.55 46.12
0.5 62.29 58.60 54.69 50.55 46.12
0.375 64.29 61.50 57.95 54.16 50.10 45.73
0.25 64.29 62.02 58.91 55.65 52.17 48.45 43.17
0.125 64.29 62.02 58.91 55.71 52.43 49.05 45.54 40.09
0 64.29 62.02 58.91 55.71 52.43 49.05 45.57 41.97 36.34
β/α 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

Table 2. (top) The value of inf{C2
α,β(Ω): Ω ∈ B t B} and (bottom)

inf{C2
α,β(Ω): Ω ∈ F10 t F10} for (α, β) ∈ T . Using the identity C2

β,1−β = C1
0,β

for β ∈ [0, 1], Prop. 2 applies to the blue entries, i.e., the ball is a local minimizer.
See §4.
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Figure 5.3. An enlargement of the (α, β)-region near (0, 0) in Fig. 5.2.
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