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Abstract. Registration, which aims to find an optimal 1-1 correspondence between shapes, is
an important process in different research areas. Landmark-based surface registration have been
widely studied to obtain a mapping between shapes that matches important features. Obtaining
a unique and bijective surface registration that matches features consistently is generally challeng-
ing, especially when a large number of landmark constraints are enforced. This motivates us to
search for a unique landmark-matching surface diffeomorphism, which minimizes the local geometric
distortion. For this purpose, we propose to consider a special class of diffeomorphisms called the
Teichmüller mappings (T-Maps). Under suitable condition on the landmark constraints, a unique
T-Map between two surfaces can be obtained, which minimizes the maximal conformality distortion.
The conformality distortion measures how far the mapping is deviated from a conformal mapping,
and hence it measures the local geometric distortion. In this paper, we propose an efficient iterative
algorithm, called the Quasi-conformal (QC) iterations, to compute the T-Map. The basic idea is
to represent the set of diffeomorphisms using Beltrami coefficients (BCs), and look for an optimal
BC associated to the desired T-Map. The associated diffeomorphism can be efficiently reconstructed
from the optimal BC using the Linear Beltrami Solver(LBS). Using BCs to represent diffeomor-
phisms guarantees the diffeomorphic property of the registration, even with very large deformation.
Using our proposed method, the T-Map can be accurately and efficiently computed. The obtained
registration is guaranteed to be bijective. The proposed algorithm can also be extended to compute
T-Map with soft landmark constraints. We applied the proposed algorithm to real applications, such
as brain landmark matching registration, constrained texture mapping and human face registration.
Experimental results shows that our method is both effective and efficient in computing a non-overlap
landmark matching registration with least amount of conformality distortion.
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1. Introduction. Registration refers to the process of finding an optimal one-
to-one correspondence between images or surfaces. It has been extensively applied
to different areas such as medical imaging, computer graphics and computer visions.
For example, in medical imaging, registration is always needed for statistical shape
analysis, morphometry and processing of signals on brain surfaces (e.g., denoising
or filtering). While in computer graphics, surface registration is needed for texture
mapping, which aligns each vertex to a position of the texture image, to improve the
visualization of the surface mesh. Developing an effective algorithm for registration
is therefore very important.

Landmark-based registration have been widely studied to obtain a smooth 1-1
correspondence between different domains that matches important features. This
kind of registration, with good feature alignment, is particularly crucial in medical
imaging, computer visions and computer graphics. For example, in medical imaging,
anatomical features in brain cortical surfaces can be systematically delineated, such
as sulci (the fissures in the brain surface). Landmark matching brain registration is
often required to obtain a meaningful 1-1 correspondence between brain surfaces, so
that further analysis can be carried out (e.g. building surface average of many sub-
jects). However, obtaining a unique and bijective registration that matches features
consistently is generally challenging, especially when a large number of landmark con-
straints are enforced. Motivated by this, we are interested in searching for a unique
and bijective landmark-matching diffeomorphism, associated with a given landmark
constraints, which minimizes the local geometric distortion.

In this paper, we propose to consider a special class of diffeomorphisms called
1
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the Teichmüller mappings (T-Map), which have uniform conformality distortion over
the whole domain (See Figure 3.3). Under suitable conditions on the landmark con-
straints, there exists a unique T-Map between two surfaces, which minimizes the
maximal conformality distortion. The conformality distortion measures how far the
mapping is deviated from a conformal mapping, and hence it measures the local geo-
metric distortion. To compute this T-Map, we propose in this paper an efficient and
effective iterative algorithm, which is called the Quasi-conformal (QC) iterations. The
basic idea is to represent the set of diffeomorphisms using Beltrami coefficients (BCs),
and look for an optimal BC associated to the desired T-Map. The associated T-Map
can then be efficiently computed from the optimal BC using the Linear Beltrami
Solver(LBS).

Using the T-Map for landmark matching registration is advantegous for the fol-
lowing reasons:

1. Optimized conformality distortion: Given a set of landmark constraints, our
algorithm is able to determine an optimal 1-1 correspondence between shapes auto-
matically, which minimizes the conformality distortion. In the case of open surfaces
with boundaries, the proposed algorithm can also automatically determine the opti-
mal boundary correspondence that minimizes the maximal conformality distortion.
Hence, Dirichlet boundary condition is not required (which is usually needed for other
algorithms such as harmonic registration).
2. Bijectivity: Another major advantage of using T-Maps for landmark match-
ing registrations is that the bijectity (1-1, onto) of the registrations can be guar-
anteed. Obtaining a bijective landmark matching registration is generally difficult,
especially when a large number of landmark constraints are enforced. Using our pro-
posed method, a bijective T-Map can be computed, even with large deformation or
large number of landmarks (See Figure 6.6).
3. Uniqueness: Besides, the mapping is uniquely determined. In other words, every
prescribed landmark constraints is associated with a unique T-Map.
4. Extension to soft landmark constraints: The proposed algorithm can also
be extended to compute T-Maps with soft landmark constraints. It becomes neces-
sary when landmark features cannot be accurately located, and hence it is better to
compute registration with landmarks approximately (but not exactly) matched (See
Figure 6.7).
5. Independence of mesh structure: The proposed QC iterations rely on the
Linear Beltrami Solver. The Linear Beltrami Solver computes the associated piecewise
linear map between meshes with a given beltrami coefficient defined on each face.
The solver is independent of the mesh structure. Hence, our algorithm can compute
a bijective landmark matching registration between meshes even with irregular mesh
structure (See Figure 5.4).
6. Fast computation: The QC iterations involve solving a sparse symmetric positive
definite linear system in each iterations. The linear system can be solved quickly,
and the iterations converge quickly. Using our proposed method, the T-Map can be
efficiently computed, even with dense meshes.

To test the effectiveness of our method, we applied the proposed algorithm to real
applications, such as brain registration, constrained texture mapping and human face
registration. Experimental results shows that our method is both effective and efficient
in computing a non-overlap landmark matching registration with least amount of
conformality distortion.
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In short, the contributions of this paper are three-folded. Firstly, we propose an
efficient algorithm for obtaining the unique Teichmüller mapping (T-Map) between
shapes with landmark constraints enforced. The mapping is guaranteed to be bijec-
tive and minimizes the maximal conformality distortion. Secondly, we propose an
algorithm to compute the T-Map with soft landmark constraints. Landmarks are
not exactly matched, but less conformality distortion will be introduced. Thirdly,
we apply the proposed algorithms to real applications, namely, constrained texture
mapping, medical image registration and human face registration.

2. Previous work. Surface registration has been extensive studied and various
algorithms have been proposed by different research groups. In this section, we will
extract some previous works most closely related to our paper.

• Landmark-free surface registration: Landmark-free registration has been
proposed to obtain 1-1 correspondences between shapes without feature land-
marks. Different algorithms have been proposed to obtain registrations based
on the shape information (such as curvatures) defined on the surfaces. Lyt-
telton et al. [4] computed surface parameterizations with surface curvature
matching. Fischl et al. [6] proposed an algorithm for brain registration that
better align cortical folding patterns, by minimizing the mean squared differ-
ence between the convexity of the surface and the average convexity across
a set of subjects. Lord et al. [16] proposed to match surfaces by minimiz-
ing the deviation of the registration from isometry. Yeo et al. [18] proposed
the spherical demons method, which adopted the diffeomorphic demons algo-
rithm [17], to drive surfaces into correspondence based on the mean curvature
and average convexity.
Conformal surface registration, which minimizes angular distortions, has also
been widely used to obtain a smooth 1-1 correspondence between surfaces
[3, 7, 9, 8, 15, 41, 42, 43]. An advantage of conformal registrations is that
they preserve local geometry well. However, it cannot map landmark features,
such as sulcal landmarks on brain surfaces, consistently.
Sometimes, deformations between objects might not be conformal. Instead,
certain amount of angular distortion could be introduced. To tackle with
this situation, quasi-conformal mappings have been applied to obtain smooth
1-1 correspondences with bounded conformality distortion [26, 27, 28, 29,
45]. The obtained registration can match the geometric quantities (such as
curvature), while minimizing the maximal dilation of the mapping.

• Landmark-based surface registration: Most of the above registration
algorithms cannot match feature landmarks, such as sulcal landmarks on the
human brains, consistently. To alleviate this issue, landmark-matching regis-
tration algorithms are proposed by various research groups. Bookstein et al.
[19] proposed to obtain a registration that matches landmarks as much as pos-
sible using a thin-plate spline regularization (or biharmonic regularization).
Wang et al. [20, 21, 22, 23] proposed to compute the optimized conformal pa-
rameterizations of brain surfaces by minimizing a compounded energy [20, 23].
The obtained registration can obtain an optimized harmonic map that better
aligns the features, however, landmarks cannot be exactly matched. Besides,
bijectivity cannot be ensured when large number of landmark constraints
are enforced. Tosun et al. [39] proposed to combine iterative closest point
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Fig. 2.1. (A) shows a human face with circle packing texture. Under the conformal param-
eterization, infinitesimal circles are mapped to circles as shown in (B). Under quasi-conformal
parameterization, infinitesimal circles are mapped to ellipse as shown in (C). (D) illustrates how
the Beltrami coefficient measure the conformality distortion of a quasi-conformal map.

registration, parametric relaxation and inverse stereographic projection to
align cortical sulci across brain surfaces. These diffeomorphisms obtained
can better match landmark features, although not perfectly. Later, Lin et al.
[44] propose a unified variational approach for registration of gene expression
data to neuroanatomical mouse atlas in two dimensions that matches feature
landmarks. Again, landmarks cannot be exactly matched. Note that inex-
act landmark-matching registrations are sometimes beneficial. In the case
when landmark points/curves are not entirely accurate, this method is more
tolerant of errors in labeling landmarks and gives better parameterization.
In the situation when exact landmark matching is required, smooth vector
field has been applied to obtain surface registration. Lui et al. [21, 22]
proposed the use of vector fields to represent surface maps and reconstruct
them through integral flow equations. They obtained shape-based landmark
matching harmonic maps by looking for the best vector fields minimizing a
shape energy. The use of vector fields to compute the registration makes
the optimization easier, although it cannot describe all surface maps. An
advantage of this method is that exact landmark matching can be guaranteed.
Time dependent vector fields can also be used [10, 11, 12, 13, 14]. For example,
Glaunés et al. [11] proposed to generate large deformation diffeomorphisms of
a sphere, with given displacements of a finite set of template landmarks. The
time dependent vector fields facilitate the optimization procedure, although
it may not be a good representation of surface maps since it requires more
memory. The computational cost of the algorithm is also expensive.
Quasi-conformal mapping that matches landmarks consistently has also been
proposed[26, 40]. In [26], the authors proposed to compute the brain landmark-
matching registration, which minimizes L2 norm of the Beltrami coefficients.
Wei et al. [40] also proposed to compute quasi-conformal mappings for fea-
ture matching face registration. The Beltrami coefficient associated to a
landmark points matching parameterization is approximated. However, ei-
ther exact landmark matching or the bijectivity of the mapping cannot be
guaranteed, especially when very large deformations occur.

3. Mathematical Background. In this section, we describe some basic math-
ematical concepts related to our algorithms. For details, we refer the readers to
[5, 30, 31].



T-Map and its applications 5

A surface S with a conformal structure is called a Riemann surface. Given two
Riemann surfaces M and N , a map f : M → N is conformal if it preserves the
surface metric up to a multiplicative factor called the conformal factor. An immediate
consequence is that every conformal map preserves angles. With the angle-preserving
property, a conformal map effectively preserves the local geometry of the surface
structure.

A generalization of conformal maps is the quasi-conformal maps, which are ori-
entation preserving homeomorphisms between Riemann surfaces with bounded con-
formality distortion, in the sense that their first order approximations takes small
circles to small ellipses of bounded eccentricity [5]. Mathematically, f : C → C is
quasi-conformal provided that it satisfies the Beltrami equation:

∂f

∂z
= µ(z)

∂f

∂z
. (3.1)

for some complex-valued function µ satisfying ||µ||∞ < 1. µ is called the Beltrami
coefficient, which is a measure of non-conformality. It measures how far the map at
each point is deviated from a conformal map. In particular, the map f is conformal
around a small neighborhood of p when µ(p) = 0. Infinitesimally, around a point p,
f may be expressed with respect to its local parameter as follows:

f(z) = f(p) + fz(p)z + fz(p)z
= f(p) + fz(p)(z + µ(p)z).

(3.2)

Obviously, f is not conformal if and only if µ(p) 6= 0. Inside the local parameter
domain, f may be considered as a map composed of a translation to f(p) together
with a stretch map S(z) = z + µ(p)z, which is postcomposed by a multiplication of
fz(p), which is conformal. All the conformal distortion of S(z) is caused by µ(p).
S(z) is the map that causes f to map a small circle to a small ellipse. From µ(p),
we can determine the angles of the directions of maximal magnification and shrinking
and the amount of them as well. Specifically, the angle of maximal magnification
is arg(µ(p))/2 with magnifying factor 1 + |µ(p)|; The angle of maximal shrinking is
the orthogonal angle (arg(µ(p)) − π)/2 with shrinking factor 1 − |µ(p)|. Thus, the
Beltrami coefficient µ gives us all the information about the properties of the map
(See Figure 2.1(D)).

The maximal dilation of f is given by:

K(f) =
1 + ||µ||∞
1− ||µ||∞

. (3.3)

Let f = u+
√
−1v. From the Beltrami equation (3.1),

µ(f) =
(ux − vy) +

√
−1 (vx + uy)

(ux + vy) +
√
−1(vx − uy)

(3.4)

Let µ(f) = ρ+
√
−1 τ . We can write vx and vy as linear combinations of ux and

uy,

−vy = α1ux + α2uy;
vx = α2ux + α3uy.

(3.5)

where α1 = (ρ−1)2+τ2

1−ρ2−τ2 ; α2 = − 2τ
1−ρ2−τ2 ; α3 = 1+2ρ+ρ2+τ2

1−ρ2−τ2 .
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Fig. 3.1. Illustration of how Beltrami differential is defined on general Riemann surfaces.

Fig. 3.2. Illustration of quasi-conformal mapping between Riemann surfaces.

Similarly,

−uy = α1vx + α2vy;
ux = α2vx + α3vy.

(3.6)

Since ∇ ·
(
−vy
vx

)
= 0, we obtain

∇ ·
(
A

(
ux
uy

))
= 0 and ∇ ·

(
A

(
vx
vy

))
= 0 (3.7)

where A =
(
α1 α2

α2 α3

)
.

In this paper, a discrete version of equation (3.7) for a piecewise linear map-
ping between meshes will be developed to compute the quasiconformal mapping (See
Section 5.1).

Quasiconformal mapping between two Riemann surfaces S1 and S2 can also be
defined. Instead of the Beltrami coefficient, the Beltrami differential is used. A
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Beltrami differential µ(z)dzdz on a Riemann surface S is an assignment to each chart
(Uα, φα) of an L∞ complex-valued function µα, defined on local parameter zα such
that

µα(zα)
dzα
dzα

= µβ(zβ)
dzβ
dzβ

, (3.8)

on the domain which is also covered by another chart (Uβ , φβ). Here, dzβ
dzα

= d
dzα

φαβ
and φαβ = φβ ◦ φ−1

α (See Figure 3.1).
An orientation preserving diffeomorphism f : S1 → S2 is called quasi-conformal

associated with µ(z)dzdz if for any chart (Uα, φα) on S1 and any chart (Vβ , ψβ) on S2,
the mapping fαβ := ψβ ◦ f ◦ f−1

α is quasi-conformal associated with µα(zα)dzαdzα
(See

Figure 3.2).
In case S1 and S2 are simply-connected, conformal mapping between S1 and S2

always exists. However, conformal mapping may not exist between surfaces with
complicated topology. For example, there is generally no conformal mapping between
multiply-connected open surfaces (e.g. two annuli with different radii of inner circles).
One would therefore be interested in finding an optimal quasi-conformal mapping
that minimizes the confomrality distortion. More specifically, it is desirable to obtain
an extremal quasiconformal mapping, which is extremal in the sense of minimizing
the || · ||∞ over all Beltrami differentials corresponding to quasi-conformal mappings
between S1 and S2. Extremal mapping always exists but need not to be unique.
Mathematically, an extremal quasi-conformal mapping can be defined as follows:

Definition 3.1. Let f : S1 → S2 be a quasi-conformal mapping between S1 and S2.
f is said to be an extremal mapping if for any quasi-conformal mapping h : S1 → S2

isotopic to φ relative to the boundary,

K(φ) ≤ K(ψ) (3.9)

It is uniquely extremal if the inequality (3.9) is strict.

Another kind of mapping, called the Teichmüller mapping, is closely related to
the extremal mapping. Teichmüller mapping is defined as follows:

Definition 3.2. Let f : S1 → S2 be a quasi-conformal mapping. f is said to be a
Teichmüller mapping associated to the integrable holomorphic function ϕ : S1 → C if
its associated Beltrami differential is of the form:

µ(f) = k
ϕ

|ϕ|
(3.10)

for some constant k < 1 and holomorphic function ϕ 6= 0 with ||ϕ||1 =
∫
S1
|ϕ| <∞.

It means a Teichmüller mapping is a quasiconformal mapping whose BC has a
constant norm. Thus it has a uniform conformality distortion over the whole domain
(See Figure 3.3).

Extremal mapping might not be unique. However, a Teichmüller mapping asso-
ciated with a holomorphic function is the unique extremal mapping in its homotopic
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Fig. 3.3. Difference between a general QC map and a Teichmüller map. (A) shows the original
textured mesh. It is mapped to another disk by a general QC map. Note that the distribution of the
norm of BC are spread out. (C) shows the Teichmüller map, whose BC norm is concentrated near
0.4.

class. The Strebel’s theorem explains the relationship bewtween the Teichmüller map-
ping and extremal mapping.

Definition 3.3 (Boundary dilation). Suppose S1 and S2 are open Riemann surfaces
with the same topology. The boundary dilation K1[f ] of f is defined as:

K1[f ] = inf
C
{K(h|S1\C) : h ∈ F, C ⊆ S1, C is compact.} (3.11)

where F is the family of quasi-conformal homeomorphisms of S1 onto S2 which are
homotopic to f modulo the boundary.

Theorem 3.4 (Strebel’s theorem, See [46], page 319). Let f be an extremal
quasi-conformal mapping with K(f) > 1. If K1[f ] < K(f), then f is a Teichmüller
map associated with an integrable holomorphic function on S1. Hence, f is also an
unique extremal mapping.

In other words, an extremal mapping between S1 and S2 with suitable boundary
condition is a Teichmüller mapping. In particular, the Teichmüller mapping and
extremal mapping of the unit disk are closely related.

Theorem 3.5 (See [47], page 110). Let g : ∂D→ ∂D be an orientation-preserving
homeomorphism of ∂D. Suppose further that h′(eiθ) 6= 0 and h′′(eiθ) is bounded. Then
there is a Teichmüller mapping f that is the unique extremal extension of g to D. That
is, f : D→ D is an extremal mapping with f |∂D = g.

Thus, if the boundary correspondence satisfies certain conditions on its deriva-
tives, the extremal map of the unit disk must be a Teichmüller mapping.

Now, in the case when interior landmark constraints are further enforced, the exis-
tence of unique Teichmüller mapping can be guaranteed if the boundary and landmark
correspondence satisfy suitable conditions. The unique Teichmüller mapping is ex-
tremal, which minimizes the maximal conformality distortion. The following theorem
can be derived immediately from the Strebel’s Theorem (Theorem 3.4):

Theorem 3.6 (Landmark-matching Teichmüller mapping). Let S1 and S2 be
open Riemann surfaces with the same topology. Let {pi}ni=1 ∈ S1 and {qi}ni=1 ∈ S2 be
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the corresponding interior landmark constraints. Let f : S1 \ {pi}ni=1 → S2 \ {qi}ni=1

be the extremal quasi-conformal mapping, such that pi corresponds to qi for all 1 ≤
i ≤ n. If K1[f ] < K(f), then f is a Teichmüller map associated with an integrable
holomorphic function on S1 \ {pi}ni=1. Hence, f is an unique extremal mapping.

In particular, a unique Teichmüller mapping f : D → D between unit disks
with interior landmark constraints enforced exists, if the boundary map f |∂D satisfies
suitable conditions. The following theorem can be obtained directly from Theorem
3.5:

Theorem 3.7 (Landmark-matching Teichmüller mapping of D). Let g : ∂D →
∂D be an orientation-preserving homeomorphism of ∂D. Suppose further that h′(eiθ) 6=
0 and h′′(eiθ) is bounded. Let {pi}ni=1 ∈ D and {qi}ni=1 ∈ D be the corresponding in-
terior landmark constraints. Then there is a Teichmüller mapping f : D \ {pi}ni=1 →
D \ {qi}ni=1 matching the interior landmarks, which is the unique extremal extension
of g to D. That is, f : D \ {pi}ni=1 → D \ {qi}ni=1 is an extremal Teichmüller mapping
with f |∂D = g matching the interior landmarks.

Theorem 3.6 and 3.7 play the fundamental role for us to obtain a unique Te-
ichmüller mapping between surfaces that matches feature landmarks consistently.
We can therefore obtain a unique landmark matching registration by searching for
an optimal Beltrami coefficient whose maximal dilatation is the minimum, while its
norm is constant everywhere. In this paper, we abbreviate the Teichmüller mapping
by T-Map.

It turns out that in most situations, an extremal quasi-conformal mapping is a
T-Map (even for domains with non-trivial topologies). In some rare situations when
an extremal mapping is not exactly a T-Map, one can still get a T-Map whose dilation
is arbitrarily close to the extremal dilation.

Theorem 3.8. (See [46], page 320) Let F be a class of quasi-conformal map-
pings between the open Riemann surfaces S1 and S2, which are homotopic modulo the
boundary. Let K0 be the smallest maximal dilation of the mappings in F. Then there
are T-Maps in F, associated with a meromorphic function with at most one simple
pole, whose dilation is arbitrarily close to K0.

4. Variational Formulation. In this section, we give a variational formulation
for obtaining the T-Map with least amount of conformality distortion. We propose to
use the Beltrami coefficient(BC) to represent the mapping, instead of the commonly
used representations by deformation fields or coordinate functions. The diffeomorphic
property of the mapping can then be effectively controlled. Our goal is to formulate
the problem into a variational framework to obtain an optimal BC, µ(f), associated
to the desired T-Map f .

Suppose D1 and D2 are two domains in the complex plane with the same topol-
ogy. D1 and D2 can either be simply-connected or multiply-connected. Suppose the
boundary condition of the desired T-Map f : D1 → D2 is known. Denote it by
f |∂D1 : ∂D1 → ∂D2 = g. Mathematically, the T-Map can be described as follows:

∂f

∂z
= k

ϕ

|ϕ|
∂f

∂z
and f |∂D1 = g on ∂D1 (4.1)
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for some constant k and integrable holomorphic function ϕ : D1 → C (ϕ 6= 0).

Recall that a T-Map is extremal in the sense that it minimizes the || · ||∞ over all
Beltrami differentials corresponding to quasi-conformal mappings in the Teichmüller
equaivalence class. In other words, for any h : D1 → D2 satisfying h|∂D1 = g, we have

||µ(f)||∞ ≤ ||µ(h)||∞ (4.2)

where µ(f) and µ(h) are the Beltrami coefficient of f and h respectively. Hence, our
original problem (4.1) can be formulated into a variational problem as follows:

f = argminf :D1→D2
E1(f)

:= argminf :D1→D2
{||µ(f)||∞}

(4.3)

subject to:
• f |∂D1 = g (boundary condition);
• µ(f) = kϕϕ for some constant 0 ≥ k < 1 and holomorphic function ϕ : D1 →

C.

Theoretically, a diffeomorphism f is associated to a unique BC µ(f) with ||µ(f)||∞ <
1. The Beltrami coefficient µ(f) measures the conformality distortion of the map f .
It can be considered as a unique representation of f . The energy functional E1 aims
to minimize the maximal conformality distortion of the mapping.

However, minimizing E1(f) with respect to the space of all diffeomorphisms be-
tween D1 and D2 is difficult. More specifically, the variational problem (4.3) can be
expressed as the following complicated form:

f = argminf{||µ(f)||∞}

= argminf ||
∂f/∂z

∂f/∂z
||∞

(4.4)

subject to f |∂D1 = g and µ(f) = kϕϕ for some constant 0 ≥ k < 1 and holomorphic
function ϕ : D1 → C.

In order to minimize the above constrained minimization problem effectively, we
propose to reformulate the energy functional with respect to space of all Beltrami
coefficients:

(ν, f) = argminν:D1→CE2(ν)
:= argminν:D1→C{||ν||∞}

(4.5)

subject to:
• ν = µ(f) and ||ν||∞ < 1;
• ν = kϕϕ for some constant 0 ≥ k < 1 and holomorphic function ϕ : D1 → C;
• f |∂D1 = g (boundary condition).

In other words, the minimization problem (4.3) is reformulated into an optimiza-
tion problem over the space of all BCs, which are complex-valued functions defined
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on D1. Minimizing the energy functional with respect to BCs is advantageous since
the diffeomorphic property of the mapping can be easily controlled [26]. Every dif-
feomorphism is associated to a smooth Beltrami coefficient µ(f). µ(f) measures the
bijectivity (1-1 and onto) of f . In fact, µ(f) is related to the Jacobian J(f) of f by
the following formula:

|J(f)|2 = |∂f
∂z
|2(1− |µ(f)|2) (4.6)

Therefore, the map f is bijective if |µ(f)| is everywhere less than 1. When solving
the minimization problem (4.5), the bijectivity of the mapping in each iterations can
be ensured by enforcing ||ν||∞ < 1. Our goal is to look for an optimal BC, ν, such
that its associated quasi-conformal map is our desired T-Map.

The boundary condition in the variational problem (4.5) can be relaxed. The
Dirichlet condition defined on the whole boundary is not required. Also, interior
landmark constraints can be enforced. Our goal is to solve the variational problem
with these landmark constraints, which determines the optimal 1-1 correspondence
(including the boundary correspondence) automatically. In other words, the boundary
condition in the problem (4.5) can be reformulated as:

f(ai) = bi; f(pj) = qj ; for i = 1, ..., n; j = 1, ...,m (4.7)

where ai and bi are corresponding landmark points or curves defined on ∂D1 and
∂D2 respectively; and pj and qj are corresponding interior landmark points or curves
in D1 and D2 respectively. By optimizing the energy functional (4.5), the landmark
matching T-Map can be obtained, which matches landmark features consistently while
minimizing the maximal conformality distortion.

Note also that the above formulation is designed for obtaining the T-Map of
2D connected domains. However, it can easily be extended to simply-connected or
multiply-connected open surfaces. Let S1 and S2 be two connected open surfaces with
the same topology. We can conformally parameterize S1 and S2 by φ1 : S1 → D1 ⊂ C
and φ2 : S2 → D2 ⊂ C respectively. Then the T-Map f : S1 → S2 between S1

and S2 induces the T-Map f̃ := φ2 ◦ f ◦ φ−1
1 : D1 → D2. All the above formulation

applies to f̃ . In other words, the computation of the T-Map between connected
surfaces embedded in R3 can be reduced to the computation of the T-Map between
the conformal domains in C.

In the subsequent section, we propose an algorithm, called the quasi-conformal
(QC) iteration to solve the above minimization problems (4.5).

5. Main Algorithm. In this section, we describe an iterative scheme, called
the quasi-conformal (QC) iteration, for solving the variational problem (4.5). The
QC iteration is based on the Linear Beltrami Solver(LBS). The LBS will firstly be
explained in detail. QC iteration will then be described.

Practically speaking, 2D domains or surfaces in R3 are usually represented dis-
cretely by triangular meshes. Suppose K1 and K2 are two surface meshes with the
same topology representing S1 and S2. We define the set of vertices on K1 and K2 by
V 1 = {v1

i }ni=1 and V 2 = {v2
i }ni=1 respectively. Similarly, we define the set of triangular

faces on K1 and K2 by F 1 = {T 1
j }mj=1 and F 2 = {T 2

j }mj=1. Our goal is to look for a
piecewise linear homeomorphism between K1 and K2 that approximates the T-Map
between S1 and S2.
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5.1. Linear Beltrami Solver. Our goal is to look for an optimal Beltrami
coefficient(BC) associated to the desired T-Map. Every quasi-conformal mapping is
associated to a unique BC. Given a BC, it is important to have an algorithm to
reconstruct the associated quasi-conformal homeomorphism.

Suppose f : K1 → K2 is an orientation preserving piecewise linear homeomor-
phism between K1 and K2. We can assume K1 and K2 are both embedded in R2.
In case K1 and K2 are surface meshes in R3, we first parameterize them conformally
by φ1 : K1 → D1 ⊆ R2 and φ2 : K2 → D2 ⊆ R2. The composition of f with the
conformal parameterizations, f̃ := φ2 ◦ f ◦ φ−1

1 , is then an orientation preserving
piecewise linear homeomorphism between D1 and D2 embedded in R2. In this paper,
we assume the topology of the surface mesh is either a connected open surface or a
genus-0 closed surface. In other words, the conformal domain Di (i = 1, 2) can either
be a 2D rectangle, unit disk, punctual disk or unit sphere.

To compute the quasi-conformal mapping, the key idea is to discretize Equation
3.7 with two linear systems.

Given a map f = (u +
√
−1v) : K1 → K2, we can easily compute its associated

Beltrami coefficient µf , which is a complex-valued function defined on each triangular
faces of K1. To compute µf , we simply need to approximate the partial derivatives
at every face T . We denote them by Dxf(T ) = Dxu +

√
−1Dxv and Dyf(T ) =

Dyu+
√
−1Dyv respectively. Note that f is piecewise linear. The restriction of f on

each triangular face T can be written as:

f |T (x, y) =
(
aTx+ bT y + rT
cTx+ dT y + sT

)
(5.1)

Hence, Dxu(T ) = aT , Dyu(T ) = bT , Dxv(T ) = cT and Dyv(T ) = dT . Now, the
gradient ∇T f := (Dxf(T ), Dyf(T ))t on each face T can be computed by solving the
linear system: (

~v1 − ~v0
~v2 − ~v0

)
∇T f̃i =

(
f̃i(~v1)−f̃i(~v0)
|~v1−~v0|

f̃i(~v2)−f̃i(~v0)
|~v2−~v0|

)
, (5.2)

where [~v0, ~v1] and [~v0, ~v2] are two edges on T . By solving equation 5.2, aT , bT , cT and
dT can be obtained. The Beltrami coefficient µf (T ) of the triangular face T can then
be computed from the Beltrami equation 3.1 by:

µf (T ) =
(aT − dT ) +

√
−1(cT + bT )

(aT + dT ) +
√
−1(cT − bT )

, (5.3)

Equation 3.5 and 3.6 are both satisfied on every triangular faces. Let µf (T ) =
ρT +

√
−1 τT . The discrete versions of Equation 3.5 and 3.6 can be obtained.

−dT = α1(T )aT + α2(T )bT
cT = α2(T )aT + α3(T )bT

(5.4)

and

−bT = α1(T )cT + α2(T )dT
aT = α2(T )cT + α3(T )dT

(5.5)
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where: α1(T ) = (ρT−1)2+τ2
T

1−ρ2T−τ2
T

; α2(T ) = − 2τT
1−ρ2T−τ2

T
; α3(T ) = 1+2ρT+ρ2T+τ2

T

1−ρ2T−τ2
T

.
In order to discretize Equation 3.7, we need to introduce the discrete divergence.

The discrete divergence can be defined as follows. Let T = [vi, vj , vk] and wI = f(vI)
where I = i, j or k. Suppose vI = gI +

√
−1 hI and wI = sI +

√
−1 tI (I = i, j, k).

Using equation 5.2, aT , bT , cT and dT can be written as follows:

aT = ATi si +ATj sj +ATk sk; bT = BTi si +BTj sj +BTk sk;

cT = ATi ti +ATj tj +ATk tk; dT = BTi ti +BTj tj +BTk tk;
(5.6)

where:

ATi = (hj − hk)/Area(T ), ATj = (hk − hi)/Area(T ), ATk = (hi − hj)/Area(T );

BTi = (gk − gj)/Area(T ), BTj = (gi − gk)/Area(T ), BTk = (gj − gi)/Area(T );
(5.7)

Suppose ~V = (V1, V2) is a discrete vector field defined on every triangular faces.
For each vertex vi, let Ni be the collection of neighborhood faces attached to vi. We
define the discrete divergence Div of ~V as follows:

Div(~V )(vi) =
∑
T∈Ni

ATi V1(T ) +BTi V2(T ) (5.8)

By careful checking, one can prove that∑
T∈Ni

ATi bT =
∑
T∈Ni

BTi aT ;
∑
T∈Ni

ATi dT =
∑
T∈Ni

BTi cT . (5.9)

This gives,

Div

(
−Dyu
Dxu

)
= 0 and Div

(
−Dyv
Dxv

)
= 0 (5.10)

As a result, Equation (3.7) can be discretized:

Div

(
A

(
Dxu
Dyu

))
= 0 and Div

(
A

(
Dxv
Dyv

))
= 0 (5.11)

where A =
(
α1 α2

α2 α3

)
. This is equivalent to:

∑
T∈Ni

ATi [α1(T )aT + α2(T )bT ] +BTi [α2(T )aT + α3(T )bT ] = 0 (5.12)

∑
T∈Ni

ATi [α1(T )cT + α2(T )dT ] +BTi [α2(T )cT + α3(T )dT ] = 0 (5.13)

for all vertices vi ∈ D. Note that aT and bT can be written as a linear combination of
the x-coordinates of the desired quasi-conformal map f . Hence, equation 5.12 gives
us the linear systems to solve for the x-coordinate function of f . Similarly, cT and
dT can also be written as a linear combination of the y-coordinates of the desired
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Fig. 5.1. Illustration of how quasiconformal mapping between surface meshes can be trans-
formed to a quasiconformal mapping between big triangles in R2. (A) shows a quasiconformal
mapping between unit disks (or simply-connected open meshes of disk topology). The two meshes
are conformally mapped to a big triangle after cutting a triangular face near 1. Through composition,
the quasiconformal mapping can be transformed to a quasiconformal mapping between the big tri-
angles in R2. (B) shows the case of a homeomorphism between genus-0 closed surface meshes. The
two meshes are conformally parameterized onto a big triangle in R2, after cutting away a triangular
face on each mesh. Again, through composition, the quasiconformal mapping can be transformed to
a quasiconformal mapping between the big triangles in R2.

quasi-conformal map f . Therefore, equation 5.13 gives us the linear systems to solve
for the y-coordinate function of f .

Besides, f has to satisfy certain constraints on the boundary. One common
situation is to give the Dirichlet condition on the whole boundary. That is, for any
vb ∈ ∂K1

f(vb) = wb ∈ ∂K2 (5.14)

Note that the Dirichlet condition is not required to be enforced on the whole
boundary. The proposed algorithm also allows free boundary condition. In the case
that K1 and K2 are rectangles, the desired quasi-conformal map should satisfy

f(0) = 0; f(1) = 1 f(i) = i f(1 + i) = 1 + i;
Re(f) = 0 on arc [0, i]; Re(f) = 1 on arc [1, 1 + i];

Imag(f) = 0 on arc [0, 1]; Imag(f) = 1 on arc [i, 1 + i]
(5.15)

When Ki (i = 1, 2) is an unit disk, we can parameterize it onto a domain Di,
which is a triangle with boundary vertices pi0, pi1 and pi2. pi0 is on the y-axis whereas pi1
and pi2 are on the x-axis. This can be done by removing a triangular face at the point 1
and map Ki to the upper half plane using a Mobiüs transformation: ψ(z) =

√
−1 1+z

1−z
(See Figure 5.1). In this case, the desired quasi-conformal map f should satisfy

f(p1
0) = p2

0; f(p1
1) = p2

1 and Imag(f) = 0 on arc [p1
0, p

1
1]; (5.16)

When Ki (i = 1, 2) is a genus-0 closed surface mesh, we can again parameterize
it onto a domain Di, which is a triangle with boundary vertices pi0, pi1 and pi2. This
can be done by removing a triangular face at the north pole and map Ki to the
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2D plane using stereographic projection (See Figure 5.1). In this case, the desired
quasi-conformal map f̃ should satisfy

f(p1
0) = p2

0; f(p1
1) = p2

1 and f(p1
2) = p2

2 (5.17)

Suppose interior landmark correspondences {pi}ni=1 ↔ {qi}ni=1 are also enforced,
one should add this constraint to the linear system. Mathematically, it is described
as f(pi) = qi (i = 1, 2, ..., n).

Equations 5.12 and 5.13 together with the above boundary conditions give a non-
singular linear system to solve for f . The linear system is symmetric positive definite.
Hence, it can be solved effectively by the conjugate gradient method. We call this
algorithm the Linear Beltrami Solver(LBS). Given a Beltrami coefficient ν, we denote
the obtained quasi-conformal map from LBS by LBS(ν). If landmark constraints are
enforced, we denote it by LBSLM (ν).

We note that given an arbitrary Beltrami coefficient ν and arbitrary landmark
correspondences, a quasi-conformal mapping associated to ν might not exist. How-
ever, the Linear Beltrami Solver looks for the best quasi-conformal mapping whose
Beltrami coefficient closely resemble to ν.

5.2. Quasi-conformal(QC) iterations. With the Linear Beltrami Solver, one
can easily obtain the best quasi-conformal mapping associated with a given BC. In
order to obtain the T-Map f , our goal is to iteratively search for the optimal BC as-
sociated to f . With the optimal BC, the desired T-Map f can be easily reconstructed
using the Linear Beltrami Solver.

Recall that our problem of computing the T-Map can be formulated into an
optimization problem:

(ν, f) = argminν:D1→C{||ν||∞} (5.18)

subject to: (1) ν = µ(f) with ||ν||∞ < 1; (2) ν = kϕϕ for some constant k and
holomorphic function ϕ : D1 → C; and (3) f satisfies certain boundary condition
and/or landmark constraints. Note that the boundary condition in (3) can either be
a Dirichlet condition defined on the whole boundary or a free boundary condition
with only few points on the boundary fixed. In this subsection, we introduce the
Quasi-conformal(QC) iteration to solve the above optimization problem.

The QC iteration starts with an initial map f0 : D1 → D2 satisfying the given
boundary condition and landmark constraints. The initial map is chosen to be the
quasi-conformal mapping obtained from LBS associated to the initial BC µ0 = 0. In
other words,

f0 = LBSLM (µ0 := 0) (5.19)

Note that with the enforced landmark constraints, the Beltrami coefficient asso-
ciated to f0 might not be equal to µ0 = 0. The Linear Beltrami Solver simply look for
the best quasi-conformal mapping whose Beltrami coefficient resemble to µ0 as much
as possible. Let ν0 be the actual Beltrami coefficient associated to f0. This gives us
a pair (f0, ν0), for which ν0 = µ(f0).

Now, in order to minimize the energy function E2 satisfying condition (2), we
propose to perform a Laplace smooth L and averaging A on ν0. The Laplace smooth
L, which aims to minimize E2, is given by the following:

L(ν0)(T ) :=
∑

Ti∈Nbhd(T )

ν0(T ) /|Nbhd(T )| (5.20)
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where T is a triangular face of K1, Nbhd(T ) is the set of neighborhood faces of T
and |Nbhd(T )| is the number of neighborhood faces in the set Nbhd(T ). Set µ̃1(T ) =
L(ν0)(T ).

The averaging operator A is defined as follows:

µ1(T ) = A(µ̃1)(T ) := (

∑
T∈ all faces of K1

|µ̃1|(T )
No. of faces of K1

)
µ̃1(T )
|µ̃1(T )|

(5.21)

A aims to obtain an optimal ν satisfying the condition (2) in the optimization problem.
An updated quasi-conformal, f1 can then be obtained by LBS: f1 = LBSLM (µ1). And
an updated Beltrami coefficient, ν1 := µ(f1), can be computed. Thus, we get a new
pair (f1, ν1).

The procedure continues until the iteration converges. More specifically, given
the pair (fn, νn) obtained at the n iteration, we can obtain a new pair (fn+1, νn+1)
as follows:

µn+1 := A(L(νn));
fn+1 := LBSLM (µn+1);
νn+1 := µ(fn+1).

(5.22)

Consequently, we get a sequence of pair (fn, νn), which converges to the optimal
Beltrami coefficient associated to the T-Map. In practice, we stop the iteration when
||νn+1 − νn|| < ε.

We summarize the QC iteration as follows.

Algorithm 5.1 : (QC iteration for open surfaces)
Input : Triangular meshes: K1 and K2; the desired landmark constraints and/or
boundary condition.
Output : Optimal Beltrami coefficient ν and the T-Map f

1. Obtain the initial mapping f0 = LBSLM (µ0 := 0). Set ν0 = µ(f0);
2. Given νn, compute µn+1 := A(L(νn)); Compute fn+1 := LBSLM (µn+1) and

set νn+1 := µ(fn+1);
3. If ||νn+1 − νn|| ≥ ε, continue. Otherwise, stop the iteration.

The QC iteration can also be applied to the case when Di (i = 1, 2) is a unit
sphere. In other words, given a set of landmark constraints between the unit sphere,
our goal is to look for the T-Map f : D1 → D2. However, special attention has to be
paid in this case.

Denote the landmark correspondence by {pi}ni=1 ↔ {qi}ni=1. We can assume that
the north pole is fixed. If not, it can also be achieved by a Mobiüs transformation.
The LBS can be applied to unit spheres, by stereographically projecting Di onto a
big triangles in R2 (See Figure 5.1). However, numerical error near the north pole is
inevitable. We therefore propose an alternating scheme to fix this problem.

For the initial map, we add the vertices near the north pole {nj}mj=1 (z > 0.99)
as landmarks and fix all {nj}mj=1. We then compute the T-Map f0 using Algorithm
5.1. Numerical error will be introduced near the north pole. To fix it, in our next
step, we consider the vertices {sj}mj=1 near the south pole (z < −0.99) as landmarks.
The correspondence is given by: sj ↔ f1(sj). Rotate the south pole of Di to the
north pole by a Mobiüs transformation. We can again compute the T-Map f2 using
Algorithm 5.1.
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Fig. 5.2. Example of the T-Map of the disk with fixed Dirichlet boundary condition. (A) shows
the boundary condition. (B) shows the obtained T-Map, visualized using the texture mapping. (C)
shows the histogram of the BC norm. (D) shows the sup-norm of the BC in each QC iterations.

We continue this process until the iteration converges. More specifically, at the
n iteration where n is an even integer, we add vertices {sj}mj=1 around south pole
as landmarks. Set correspondence as: sj ↔ fn(sj). Rotate the south pole of Di

to the north pole by a Mobiüs transformation, and obtain the T-Map fn+1 using
Algorithm 5.1. When n is an odd integer, we add vertices {nj}mj=1 around north pole
as landmarks. Set correspondence as: nj ↔ fn(nj) and obtain the T-Map fn+1 using
Algorithm 5.1. Set νn+1 = µ(fn).

This alternating process between the north pole and the south pole continues
until ||νn+1 − νn|| < ε.

The detailed algorithm can be summarized as follows:

Algorithm 5.2 : (QC iteration for genus-0 closed surfaces)
Input : Triangular meshes: K1 and K2; the desired landmark constraints and/or
boundary condition.
Output : Optimal Beltrami coefficient ν and the T-Map f

1. Add vertices around north pole as landmarks and fix their positions. Obtain
the initial T-Map f0 using Algorithm 5.1. Set ν0 = µ(f0);

2. Given fn and νn. When n is even, add vertices {sj}mj=1 around south pole
as landmarks. Set correspondence as: sj ↔ fn(sj). Rotate the south pole of
Di to the north pole. When n is odd, add vertices {sj}mj=1 around south pole
as landmarks. Set correspondence as: sj ↔ fn(sj). Obtain the T-Map fn+1

using Algorithm 5.1. Set νn+1 = µ(fn);
3. If ||νn+1 − νn|| ≥ ε, continue. Otherwise, stop the iteration.

When Di (i = 1, 2) is a unit disk, the LBS would also introduce numerical error
near 1. To fix it, the same alternating algorithm between 1 and -1 can be applied.

The QC iterations can also be extended to compute T-Map with soft land-
mark constraints. It will become useful when landmark features cannot be accu-
rately located, and hence it is better to compute registration with landmarks ap-
proximately (but not exactly) matched. Denote the landmark correspondence by
{pi}ni=1 ↔ {qi}ni=1. Instead of enforcing a hard landmark constraints, a soft con-
straints can be introduced by requiring ||pi − qi|| < δ for all i = 1, 2, ..., n. This can
be done easily by firstly computing a rough guess of a landmark matching T-Map
g using Algorithm 5.1 or 5.2. The BC, µg, of g can be computed. Starting with
µg, Algorithm 5.1 or 5.2 can be applied to compute a T-Map without enforcing the
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Fig. 5.3. Another example of the T-Map of the disk with fixed Dirichlet boundary condition.
(A) shows the obtained T-Map, visualized using the texture mapping. (B) shows the histogram of
the norm of the BC. (C) shows the sup-norm of the BC in each QC iterations.

Fig. 5.4. Computation of T-Map on an irregular mesh. The QC iteration is independent of
the mesh structure. The boundary condition is given and the associated T-Map is constructed, as
shown in (A). (B) shows the right shows the histogram of the norm of the BC.

interior landmark constraints. A T-Map with soft landmark constraints can then be
obtained. The detailed algorithm can be described as follows:

Algorithm 5.3 : (QC iteration for soft landmark constraints)
Input : Triangular meshes: K1 and K2; desired landmark constraints and/or bound-
ary condition; landmark constraint tolerance δ
Output : Optimal Beltrami coefficient ν and the T-Map f

1. Obtain an initial guess of landmark matching T-Map g0 using Algorithm 5.1
or 5.2. Set the stopping criteria to be ||νn+1 − νn|| < 100ε.

2. Given gn and µn = BC of gn. Starting from µn, compute the T-Map gn+1

using Algorithm 5.1 or 5.2, without setting the interior landmark constraints.
Set the stopping criteria to be ||νn+1 − νn|| < ε. Let µn+1 = BC of gn+1.

3. If ||pi−qi|| ≥ δ for some i = 1, 2, ..., n, continue. Otherwise, stop the iteration.

6. Numerical experiments. In this section, we evaluate our proposed algo-
rithm numerically by synthetic examples.

6.1. T-Map of simply-connected domains. In our first numerical experi-
ment, we test our method to compute the T-Map of the unit disk with a given Dirichlet
boundary condition. A Dirchlet condition on the whole boundary is given as shown in
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Fig. 5.5. T-Map of the disk with only 8 landmark points constraints on the boundary. (A) shows
the T-Map. (B) shows the histogram of the BC norm. (C) shows the sup-norm of the BC in each QC
iteration. (D) shows the automatically obtained optimal boundary correspondence. (E) shows the
histogram of the BC norm under the T-Map with arc-length parameterized boundary condition. (F)
shows the histogram of the BC norm under harmonic map with arc-length parameterized boundary
condition.

Figure 5.2(A). The obtained T-Map is shown in (B), which is visualized using the tex-
ture mapping. Note that the original texture is deformed under the T-Map. However,
the dilations of the ellipses deformed from the small circles are the same. It means the
norm of the BC is constant everywhere. The histogram of the norm of the BC is also
shown in (C), which again demonstrates the norm of the BC is equal to a constant
k = 0.15016. The standard deviation of the BC norm is 0.0034373. Under the QC
iteration, we iteratively obtain a sequence of pair {fn, νn = µ(fn)}∞n=0. (D) shows
the supreme norm of BC, ||νn||∞, in each QC iterations. It decreases as iteration
increases, indicating that the algorithm converges to an optimized T-Map minimizing
the maximal conformality distortion. Also, the algorithm converges quickly in less
than 20 iterations.

Besides, the Dirichlet boundary condition can be of arbitrary shapes. Figure 5.3
shows a T-Map between the unit disk and the ameba shape with given boundary
conditions. The norm of BC is also constant everywhere, as demonstrated in (B),
indicating that the obtained mapping is indeed a T-Map. (C) shows the sup-norm of
BC in each QC iterations.

Our proposed QC iteration is also independent of the mesh structure. Figure
5.4(A) shows a mesh with an irregular mesh structure. The boundary condition is
given and the associated T-Map is constructed. (B) shows the histogram of the norm
of the BC, which is accumulated at 0.28. It demonstrates the obtained map is indeed
a T-Map. This result shows that our proposed method is effective for computing a
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Fig. 6.1. T-Map of the annulus with fixed Dirichlet boundary condition. (A) shows the obtained
T-Map, visualized using the texture mapping. (B) shows the histogram of the BC norm. (C) shows
the histogram of the Laplacian of the argument of the BC. (D) shows the sup-norm of the BC in
each QC iterations.

Fig. 6.2. T-Map of the multiply-connected domain containing three holes with fixed Dirichlet
boundary condition. (A) shows the obtained T-Map. (B) shows the histogram of the norm of the
BC. (C) shows the sup-norm of the BC in each QC iterations.

bijective T-Map between meshes, even with irregular mesh structure.
Our algorithm can also be applied to the situation when only a few landmark

constraints are enforced on the boundary (instead of the Dirichlet condition defined
on the whole boundary). In Figure 5.5, we test our algorithm to compute the T-Map
of the unit disk with only 8 landmark points constraints on the boundary. (A) shows
the the T-Map. Again, the dilations of the ellipses deformed from the small circles
are the same, meaning that the norm of the BC is constant everywhere. (B) shows
the histogram of the BC norm. The norm k of the BC is equal to 0.201. (C) shows
the sup-norm of the BC in each QC iterations. Again, it converges quickly in less
than 60 iterations. Our algorithm automatically detects the optimal boundary corre-
spondence. (D) shows the obtained optimal boundary correspondence. (E) shows the
histogram of the BC norm under the T-Map with arc-length parameterized boundary
condition (of which the prescribed constraints on the boundary are satisfied). Al-
though a T-Map can still be obtained, the norm of the BC is equal to 0.23 which is
higher than the case when only 8 points landmark constraints are enforced. Hence,
the obtained T-Map is not extremal. (F) shows the histogram of the BC norm under
the harmonic map with arc-length correspondence on the boundary. Note that the
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Fig. 6.3. T-Map of the multiply-connected domain containing six holes with fixed Dirichlet
boundary condition. (A) shows the obtained T-Map. (B) shows the histogram of the norm of the
BC. (C) shows the sup-norm of the BC in each QC iterations.

distribution of the conformality distortion is highly non-uniform.

6.2. T-Map of multiply-connected domains. Our method can also be ap-
plied to multiply-connected domains. In Figure 6.1, we test our method to compute
the T-Map of an annulus with Dirichlet boundary condition. (A) shows the obtained
T-Map. (B) shows the histogram of the norm of BC, which illustrates the obtained
map is indeed an T-Map. Besides, the BC of a T-Map is of the form: µ = kϕϕ , where
ϕ is holomorphic. The imaginary part of log(µ), which is equal to the argument of µ,
must be harmonic. (C) shows the Laplacian of the argument of the BC. It is accumu-
lated at 0, meaning that the argument of the BC is indeed harmonic. (D) shows the
supreme norm of the BC in each iterations. Again, it decreases as iteration increases
and converges fastly in just 6 iterations.

In Figure 6.2, we compute the T-Map between multiply-connected domains having
3 holes with a given boundary condition. (A) shows the obtained T-Map. The
histogram of the BC norm and the supreme norm of BC in each iterations are shown in
(B) and (C) respectively. Note that the algorithm converges quickly in 10 iterations.
Figure 6.3 demonstrates the result of T-Map between more complicated multiply-
connected domains having 6 holes. The obtained T-Map is shown in (A). (B) and
(C) show the histogram of the BC norm and the supreme norm of the BC in each
iterations respectively. Again, the algorithm converges quickly in 30 iterations.

6.3. T-Map with interior landmark constraints. Our algorithm can com-
pute the T-Map with interior landmark constraints enforced. Figure 6.4 shows the
T-Map between the unit disk with 24 interior landmark constraints and few point
constraints on the boundary enforced. (A) shows the 24 landmark constraints and 4
point constraints on the boundary. (B) shows the obtained T-Map, visualized using
the texture mapping. (C) shows the sup-norm of the BC in each QC iterations, which
converges within 30 iterations. (D) shows the histogram of the norm of the BC. The
norm of the BC is uniformly equal to 0.2. (E) shows the histogram of the BC norm
of a T-Map with the arc-length boundary correspondence enforced (of which the pre-
scribed 4 points constraints on the boundary are satisfied). As expected, the norm of
the BC is larger (=0.28), which means the T-Map is not an extremal one.

Besides, interior landmark curve constraints can be enforced. In Figure 6.5 , we
test our algorithm to compute the T-Map of the unit disk with 3 interior landmark
curve constraints enforced. (A) shows the obtained T-Map. (B) shows the histogram
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Fig. 6.4. T-Map between the disks with 24 interior landmark constraints and 4 point constraints
on the boundary enforced. (A) shows the 24 landmark constraints and 4 point constraints on the
boundary. (B) shows the T-Map. (C) shows the sup-norm of the BC in each QC iterations. (D)
shows the histogram of the norm of the BC. (E) shows the histogram of the BC norm under the
T-Map with arc-length parameterized boundary condition.

of the norm of the BC. The norm of the BC is accumulated at 0.53. (C) shows
the sup-norm of the BC in each QC iterations. The sup-norm of the BC is decreas-
ing, indicating that the algorithm converges to an optimized T-Map, minimizing the
maximal conformality distortion.

We also test our algorithm for the case when only interior landmark constraints
are enforced (without boundary condition). Figure 6.6 shows the computed T-Map
with 20 interior landmark point constraints enforced. (A) shows the constraints of
the feature points. (B) shows the obtained T-Map. (C) shows the histogram of
the norm of the BC. Although no boundary constraint is enforced, our algorithm is
able to automatically determine an optimal boundary correspondence of the T-Map
minimizing the geometric distortion.

Besides the hard landmark constraints, our algorithm can also be applied to
compute T-Map with soft landmark constraints. Figure 6.7 shows an example of T-
Map of the unit disk with soft landmark constraints. (A) shows the T-Map with hard
landmark constraints enforced. The histogram of the norm of BC is plotted, which
is accumulated at 0.41. Landmarks are perfectly matched. (B) shows the obtained
T-Map with soft landmark constraints. Landmarks cannot be exactly matched, but
less conformality distortion is introduced. As shown in the histogram of the BC,
the norm of BC is accumulated at 0.35. It is less than that of the case when hard
landmark constraints are enforced.
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Fig. 6.5. T-Map between the disks with 3 interior landmark curves constraints enforced. (A)
shows the T-Map with 3 landmark curves constraints enforced. (B) shows the histogram of the norm
of the BC. (C) shows the sup-norm of the BC in each QC iterations.

Fig. 6.6. T-Map between the unit disks with 20 interior landmark constraints enforced (without
boundary constraints). (A) shows the 20 landmark constraints. (B) shows the T-Map. (C) shows
the histogram of the norm of the BC.

Our algorithm can as well be applied to computing the T-Map between the unit
sphere with interior landmark constraints enforced. Figure 6.8(A) shows 20 landmark
constraints on the sphere. (B) shows the obtained T-Map. (C) shows the histogram
of the norm of the BC. The norm of the BC is concentrated near 0.21, meaning that
the mapping is indeed a T-Map.

6.4. Computational time. To test the efficiency of the QC iterations, we
record the computational time of the proposed QC iterations. All our experiments
were done on a laptop with an Intel Core i7 2.70 GHz CPU and 8 GB RAM. In
Table 6.1, we list the computational time of the QC iterations for the experiments we
have done. Note that for reasonably dense mesh (∼ 8K vertices), the computational
time is generally less than 10 seconds. For more complicated domains with denser
meshes, the computational time is longer but the whole computation can still be done
within 35 seconds. We note that the implementation of the QC iterations has not
been optimized. It is currently implemented using Matlab. The implementation of
the algorithm can be further improved. Also, the algorithm can be parallelized. Using
GPU, it is believed that the computational time can be dramatically speeded up.

6.5. Comparison with existing methods. To test the effectiveness of our
proposed method, we compare our algorithm with other existing methods. In Figure
6.9, we compare the landmark matching T-Map with three other exisiting methods,
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Fig. 6.7. T-Map with soft landmark constraints. (A) shows the obtained T-Map with hard land-
mark constraints. The histogram of the norm of BC is plotted, which is accumulated at 0.4193. (B)
shows the obtained T-Map with soft landmark constraints. Landmarks cannot be exactly matched,
but less conformality is introduced, as shown in the histogram of the norm of the BC.

Fig. 6.8. T-Map between the spheres. (A) shows landmark constraints on the sphere. (B)
shows the T-Map. (C) shows the histogram of the norm of the BC.

namely, 1. the harmonic map [20]; 2. thin plate spline (TPS) [19] and 3. LDDMM
[10, 11, 12, 13, 14]. Seven landmark correspondences are enforced, as shown in (A).
(B) shows the obtained landmark matching T-Map. It is bijective and landmarks are
perfectly matched. (C) shows the landmark matching harmonic map. Landmarks
are exactly matched, but overlaps (flips) occur. (D) shows the mapping obtained
from TPS. Landmarks are not exactly matched and overlaps occur. (E) shows the
mapping obtained from LDDMM. A smooth bijective mapping can be obtained. Also,
landmarks can be better matched (although not perfectly) .

Table 6.2 gives the quantitative comparison between different methods. Harmonic
map and TPS are the fastest algorithms. However, both methods cannot obtain a bi-
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Fig. 6.9. Comparison of the landmark matching T-Map with 1. the harmonic map; 2. thin
plate spline (TPS) and 3. LDDMM. (A) shows 7 landmark point constraints. (B) shows the ob-
tained landmark matching T-Map. (C) shows the landamrk matching harmonic map. (D)shows the
mapping obtained from TPS. (E) shows the mapping obtained from LDDMM.

Table 6.1
Computational time for QC iterations

Vertex number Time ||µ||∞
Analytic example 8936 1.297 s 0.4122

4 points on boundary + 3 landmark curves 8257 4.46 s 0.4154
Disk (Dirichlet boundary) 8257 5.420 s 0.2295

8 points on boundary 8257 6.645 s 0.2120
4 points on boundary + 20 landmarks 8257 8.467 s 0.2843

Arbitrary shape 8257 10.056 s 0.3475
Disk free boundary + 20 landmarks 8257 18.579 s 0.1855

Three holes disk 17746 15.030 s 0.4088
Six holes disk 22979 17.680 s 0.4433

Sphere 10242 34.679 s 0.3086

jective mapping that matches landmark exactly. As a result, the sup-norm of the BC is
big. It means that large conformality distortion is introduced. LDDMM can compute
a smooth bijective mapping that closely matches landmarks. However, the computa-
tional cost is comparatively more expensive (416 seconds). Using our algorithm, we
can obtain a bijective T-Map that matches landmarks perfectly. The conformality
distortion, measured by the sup-norm of the BC, is also the smallest (=0.594). The
computational time is also reasonably fast, which takes about 6 seconds.

7. Applications. In this section, we apply our proposed algorithms for comput-
ing landmark matching T-Maps to practical problems. More specifically, we will con-
sider the problems of computing brain landmark matching registrations, constrained
texture mappings and human face registrations.

7.1. Brain landmark matching registration. Landmark-based surface reg-
istrations are commonly applied for finding meaningful 1-1 correspondences between
human brain cortical surfaces [20, 39, 21, 22, 23]. On cortical surfaces, sulcal land-
marks can be labeled either manually by neuroscientists or automatically based on
various geometric quantities [24]. The sulcal landmarks are important anatomical
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Table 6.2
Comparison with other methods

Teichmüller map Harmonic map TPS LDDMM
Time 6.276 s 1.697s 0.117 s 416.247 s

Overlap faces 0 110 13 0
Landmark error 0 0 0.06126 0.24481

||µ||∞ 0.594 5.389 1 0.805

Fig. 7.1. (A) shows 2 brain surfaces with 3 corresponding landmarks. (B) shows the T-Map
with 3 landmark constraints enforced. (C) shows the histogram of the norm of BC.

features. It is therefore desirable to obtain a registration between the cortical sur-
faces with least geometric distortion, which matches the sulcal landmarks as much as
possible. Our algorithms for computing landmark matching T-Maps can be applied.
In Figure 7.1, we apply our algorithm to compute the T-Map between 2 different
brain surfaces with 3 corresponding landmarks labeled. (A) shows the corresponding
sulcal landmarks, indicated by different colors. (B) shows the obtained T-Map with
3 landmark constraints enforced, visualized by the circle packing textures. The sul-
cal landmarks are exactly matched under the mapping. (C) shows the histogram of
the norm of the associated BC. The norm is a constant showing that the obtained
registration is indeed a T-Map. We also test the method to register cortical surfaces
with more sulcal landmarks. In Figure 7.2, we compute the T-Map between 2 brain
surfaces with 6 corresponding sulcal landmarks labeled. The obtained registration
and the norm of its associated BC is shown in (B) and (C) respectively. The land-
marks are exactly matched. Again, the norm of the BC is a constant, showing that
the obtained registration is a T-Map which minimizes the conformality distortion.

7.2. Constrained texture mapping. Texture mapping is one of the major
photorealistic techniques in computer graphics to generate realistic and visually rich
3D surfaces [32, 33]. It is usually done by putting each surface mesh in correspondence
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Fig. 7.2. (A) shows 2 brain surfaces with 6 corresponding landmarks. (B) shows the T-Map
with 6 landmark constraints enforced. (C) shows the histogram of the norm of BC.

with a 2D image [2, 3, 37, 38, 36, 35, 34]. Such a correspondence between the surface
mesh and the image is called the texture mapping. Constrained texture mappings
are popularly used, in which the texture mappings are guided by landmark features
labeled interactively by users. Ideally, the texture mapping should have minimum
distortion, while matching the landmark points exactly. We apply our algorithms to
compute the landmark matching T-Map between the surface mesh and the image, and
use it as the texture mapping. In Figure 7.3, we map a cat image onto the human face
surface. (A) shows the corresponding landmark points labeled manually on the human
face and the texture image. The landmark matching T-Map is computed, and is used
as texture mapping to project the cat image onto the human face. The textured
surface is shown in (B). (C) shows the norm of the associated BC of the texture
mapping. The norm is approximately a constant. It means the texture mapping
computed is indeed a T-Map, which minimizes the conformality distortion.

In Figure 7.4, we further test our algorithm on a multiply-connected human face.
(A) and (B) shows the texture(tiger) image and a multiply-connected human face.
Corresponding landmark points are labeled manually on the texture image and the
surface mesh. In (C), the surface mesh is mapped to a multiply-connected domain
in 2D by a T-Map matching the landmark points exactly. (D) shows the textured
surface. (E) shows the norm of the associated BC of the texture mapping. The norm
is approximately a constant, which means the texture mapping computed is indeed a
T-Map.

7.3. Human face registration. In face recognition, finding accurate spatial
correspondences between human faces is an a crucial process to compare and recognize
faces effectively [42, 40]. Corresponding features can be extracted on human face
based on curvatures, such as high curvature points near nose tips and lips. Accurate
face registration can then be obtained by computing a mapping that matches the
corresponding features. Landmark matching T-Map, which minimizes the geometric
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Fig. 7.3. (A) shows a human face and a texture image of a cat. Corresponding landmark points
are labeled on the surface and the texture image. We compute the T-Map that matches the landmark
points. The T-Map is used as constrained texture mapping to project the texture image onto the
surface, as shown in (B). (C) shows the histogram of the norm of BC.

Fig. 7.4. (A) a texture image of a tiger. (B) shows a multiply-connected human face. Cor-
responding landmark points are labeled on the surface and the texture image. In (C), the surface
mesh is mapped to a multiply-connected domain in 2D by a T-Map matching the landmark points
exactly. The T-Map is used as constrained texture mapping to project the texture image onto the
surface, as shown in (D). (E) shows the histogram of the norm of BC.

distortion, can then be used. In Figure 7.5, we apply our algorithm to compute the
registration between a male and female human faces. The human faces are both
simply-connected open surfaces. Corresponding feature points are labeled on both
faces. The associated T-Map is obtained, which is visualized by texture mapping. The
corresponding features are exactly matched. (C) shows the histogram of the norm of
the BC, which is almost a constant. This demonstrates the obtained registration is a
T-Map.

Our algorithm can also be applied to obtain registration between multiply-connected
human faces. Figure 7.6 shows two multiply-connected human faces. Corresponding
feature landmarks are labeled. T-Map matching the features exactly is computed, as
shown in (B). It is again visualized by texture mapping. (C) shows the histogram of
the norm of the BC. Again, it is almost a constant, which demonstrates that obtained
registration is a T-Map minimizing the conformality distortion.

8. Conclusion. We address the problem of computing Teichmüller mappings
(T-Maps) between surfaces, which minimizes the maximal conformality distortion.
The proposed algorithm can be applied to obtain a landmark matching registration
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Fig. 7.5. T-Map of the simply-connected domain with landmark point constraints (A) shows
the two faces with landmark point constraints. (B) shows the T-Map of the two faces. The resultant
mapping is illustrated by texture mapping. (C) shows the histogram of the norm of BC.

Fig. 7.6. T-Map of the multiply-connected domain with landmark point constraints (A) shows
the two faces with landmark point constraints. (B) shows the T-Map of the two faces. The resultant
mapping is illustrated by texture mapping. (C) shows the histogram of the norm of BC.

between surface meshes. Given a set of corresponding landmark points or curves de-
fined on both surfaces, a unique landmark matching T-Map can be obtained, which
minimizes the conformality distortion. In this paper, we propose an efficient iterative
algorithm, called the Quasi-conformal (QC) iterations, to compute the T-Map. The
key idea is to represent the set of diffeomorphisms by Beltrami coefficients (BCs).
We then look for an optimal BC associated to the desired T-Map. The associated
T-Map can be efficiently reconstructed from the optimal BC using the Linear Bel-
trami Solver(LBS). Using our proposed method, the T-Map between reasonably dense
meshes can be accurately and efficiently computed. The obtained registration is guar-
anteed to be bijective. Besides, T-Map with soft landmark constraints can also be
computed using our proposed algorithm. It becomes useful when landmark features
cannot be accurately located, and hence it is better to compute registration with
landmarks approximately (but not exactly) matched. We applied the proposed algo-
rithm to real applications, such as brain landmark matching registration, constrained
texture mapping and human face registration. Experimental results shows that our
method is effective in computing a non-overlap landmark matching registration with
least amount of conformality distortion.
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