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Abstract

In this paper we propose a new class of incomplete Riemann solvers, based on approximations in the L∞-
norm to the absolute value function in [−1, 1] by means of rational functions, for the numerical approximation
of the solution of hyperbolic systems of conservation laws. The main idea relies on the construction of a
numerical approximation to the viscosity matrix by using an appropriate rational real function R(x), that
approximates the function |x| uniformly in [−1, 1], evaluated at the Jacobian of the fluxes of the hyperbolic
system computed at some average value (for example, Roe averages). In addition to the Jacobians of the
fluxes we shall use either the maximum in absolute value of the characteristic speeds in each cell or an
upper bound of them. Thus, the resulting approximate Riemann solver is incomplete in the sense that
we do not use the complete spectral decomposition of the Jacobian. Moreover, the new class of Riemann
solvers consists of a hierarchy of schemes running from the more dissipative to the less dissipative ones, and
having as limiting case a Roe-like scheme. According to the order of the approximation of the generating
rational function used, the degree of dissipation can be dosed for particular applications. We study different
rational approximations: Newman-type functions, iterative generated Halley functions, and also Chebyshev
polynomial approximants. We test our basic algorithms for different initial value Riemann problems for
ideal gas dynamics (HD) and magnetohydrodynamics (MHD) to observe their behavior with respect to
challenging scenarios in numerical simulations, including some standard numerical pathologies (e. g., heat
conduction, postshock oscillations and overheating) and the formation of compound waves in ideal MHD.
We also examine our proposed schemes, by computing the numerical approximation of different initial
value problems for nonconservative multilayer shallow water equations, where it has been observed that
intermediate waves can be properly captured for an appropriate degree of approximation of the generating
rational function used. Our numerical tests indicate that the proposed schemes are robust, running stable
and accurate with a satisfactory time step restriction (CFL constant), and the computational cost is more
advangeous with respect to schemes that use a complete spectral decomposition of the Jacobians.

Keywords: Hyperbolic systems, nonconservative products, incomplete Riemann solvers, Roe methods,
Euler equations, ideal Magnetohydrodynamics, multilayer shallow water equations

1. Introduction

A possible way to classify the great number of approximate Riemann solvers for hyperbolic systems is to
label them as complete or incomplete, depending if all the characteristic fields in the exact Riemann problem
are considered or not. Among the class of complete Riemann solvers, Roe’s method ([18]) is one of the most
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well-known, having been applied to a very large number of physical problems. However, in the cases in
which analytic expressions for the eigenstructure are not available, Roe’s scheme may be computationally
expensive. For that reason, in certain situations it may be preferable to consider incomplete Riemann
solvers, for which only part of the eigenstructure is needed, as Rusanov, Lax-Friedrichs, HLL, etc. In these
cases, the lack of resolution of internal waves in complex scenarios may be an important drawback.

In [7] the authors introduced a family of incomplete Riemann solvers for both conservative and noncon-
servative hyperbolic systems denoted as PVM (Polinomial Viscosity Matrix), which are defined in terms of
viscosity matrices based on polynomial evaluations of a given Roe matrix or the Jacobian of the fluxes at
some other average value. The advantage of these methods relies on the fact that no spectral decomposition
of the Roe matrix is needed, but only some information about the eigenvalues. An obvious consequence
is that PVM methods are computationally simpler and faster than Roe’s method. Besides, PVM methods
could also be applied when the complete spectral structure is not known or it is hard to compute. A num-
ber of well-known schemes in the literature can be reinterpreted as PVM schemes, for example, Rusanov,
Lax-Friedrichs, HLL, FORCE or GFORCE. Indeed, Roe’s solver can also be viewed as a PVM method with
associated polynomial related to the absolute value function; of course, the construction of such polynomial
makes use of the spectral structure of the Roe matrix, so the implementation of Roe’s method as a PVM
scheme does not have any computational advantage.

On the other hand, stability requirements imply that the graph of the polynomial defining a PVM method
must be over the graph of the absolute value function that, in a certain sense, is linked to Roe’s method.
Moreover, it can be observed that the behavior of a PVM scheme will be closer to that of Roe’s method as
its basis polynomial is closer to the absolute value function in the uniform norm. This fact suggests the idea
of using accurate approximations to |x| that lead to PVM schemes giving similar results to Roe’s method,
but with a much smaller computational cost. Following this line, a new PVM scheme is proposed in this
paper, which is based on modified Chebyshev polynomials providing optimal uniform approximations to |x|.

As it is well-known ([14]), the order of approximation to |x| can be greatly improved by using rational
functions instead of polynomials. This leads to the core idea of this paper, that consists in following
the strategy of construction of PVM methods but using proper rational functions to build the associated
viscosity matrices. The resulting scheme will be denoted, of course, as RVM (Rational Viscosity Matrix).
Two different families of rational approximations will be considered in this work. The first one is based on
Newman-type approximations ([3, 4, 14]), that interpolate |x| at certain properly chosen nodes. Numerical
experiments show that Newman approximants of eighth-degree give as good results as Roe’s method with
savings of about one half of computational time. The second family of rational approximations are based on
Halley’s third-order method for finding roots. Halley-based RVM schemes, that are constructed recursively,
provide a hierarchy of methods for which the amount of numerical dissipation can be estimated depending
on the order of approximation of the basis rational functions. This allows the possibility, currently under
investigation, of designing adaptive RVM schemes in which the order of approximation of the basis rational
functions is locally determined by the degree of dissipation of the numerical fluxes. Thus, a low-order
rational approximation could be applied in smooth parts of the solution, while its complex features could
be computed using a higher order approximation.

It is important to point out that the presented RVM methods constitute a class of general-purpose
Riemann solvers, that are constructed using a Roe matrix for the flux of the hyperbolic system and an
estimate of its spectral radius, without making use of the spectral decomposition of the Roe matrix. The
approximation of the viscosity matrix by means of functional evaluation of the Roe matrix, using rational
uniform approximations to the absolute value function, allows to design a family of first-order schemes
in which the numerical dissipation is directly related to the chosen order of approximation. Thus, RVM
methods can take into account the internal waves in a more precise way that more dissipative standard
schemes. As an additional advantage, no entropy-fix is needed in the presence of sonic points, as long as the
rational functions do not cross the origin.

The proposed RVM first-order schemes are intended to be used as the basis for constructing higher
order methods. However, that possibility is not explored here, as our purpose is to analyze the behavior of
the first-order schemes in several complex scenarios related to the Euler, ideal Magnetohydrodynamics and
multilayer shallow water equations, frequently appearing in the applications. Extensions to higher order
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methods, combined with the above mentioned adaptive strategy, will be the topic of a future work.
The paper is organized as follows. In Section 2, basic concepts regarding PVM schemes are reviewed.

RVM schemes are introduced in Section 3, that constitutes the core of the paper. Several applications to
the Euler and ideal Magnetohydrodynamics equations are presented in Section 4. The extension of RVM
methods to nonconservative systems is explained in Section 5, and a number of tests related to multilayer
shallow water equations are performed in Section 6. Finally, some conclusions are drawn in Section 7.

2. A review of PVM methods

In this section some basic facts about the construction of PVM methods ([7]) are reviewed, which will
form the basis to introduce RVM methods in Section 3. In particular, the role of the absolute value function
and its relationship with Roe’s method is clarified. Furthermore, a new kind of PVM methods based on
Chebyshev polynomials are introduced.

Let us consider a hyperbolic system of conservation laws,

∂tw + ∂xF (w) = 0, (2.1)

where w(x, t) takes values on an open convex set O ⊂ RN and F : O → RN is a smooth flux function. We
are interested in the numerical solution of the Cauchy problem for (2.1) by means of a class of finite volume
methods of the form

wn+1
i = wn

i −
∆t

∆x
(D+

i−1/2 +D−i+1/2), (2.2)

where wn
i denotes the approximation to the average of the exact solution at the cell Ii = [xi−1/2, xi+1/2] at

time tn = n∆t (in what follows, the dependence on time will be dropped unless necessary). The numerical
fluxes are assumed to be defined by

D±i+/2 =
1

2

(
F (wi+1)− F (wi)±Qi+1/2(wi+1 − wi)

)
, (2.3)

where Qi+1/2 denotes a numerical viscosity matrix. Thus, different numerical methods can be designed
depending on the choice of the viscosity matrix. For example, Roe’s method corresponds to

Qi+1/2 = |Ai+1/2|,

where Ai+1/2 is a Roe matrix for system (2.1).
The idea behind the PVM methods introduced in [7] is to consider viscosity matrices resulting from the

polynomial evaluation of a Roe matrix Ai+1/2, that is,

Qi+1/2 = P i+1/2
r (Ai+1/2),

where Pr(x) is a polynomial of degree r. If the polynomial has the form

P i+1/2
r (x) =

r∑
j=0

α
i+1/2
j xj , (2.4)

then the numerical fluxes can be rewritten as

D±i+1/2 = ±α
i+1/2
0

2
(wi+1 − wi) +

r∑
j=1

δj1 ± αi+1/2
j

2
Aj−1

j+1/2(F (wi+1)− F (wi)),

where δj1 is Kronecker’s delta.

The stability of the scheme is strongly related to the definition of the polynomial P
i+1/2
r (x). In particular,

let λ1,i+1/2 < λ2,i+1/2 < · · · < λN,i+1/2 be the eigenvalues of Ai+1/2 and assume that an usual CFL condition
holds:

∆t

∆x
max
i,j
|λj,i+1/2| = ν ≤ 1. (2.5)
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Then the scheme (2.2)-(2.3) is L∞-stable if P
i+1/2
r (x) verifies the following condition ([7]):

ν
∆x

∆t
≥ P i+1/2

r (x) ≥ |x|, ∀x ∈ [λ1,i+1/2, λN,i+1/2], ∀ i ∈ Z. (2.6)

A number of well-known schemes can be redefined as PVM schemes, e. g., Roe, Rusanov, Lax-Friedrichs,
HLL, FORCE, GFORCE, etc. (see [7]).

The stability condition (2.6) states that the curve determined by the polynomial Pr(x) must be over
the graph of the absolute value function, which is related to Roe’s method. It is also worth noticing that
the best our polynomial approach to |x| is, the closer the corresponding PVM scheme will be to Roe’s
method. Furthermore, it is interesting to construct such polynomial approximations without making use of
the complete spectral structure of the problem, as Roe’s method does, in order to improve the computational
efficiency of the scheme.

The above considerations lead to the idea of using accurate approximations to |x|, resulting in PVM
schemes that are close to Roe’s method but with smaller computational cost. This approach could also be
used in problems in which the complete spectral structure is not known or hard to compute.

In what follows, a new PVM scheme based on Chebyshev polynomials, which provide optimal approxima-
tions to the absolute value function, is proposed. The Chebyshev series of |x|, which is known to converge
uniform and absolutely in the interval [−1, 1], is given by

|x| = 2

π
+

∞∑
k=1

4

π

(−1)k+1

(2k − 1)(2k + 1)
T2k(x), x ∈ [−1, 1],

where the Chebyshev polynomials of even degree T2k(x) are recursively defined as

T0(x) = 1, T2(x) = 2x2 − 1, T2k(x) = 2T2(x)T2k−2(x)− T2k−4(x).

It is not difficult to see that the polynomial of degree 2p given by

τ2p(x) =
2

π
+

p∑
k=1

4

π

(−1)k+1

(2k − 1)(2k + 1)
T2k(x), x ∈ [−1, 1], (2.7)

verifies the equality

‖|x| − τ2p(x)‖∞ =
2

π

1

2p+ 1
.

Thus, following the classical results of Bernstein ([1]), the order of approximation of τ2p(x) to |x| is optimal
in the L∞(−1, 1) norm. Moreover, the recursive definition of the polynomials T2k(x) provides an explicit
and efficient way to compute τ2p(x).

Notice that τ2p(x) do not strictly satisfy the stability condition (2.6): this is shown in Figure 1, where
τ2p(x) has been drawn for p = 2, 3, 4. This drawback can be avoided by substituing τ2p(x) by τ2p(x) + ε,
where ε is chosen as the minimum value such that τ2p(x)+ε fulfills condition (2.6) (see Section 3.1). However,
in the numerical experiments performed, no differences between both approaches have been found.

Finally, in order to evaluate the Chebyshev approximation (2.7) in a given matrix A, the following
expression is considered:

P2p(A) = |λmax|τ2p
(

1

|λmax|
A

)
≈ |A|, (2.8)

where λmax is the eigenvalue of A with maximum absolute value. The corresponding PVM scheme will be
denoted as PVM-Chebyshev-2p.
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Figure 1: The Chebyshev approximations τ2p(x) for p = 2, 3, 4.

3. RVM methods

This section, which constitutes the core of the paper, is dedicated to the introduction of RVM methods.
As it was stated in the previous section, there exists a relationship between the quality of the polynomial
approximations to the absolute value function and the behavior of the associated PVM schemes with respect
to Roe’s method. The basic idea behind the RVM methods consists in replacing the polynomial approximants
by rational ones which, in general, give more precise approximations to the absolute value function in the
uniform norm. Specifically, two families of approximats are considered, based on Newman- and Halley-type
rational functions.

As it was shown by Bernstein ([1]), uniform approximations to the absolute value function by polynomials
of degree r are at most of order O(r−1). The Chebyshev approximations (2.7) are thus optimal in this sense.
On the other hand, Newman ([14]) demonstrated that the order of approximation can be greatly improved
by using rational functions. Based on this remark, a class of methods of the form (2.2)-(2.3) with viscosity
matrix given by

Qi+1/2 = Ri+1/2(Ai+1/2),

is introduced, where Ri+1/2(x) is a rational approximation to |x|. The resulting scheme will be called a RVM
(Rational Viscosity Matrix) method. Under the CFL condition (2.5), the L∞-stability of a RVM method is
assured by the condition

ν
∆x

∆t
≥ Ri+1/2(x) ≥ |x|, ∀x ∈ [λ1,i+1/2, λN,i+1/2], ∀ i ∈ Z, (3.1)

as the proof of stability remains valid here (see [7]). Of course, the modification (2.8) is applied for matricial
evaluation of Ri+1/2(x).

Two different ways of constructing Ri+1/2(x) are proposed here, the first one based on Newman-type
functions and the second one relying on iterative processes. Both possibilities are further explored in the
following sections.
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3.1. RVM schemes based on Newman approximations

For a given r ≥ 4, consider a set of distinct points in (0, 1], X = {0 < x1 < · · · < xr ≤ 1}, and construct
the polynomial

p(x) =

r∏
k=1

(x+ xk).

The Newman rational function associated to the set X is then defined by

Rr(x) = x
p(x)− p(−x)

p(x) + p(−x)
.

It is easy to see that Rr(x) interpolates |x| at the points {−xr, . . . ,−x1, 0, x1, . . . , xr}. Also notice that for
even r the numerator and denominator of Rr(x) are of degree r.

The uniform rate of approximation of Rr(x) to |x| depends on the choice of the set of nodes X. The
three following possibilities will be considered here:

• xk = ξk, where ξ = exp(−r−1/2). This choice corresponds to Newman’s original definition ([14]) and
provides an exponential rate of approximation, of the form O(exp(−c

√
r)), c > 0.

• xk = cos(π(2k − 1)/(4r)), which are the Chebyshev nodes in [0, 1]. As it was demonstrated in [4], the
exact order of approximation is O(1/r log r).

• xk = sin2(π(2k− 1)/(4r)), the adjusted Chebyshev nodes. These points are obtained by adjusting the
Chebyshev roots cos(π(2k − 1)/(2r)) in [−1, 1] to the interval [0, 1]. As it was proved in [3], the order
of approximation is O(r−2) in this case.

0.10 0.05 0.00 0.05 0.10
0.00

0.02

0.04

0.06

0.08

0.10

|x|
Newman

Newman−Cheb.
Newman−Cheb.−adj.

Figure 2: behavior of the Newman approximations R8(x) for x ∈ [−0.1, 0.1].

The three types of Newman approximations are shown in Figure 2 for r = 8 (only values corresponding
to x ∈ [−0.1, 0.1] have been plotted, as the differences with respect to |x| are not noticeable in the picture
outside that interval). As the stability condition (3.1) is not fulfilled in any case, a modified approximation
of the form Rε

r(x) = Rr(x) + ε should be considered instead. The value of ε computed as

ε = max{|Rr(x∗)− |x∗|| : R′r(x∗) = 1, x∗ ∈ [0, 1]}
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guarantees that Rε
r(x) satisfies (3.1). A comparison between Rr(x) and Rε

r(x) can be seen in Figure 3. The
differences between using Rr(x) or Rε

r(x) are particularly noticeable in the presence of sonic points: in this
case, Rε

r(x) should be used to avoid entropy-violating solutions (see Section 6.1). On the other hand, when
sonic points are not present in the solution, no significative differences between using Rr(x) or Rε

r(x) in the
RVM scheme have been detected in the numerical tests.

0.10 0.05 0.00 0.05 0.10
0.00

0.02

0.04

0.06

0.08

0.10

|x|
R8 (x)

R ε
8 (x)

Figure 3: Comparison between R8(x) and Rε
8(x) for x ∈ [−0.1, 0.1], using the Newman nodes. In this case ε ≈ 7.37e− 3.

The RVM method corresponding to a Newman-type approximation based on Rε
r(x) with Newman’s

nodes will be denoted as RVM-Newman-r.

3.2. RVM schemes based on iterative approximations

Given a point x̄ ∈ [−1, 1], its absolute value |x̄| can be viewed as the positive root of f(x) = x2 − x̄2.
Thus, it is possible to approximate |x̄| by means of an iterative method for finding roots, such as Newton’s
method. A more precise choice is given by the cubic Halley’s method, which is defined as

xk+1 = xk −
f(xk)

f ′(xk)− 1

2
f ′′(xk)

f(xk)

f ′(xk)

.

In our particular case, the method has the following form:

xk+1 = xk
x2
k + 3x̄2

3x2
k + x̄2

.

Taking x0 = 1 as initial guess, Halley’s method is well-defined and converges to x̄ (see [5]). Moreover, the
following estimate holds:

|xk+1 − x̄| ≤
∞∑

j=k+1

2

3j+1
. (3.2)

The Halley rational approximations to |x| are recursively defined as

Hr+1(x) = Hr(x)
Hr(x)2 + 3x2

3Hr(x)2 + x2
, H0(x) = 1. (3.3)
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Notice that the degrees of the numerator and denominator of Hr(x) are both equal to 3r − 1.
It can be easily verified that Hr(x) satisfies the stability condition (3.1) without further modifications.

Besides, (3.2) and the fact that the maximum error occurs at x = 0 imply the equality

‖Hr(x)− |x|‖∞ =
1

3r
,

which gives a measure on how precise the approach to |x| is. Figure 4 shows the functions Hr(x) for
r = 3, 4, 5.
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Figure 4: Halley rational approximations Hr(x) in the interval [−0.1, 0.1], for r = 3, 4, 5.

The RVM method associated to the Halley approximation Hr(x) will be denoted as RVM-Halley-r.

4. Applications to the Euler and ideal Magnetohydrodynamics equations

In this section we test the performances of the RVM schemes introduced in Section 3 when they are
applied to some challenging Riemann problems related to the Euler and ideal magnetohydrodynamics equa-
tions.

The one-dimensional ideal magnetohydrodynamics (MHD) system of equations has the following form:

∂tρ+ ∂x(ρvx) = 0,

∂t(ρvx) + ∂x(ρv2
x + P ∗ −B2

x) = 0,

∂t(ρvy) + ∂x(ρvxvy −BxBy) = 0,

∂t(ρvz) + ∂x(ρvxvz −BxBz) = 0,

∂tBx = 0,

∂tBy + ∂x(vxBy − vyBx) = 0,

∂tBz + ∂x(vxBz − vzBx) = 0,

∂tE + ∂x
(
vx(E + P ∗)−Bx(vxBx + vyBy + vzBz)

)
= 0,

(4.1)

where ρ represents the mass density, (vx, vy, vz) and (Bx, By, Bz) are the velocity and magnetic fields, and
E is the total energy. If q and B denote the magnitudes of the velocity and magnetic fields, the total energy
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can be expressed as

E =
1

2
ρq2 +

1

2
B2 + ρε,

where the specific internal energy ε is related to the hydrostatic pressure P through the equation of state
P = (γ − 1)ρε, γ being the adiabatic constant. The total pressure P ∗ is then defined as P + PM , where
PM = 1

2B
2 is the magnetic pressure. Notice that system (4.1) can be written in the form (2.1) with

w =



ρ
ρvx
ρvy
ρvz
Bx

By

Bz

E


, F (w) =



ρvx
ρv2

x + P ∗ −B2
x

ρvxvy −BxBy

ρvxvz −BxBz

0
vxBy − vyBx

vxBz − vzBx

vx(E + P ∗)−Bx(vxBx + vyBy + vzBz)


.

Let us define (bx, by, bz) = (Bx, By, Bz)/
√
ρ, b2 = b2x +b2y +b2z, and the acoustic sound speed a =

√
γP/ρ.

The Alfven speed is given by ca = |bx| and the fast and slow waves, cf and cs, are defined as

c2f,s =
1

2

(
a2 + b2 ±

√
(a2 + b2)2 − 4a2b2x

)
.

The eight characteristic velocities of system (4.1) are then

λ1 = u− cf , λ2 = u− ca, λ3 = u− cs, λ4 = λ5 = u, λ6 = u+ cs, λ7 = u+ ca, λ8 = u+ cf ,

where the characteristic fields associated to λ1,8, λ3,6, λ2,7 and λ4,5 are called, respectively, the fast, slow,
Alfven and entropy waves. The spectral structure of system (4.1) is further analyzed in [2, 19]; in particular,
the system admits a complete set of eigenvectors.

A Roe matrix for system (4.1) was originally presented in [2] for the case γ = 2. Instead, the extension
introduced in [6] is considered here, as it is valid for arbitrary values of γ. This Roe matrix will be used in
order to construct PVM and RVM schemes in the numerical experiments that follow. In particular, Roe’s
method will be compared with PVM-Chebyshev-8 (based on an eighth degree polynomial), RVM-Newman-8
(based on the quotient of eighth degree polynomials; for the ease of implementation, their coefficients are
presented in the Appendix) and RVM-Halley-r for r = 1, 2, 3, 4, 5 (based on the quotiens of polynomials
with degrees 2, 8, 26, 80 and 242 respectively, which are recursively defined). Moreover, comparisons with
the HLL and FORCE methods will also be presented.

On the other hand, the Euler equations of gas dynamics can be directly obtained from (4.1) assuming
that the magnetic field vanishes: Bx = By = Bz = 0. The flexibility of the PVM and RVM schemes allows
to solve the Euler equations using the same MHD code by simply setting the magnetic field to zero in the
initial conditions. This is the form in which the tests involving the Euler equations have been performed.

4.1. Numerical heat conduction in a stationary contact discontinuity

The purpose of this test is to measure the effect of the numerical heat conduction (NHC) in the proposed
RVM schemes. The NHC measures the amount of numerical difussion in contact discontinuities, which may
cause erroneous heating across the discontinuity.

The following initial conditions for the Euler equations are considered:

(ρ, vx, P ) =

{
(1, 0, 1) for x ≤ 0.5,

(2, 0, 1) for x > 0.5,

and γ = 1.4. The solution of this problem consists of a stationary contact discontinuity located at x = 0.5.
This test was first proposed in [12]; see also [11] for a discussion on the topic of NHC.
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The problem has been solved in the interval [0, 1] using 200 grid points, with ∆t/∆x = 0.4, until two
different final times t = 1 (short) and t = 4 (long). The results are shown in Figure 5. By design, Roe’s
method perfectly captures the solution, as it has zero dissipation in this case. As it can be observed, the
NHC for RVM-Newman-8 and RVM-Halley-4 methods is considerably smaller than for HLL or FORCE
methods. Moreover, the PVM-Chebyshev-8 scheme also provides quite good results.
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Figure 5: Density smoothing due to the NHC mechanism. Left: t = 1; right: t = 4.

4.2. Overheating error in two colliding slabs

Following [11, 12], the following initial conditions for the Euler equations are considered:

(ρ, vx, P ) =

{
(1, 1, 0.1) for x ≤ 0.5,

(1,−1, 0.1) for x > 0.5,

and γ = 5/3. In this case, the original jump in velocity generates two shock waves that propagate in opposite
directions from the center of the domain, while the gas remains at rest in between. Numerically, a pathology
known as overheating occurs on most standard schemes: there is an error in the density around the shock
point that is compensated by an excessive value of the internal energy, thus leading to an overheating of the
fluid. The overheating error is of the order of O(1) independently of the discretization.

Figure 6 shows the density component calculated at time t = 0.4 in the interval [0, 1] using 200 grid
points and ∆t/∆x = 0.1. Both RVM-Halley-4 and RVM-Newman-8 methods provide quite accurate results,
while HLL or FORCE schemes do not properly capture the behavior of the solution around the shock point.

The problem becomes harder for lower values of the pressure (cold gas). The results obtained for
P = 10−3 are drawn in Figure 7. Similar comments as in the previous case apply here.

4.3. A slowly moving shock wave

A well-known deficiency of most Godunov-type schemes is the generation of unphysical oscillations
downstream nearly stationary shocks, that cannot be effectively damped by the dissipation mechanism of
the applied scheme (see [11] for a discussion).

An example of slowly moving shock is generated by the following Riemann problem for the Euler equa-
tions, proposed in [17]:

(ρ, vx, P ) =

{
(3.86,−0.81, 10.33) for x ≤ 0.1,

(1,−3.44, 1) for x > 0.1,

10
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Figure 6: Collision of two equal strength shocks with P = 0.1. Left: density; right: zoom of the collision zone.
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Figure 7: Collision of two equal strength shocks with P = 10−3. Left: density; right: zoom of the collision zone.

with γ = 1.4. The problem has been solved in the interval [0, 1] using 200 grid points and ∆t/∆x = 0.1.
The results obtained at time t = 4 are presented in Figure 8. As it can be noticed, the amplitude of the
oscillations behind the shock are more pronounced for the less dissipative methods, that is, Roe’s, RVM-
Newman-8 and RVM-Halley-4. On the contrary, the FORCE scheme provides a better resolution of the
shock.

Figure 9 shows the behavior of several RVM-Halley-r methods on the top part of the shock. It can
be observed that the amplitude of the oscillations grows as r increases; indeed, for r = 1 the oscillations
dissapear. This fact suggests the idea of designing adaptive RVM-Halley methods that control the amount
of dissipation in terms of the order of approximation of the base rational functions. This idea is currently
under investigation.

4.4. Brio-Wu shock tube problem

Consider the Riemann problem for the MHD system (4.1) with initial data

(ρ, vx, vy, vz, Bx, By, Bz, P ) =

{
(1, 0, 0, 0, 0.75, 1, 0, 1) for x ≤ 0,

(0.125, 0, 0, 0, 0.75,−1, 0, 0.1) for x > 0,

11
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Figure 8: A slowly moving shock wave. Left: density; right: zoom of the top part of the shock.

0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56
x

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.0

ρ

Ref. sol.

Roe

Halley−4

Halley−3

Halley−2

Halley−1

Figure 9: Slowly moving shock: zoom of the top part of the shock computed with RVM-Halley-r for r = 1, 2, 3, 4.

and γ = 2. This test was proposed in [2] to show the formation of a compound wave consisting of an inter-
mediate shock followed by a slow rarefaction wave. For each variable, the solution consists of five constant
states separated by a left-moving fast rarefaction wave, a slow compound wave, a contact discontinuity, a
right-moving slow shock and a right-moving fast rarefaction wave.

The problem has been solved until time t = 0.2 in the interval [−1, 1] with 800 grid points and CFL
number 0.8. It is found that the best results are provided by the RVM-Newman-8 scheme. The results
can be seen in Figure 10, where the reference solution has been computed using Roe’s method with 20000
points. Figure 11 shows the approximations to the density compound wave obtained with several methods.
A comparison between the RVM-Halley-r methods for r = 1, 2, 3, 4, 5 is presented in Figure 12. Finally,
relative CPU times are shown in Table 1, where Roe’s method has been taken as reference time.

It can be concluded that the best results are obtained with the RVM-Newman-8 method, being compa-
rable to those calculated with Roe’s scheme, followed by PVM-Chebyshev-8 and RVM-Halley-2 (in the case

12
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Figure 10: Solutions of the Brio-Wu shock tube problem 4.4. From top to bottom: ρ, vx, By and P .
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Figure 11: Closer view of the compound wave in test 4.4.

of RVM-Halley methods, no improvements in the solutions are seen for greater values of r: see Figure 12),
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Figure 12: Density compound wave in test 4.4: comparison of the solutions obtained with the RVM-Halley-r methods for
r = 1, 2, 3, 4, 5.

Methods Relative CPU times
Roe 1.0
RVM-Newman-8 0.38
RVM-Halley-1 0.31
RVM-Halley-2 0.48
RVM-Halley-3 0.65
RVM-Halley-4 0.82
RVM-Halley-5 1.0
PVM-Chebyshev-8 0.27
HLL 0.08
FORCE 0.1

Table 1: Relative CPU times with respect to Roe’s method for test problem 4.4.

which provide similar results. In any case, the solutions are much better than those computed with the HLL
and FORCE schemes.

4.5. High Mach shock tube problem

This problem was presented in [2] to test the robustness of the numerical schemes for high Mach number
flows. The initial conditions are

(ρ, vx, vy, vz, Bx, By, Bz, P ) =

{
(1, 0, 0, 0, 0, 1, 0, 1000) for x ≤ 0,

(0.125, 0, 0, 0, 0,−1, 0, 0.1) for x > 0,

and we take γ = 2. The Mach number of the right-moving shock is 15.5. The problem has been solved in
[−1, 1] using 200 grid points, CFL coefficient 0.8 and final time t = 0.012. The results are plotted in Figure
13. Again, a reference solution computed using Roe’s method with 20000 points has been considered.
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Figure 13: Results for the high Mach shock tube problem 4.5. From top to bottom: ρ, vx, By and P .

4.6. Non-planar Riemann problem

A non-planar Riemann problem with solution containing two strong rotational waves was proposed in
[20]. The initial conditions are given by

(ρ, vx, vy, vz, Bx, By, Bz, P ) =

{
(1.7, 0, 0, 0, 1.1, 1, 0, 1.7) for x ≤ 0,

(0.2, 0, 0, 1.4968909, 1.1, cosβ, sinβ, 0.2) for x > 0,

where β = 2.3. Notice that although the problem has an unique solution, the initial conditions are close to
initial conditions for which the problem admits non-unique solutions (see [20]). Figure 14 shows the solution
computed in the interval [−1, 1.5] with 800 grid points, CFL number 0.8, γ = 5/3 and final time t = 0.4.

5. The nonconservative case

In this section it is shown how the RVM schemes can be extended to systems of conservation laws including
source terms and nonconservative products, following the guidelines in [7]. The inspiring idea consists in
writing them as general nonconservative hyperbolic systems to which the theory of path-conservative schemes
([15]) is applied, thus providing an automatic treatment of the source and nonconservative terms.

Let us consider a hyperbolic system of conservation laws with source terms and nonconservative products,

∂tw + ∂xF (w) +B(w)∂xw = G(w)∂xH, (5.1)
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Figure 14: Results for the non-planar Riemann problem 4.6. From top to bottom: ρ, vx, vy , vz , By and Bz .

where w(x, t) takes values on an open convex set O ⊂ RN , F : O → RN is a smooth flux function, B : O →
MN (R) is a smooth matricial function, and G : O → RN and H : R → R are given functions. Introducing
the trivial equation ∂tH = 0, system (5.1) can be rewritten as

∂tW +A(W )∂xW = 0, (5.2)
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where W is the augmented vector

W =

(
w
H

)
∈ Ω = O × R ⊂ RN+1

and the matrix A(W ) is given by

A(W ) =

(
A(w) −G(w)

0 0

)
,

with A(w) = J(w) +B(w), J(w) being the Jacobian ∂F
∂w (w).

The definition of weak solutions for system (5.2) strongly depends on the choice of a Lipschitz family
of paths Φ(s;WL,WR) joining arbitrary states WL and WR in the phase space Ω. The interested reader
is referred to [13] for a complete presentation of the related theoretical issues. For a chosen family of
paths Φ, the concept of Roe matrix can be extended to that of Roe linearization ([21]), which is a function
AΦ : Ω× Ω→MN+1(R) verifying:

• AΦ(WL,WR) has N + 1 distinct real eigenvalues, for every WL,WR ∈ Ω.

• AΦ(W,W ) = A(W ), for each W ∈ Ω.

• For any WL,WR ∈ Ω,

AΦ(WL,WR)(WR −WL) =

∫ 1

0

A(Φ(s;WL,WR))
∂Φ

∂s
(s;WL,WR) ds.

Following [16], a Roe linearization for system (5.2) can be constructed as

AΦ(WL,WR) =

(
AΦ(WL,WR) −GΦ(WL,WR)

0 0

)
.

where:

• AΦ(WL,WR) = L(wL, wR) +BΦ(WL,WR), L(wL, wR) being a Roe matrix for the flux F in the usual
sense, that is,

L(wL, wR)(wR − wL) = F (wR)− F (wL).

• BΦ(WL,WR) is a matrix verifying

BΦ(WL,WR)(WR −WL) =

∫ 1

0

B(Φ(s;WL,WR))
∂Φw

∂s
(s;WL,WR) ds,

where Φ = (Φw,ΦH)t.

• GΦ(WL,WR) is a vector satisfying

GΦ(WL,WR)(HR −HL) =

∫ 1

0

G(Φ(s;WL,WR))
∂ΦH

∂s
(s;WL,WR) ds.

The choice of a Roe linearization AΦ allows to define a finite volume scheme for solving (5.2):

Wn+1
i = Wn

i −
∆t

∆x
(D+

i−1/2 +D−i+1/2), (5.3)

with numerical fluxes given by

D±i+1/2 =
1

2
(AΦ(Wn

i ,W
n
i+1)±QΦ(Wn

i ,W
n
i+1)). (5.4)
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The viscosity matrix QΦ(WL,WR) is defined as

QΦ(WL,WR) =

(
QΦ(WL,WR) −QΦ(WL,WR)A−1

Φ (WL,WR)GΦ(WL,WR)
0 0

)
,

where QΦ(WL,WR) is a numerical viscosity matrix for AΦ(WL,WR). Notice that (5.3)-(5.4) is a path-
conservative scheme as defined in [15].

Returning to the original unknown w, the numerical scheme can be written as

wn+1
i = wn

i −
∆t

∆x
(D+

i−1/2 +D−i+1/2), (5.5)

with numerical fluxes given by

D±i+1/2 =
1

2

(
F (wi+1)− F (wi) +Bi+1/2(wi+1 − wi)−Gi+1/2(Hi+1 −Hi)

±Qi+1/2(wi+1 − wi −A−1
i+1/2Gi+1/2(Hi+1 −Hi)

)
,

(5.6)

where Ci+1/2 = CΦ(Wi,Wi+1) for C ∈ {B,G,A,Q} (again, time dependence has been dropped). Notice
that the term

Qi+1/2A
−1
i+1/2Gi+1/2(Hi+1 −Hi)

in (5.6) can be interpreted as the upwinding part of the source term discretization, and it has no sense if
some eigenvalue of Ai+1/2 vanishes. A way to deal with this kind of resonant problems has been proposed
in [7].

The definition of PVM schemes for system (5.1) follows the same guidelines as in the conservative case
(Section 2), that is, the viscosity matrix Qi+1/2 is taken as

Qi+1/2 = P i+1/2
r (Ai+1/2),

where P
i+1/2
r (x) is a polynomial of degree r satisfying the stability conditon (2.6). If P

i+1/2
r (x) has the form

(2.4), the numerical fluxes can be written as

D±i+1/2 =± α
i+1/2
0

2
(wi+1 − wi −A−1

i+1/2Gi+1/2(Hi+1 −Hi))

+

r∑
j=1

δj1 ± αi+1/2
j

2
Aj−1

j+1/2(F (wi+1)− F (wi) +Bi+1/2(wi+1 − wi))

−
r∑

j=1

δj1 ± αi+1/2
j

2
Aj−1

j+1/2Gi+1/2(Hi+1 −Hi).

It is worth noticing that the different choices of P
i+1/2
r (x) considered in Section 2 provide natural extensions

of Roe, Rusanov, Lax-Friedrichs, HLL, FORCE and GFORCE schemes to the nonconservative case.
The extension of RVM schemes to the nonconservative case is completely analogous, just choosing

Qi+1/2 = Ri+1/2(Ai+1/2),

where Ri+1/2(x) is a given rational function satisfying (3.1). Both Newman and Halley rational approxima-
tions will be considered here.
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6. Applications to multilayer stratified shallow flows

The behavior of RVM schemes in the nonconservative case is tested in this section, where the multi-
layer shallow water equations have been considered as a representative model including both source and
nonconservative coupling terms.

The equations governing a multilayer stratified shallow flow are given by ([10])
∂thj + ∂xqj = 0,

∂tqj + ∂x

(
q2
j

hj
+
g

2
h2
j

)
+ ghj∂x

(
zb +

∑
k>j

hk +
∑
k<j

ρk
ρj
hk
)

= 0,

for j = 1, . . . ,m, where m is the number of layers; hj denotes the fluids depths; qj = hjuj are the discharges,
uj being the velocities; zb(x) represents the topography; g is the gravity constant; ρj denotes the density at
the m-th layer, with 0 < ρ1 ≤ · · · ≤ ρm. Notice than that index j = 1 corresponds to the upper layer and
j = m to the lower one.

The system can be written in the nonconservative form (5.1) by taking

w = (w1, . . . , wm)t, wj = (hj , qj)
t, F (w) = (F1, . . . , Fm)t, Fj =

(
qj ,

q2
j

hj
+
g

2
h2
j

)t

,

G(w) = (gh1, . . . , ghm)t, H = Href − zb(x),

where Href is a constant reference height; the matrix B(w) has components Bij(w) defined, for i, j =
1, . . . , 2m, by

Bij(w) =


ρj
ρi
ghi for j = 1 + 2k, k = 0, . . . , i− 2,

ghi for j = 1 + 2k, k = i, . . . ,m− 1,

0 otherwise.

6.1. Stationary transcritical flux with shock for the bilayer shallow water system

The purpose of this test is to study the steady-state convergence to a solution with a shock for the bilayer
shallow water system. The initial condition consists in an internal dam-break problem over a non-flat bottom
defined by

zb =
1

2
e−x

2

, x ∈ [−5, 5].

Specifically, initial conditions q1(x, 0) = q2(x, 0) = 0 and

h1(x, 0) =

{
0.48 for x < 0,

0.5 for x ≥ 0,
h2(x, 0) = 1− h1(x, 0)− zb(x),

have been taken. The stationary state is reached by imposing open wall boundary conditions. The ratio of
densities of this experiment has been chosen as ρ1/ρ2 = 0.99.

The numerical solutions have been computed until time t = 100 using 200 grid points and CFL number
0.9. Table 2 shows the relative CPU times with respect to Roe’s method. Figure 15 shows the results
obtained with Roe’s and RVM-Newman-8 methods, where the reference solution has been computed using
Roe’s method with 3200 points. A comparison between RVM-Newman-8, HLL and FORCE schemes is
shown in Figure 16; as it can be seen, both HLL and FORCE schemes do not resolve the shock properly. A
closer view of the shock computed with several methods is presented in Figure 17.

It should be noticed that, as no entropy-fix has been applied, Roe’s method introduces an artificial shock
at the critical point; this also happens if Rr(x) is used instead of Rε

r(x) in the RVM-Newman-8 scheme (see
Section 3.1). On the contrary, the transition is well resolved by PVM-Chebyshev-8, RVM-Newman-8 and
RVM-Halley-r methods. As it happened in the experiments concerning the equations of ideal MHD (sections
4.4-4.6), the best results are obtained with the RVM-Newman-8 scheme. On the other hand, in the present
case it is necessary to consider RVM-Halley-r methods with r ≥ 4 to achieve satisfactory results: see Figure
18.
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Methods Relative CPU times
Roe 1.0
RVM-Newman-8 0.55
RVM-Halley-1 0.46
RVM-Halley-2 0.67
RVM-Halley-3 0.89
RVM-Halley-4 1.10
RVM-Halley-5 1.32
PVM-Chebyshev-8 0.41
HLL 0.16
FORCE 0.18

Table 2: Relative CPU times with respect to Roe’s method for test problem 6.1.
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Figure 15: Results for test 6.1. Left: free surface, interface and bottom; right: velocities.
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Figure 16: Solutions of test 6.1: comparison between RVM-Newman-8, HLL and FORCE.
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Figure 17: Closer view of the shock at the interface in test 6.1. Left: comparison between three versions of RVM-Newman;
right: comparison between PVM-Chebyshev-8, RVM-Newman-8 and RVM-Halley-5.
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Figure 18: Closer view of the shock in test 6.1: solutions obtained with the RVM-Halley-r schemes for r = 1, 2, 3, 4, 5.

6.2. Internal dam break for a multilayer shallow water system

In this test a double internal dam-break problem for the four-layer (m = 4) model is considered. The
initial conditions are given by

h1(x, 0) =

{
0.9 for x < 0,

0.1 for x ≥ 0,
h2(x, 0) = 1− h1(x, 0), h3(x, 0) = h1(x, 0), h4(x, 0) = h2(x, 0),

and q1(x, 0) = q2(x, 0) = q3(x, 0) = q4(x, 0) = 0, for x ∈ [−5, 5]. Open wall boundary conditions have been
imposed. The ratios of densities have been taken as ρ1/ρ4 = 0.85, ρ2/ρ4 = 0.9 and ρ3/ρ4 = 0.95. The
results can be directly compared with those presented in [10], where this test was proposed.

Figure 19 shows the solutions obtained at t = 5 with 200 grid points and CFL number 0.9. As it can be
seen, the best results are obtained with RVM-Newman-8 and RVM-Halley-5 schemes, being comparable to
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Figure 19: Test 6.2. Left: free surface and interfaces; right: velocities.

those produced by Roe’s method except at x = 0, where the latter presents a small oscillation at the lower
interface near x = 0. The relative CPU times with respect to Roe’s method are 0.8 and 0.3 for, respectively,
RVM-Halley-5 and RVM-Newman-8.

7. Conclusions

A new family of first-order Riemann solvers for general conservative and nonconservative hyperbolic
systems has been introduced. These methods, denoted as RVM, are defined in terms of viscosity matrices
computed by functional evaluations of the Jacobian of the fluxes at some average value (e. g., Roe averages),
using rational uniform approximations to the absolute value function in [−1, 1]. In addition to the Jacobians
of the fluxes, only the maximum in absolute value of the characteristic speeds in each cell or an upper bound
of them is needed. Thus, the resulting approximate Riemann solver is incomplete in the sense that we do
not use the complete spectral decomposition of the Jacobian. Moreover, no entropy-fix is needed for treating
with sonic points.

The new class of RVM Riemann solvers consists of a hierarchy of schemes ranging from the more dissi-
pative to the less dissipative ones, and having as limiting case a Roe-like scheme. Depending on the order
of the approximation of the generating rational function used, the degree of dissipation can be dosed for
particular applications. Two different types of RVM schemes have been proposed, based on Newman-type
and iteratively generated Halley-type rational approximations to the absolute value function. Moreover, a
method based on Chebyshev polynomial approximations has also been considered.

Different initial value Riemann problems for ideal gas dynamics and magnetohydrodynamics have been
considered to examine the behavior of RVM schemes with respect to challenging scenarios in numerical
simulations, including some standard numerical pathologies (e. g., heat conduction, postshock oscillations
and overheating) and the formation of compound waves in ideal MHD. On the other hand, numerical
approximations of several initial value problems for nonconservative multilayer shallow water equations have
been carried out. It has been observed that intermediate waves can be precisely captured for an appropriate
degree of approximation of the generating rational function used. The numerical tests indicate that the
proposed schemes are robust, running stable and accurate with a satisfactory time step restriction, and the
computational cost is more advangeous with respect to schemes that use a complete spectral decomposition
of the Jacobians. Thus, RVM methods provide a serious alternative to Roe’s scheme when approximating
time-dependent solutions in which the spectral decomposition is computationally expensive. Furthermore,
following the ideas in [8, 9] it is possible to use RVM methods as basis for constructing higher order methods
for multidimensional systems. This will be the topic of a research work in progress.
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Appendix

The RVM-Newman-8 method has been applied in the numerical experiments. For the ease of implemen-
tation, the explicit form of the function Rε

8(x) is detailed in this appendix.
A simple calculation shows that the rational function R8(x) can be written as

R8(x) =
a8x

8 + a6x
6 + a4x

4 + a2x
2

x8 + b6x6 + b4x4 + b2x2 + b0
.

If the original definition of the nodes is considered (see Section 3.1), then

a8 = 3.15936173596092 b6 = 4.00790208450847

a6 = 2.66037513232789 b4 = 1.00920540531312

a4 = 0.223933399698289 b2 = 0.0283967795936465

a2 = 0.0018842014579903 b0 = 0.0000502000298516861

while the value of the parameter ε is given by

ε = 0.0073705383650891.

On the other hand, if the Chebyshev nodes are used then

a8 = 5.10114861868916 b6 = 11.0108586149772

a6 = 13.0528938096911 b4 = 9.21524750769325

a4 = 3.91883716338631 b2 = 0.961801777180106

a2 = 0.120551892275778 b0 = 0.00552427172801991

with
ε = 0.0125760117893106.

Finally, the following values correspond to the adjusted Chebyshev nodes:

a8 = 4.0 b6 = 6.5

a6 = 5.5 b4 = 2.578125

a4 = 0.65625 b2 = 0.08203125

a2 = 0.00390625 b0 = 0.000030517578125

and
ε = 0.00203846963093366.

In practice, however, the differences found between the three versions of the method are not noticeable.
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