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Abstract

We integrate the total variation (TV) minimization into the expectation-maximization (EM) algorithm
to perform the task of image segmentation for general vector-valued images. We first propose a unified
variational method to bring together the EM and the TV regularization and to take advantages from both
approaches. The idea is based on operator interchange and constraint optimization. In the second part of
the paper we propose a simple two-phase approach by splitting the above functional into two steps. In the
first phase, a typical EM method can classify pixels into different classes based on the similarity in their
measurements. However, since no local geometric information of the image has yet been incorporated into
the process, such classification in practice gives unsatisfactory segmentation results. In the second phase, the
TV-step obtains the segmentation of the image by applying a TV regularization directly to the clustering
result from EM.

1. Introduction

Image segmentation is a basic yet very important task in image processing and computer vision. A
large body of algorithms has been developed for these applications. One popular group of methods has
been proposed based on partial differential equations (PDE) and variational principles. For example, to
name just a few, [47] has proposed regularizing a grey scale image by the total variation (TV) norm. With
the Level Set Method [42], such norm has also been used to regularize the boundary of different segments
in the geodesic active contour [13] or the Chan-Vese model [16] in image segmentation. Another group of
image processing methods consists of statistical-based approaches, such as wavelet, Markov random fields
(MRF) and so on. Each approach has its own advantage: statistical methods are good at dealing with the
randomness of noise while the PDE and variational methods can incorporate geometric information more
naturally. However, techniques we mentioned above have been developed mostly for grey-level intensity
images. The aim of this paper is to introduce new and efficient algorithms for image segmentation of general
vector-valued images, which combine both variational and statistical approaches. A vector-valued image can
be represented by an image function f : Ω ⊂ R2 7→ Rd, where Ω is the set of all pixels of the image and
each vector component (channel) of f corresponds to a measurement of the image. For color images, d = 3
and the three vector components are red, green and blue color intensities in the RGB model. For texture
images, vector components can be some local geometric features extracted by a bank of Gabor filters. The
dimension of such images might be extremely high and the scales between different channels might not be
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identical. Numerous methods have been proposed to generalize or to extend those techniques from grey-
level images (d = 1) to various vector-valued image (d > 1) processing. Among them, PDE and variational
formulation approaches have been very popular. For example, [48] has proposed the color snake model, while
[15] has also generalized the original active contour without edges to deal with color image segmentation. For
color image denoising, [6] has generalized the original ROF model by defining the so-called color TV-norm.
Based on this color TV-norm, various approaches have been developed in [4, 8, 22]. Extending the color
TV-norm, [17] has recently developed a vector TV-norm for matrix-valued images. In [29], image is regarded
as an embedded surface in R2+d and an area-minimizing flow is used to perform denoising. [56] has applied
level set method to the famous Mumford-Shah model [38]. Generalizing the Mumford-Shah energy, [27] has
proposed a color image segmentation functional based on a vector-valued Allen-Cahn phase-field method. A
general framework for vector-valued regularization with PDE has been proposed in [55]. A recent extension
of this approach has been developed in [46]. Many other PDE-based methods have also been developed
[18, 30, 58, 49, 28, 57, 53], and etc. Recently, some other methods have been proposed to combine EM
algorithm and TV regularization ([10, 59]), mainly for reconstructing images with Possion noise.

Methods mentioned above work well for color images or vector-valued images with more or less a pre-
determined scale for each channel. In particular, one can argue that the weight from each channel are
the same in a color image. However, there is no natural way to define the TV-norm or active contour
models for a general vector-valued image whose channels have different scales that are not known a priori.
In fact, for general high-dimensional data, statistical-based approaches are more natural and their main
advantage is that the randomness information originated from the noise, features in natural images, texture
and so on is explicitly taken into consideration. But unlike the PDE and variational formulation approaches
where geometric features such as edges and boundaries can be dealt with ease, it is not straightforward to
incorporate local geometric information of an image into a statistical model.

One major contribution of this paper is to combine both statistical and variational approaches by a
unified segmentation functional. Theoretically, the fundamental principles of the EM algorithm (which is
statistical) and the TVL1 algorithm (which is variational) are very different and it is not easy to bring
these two concepts together in a natural way. One way to overcome the difficulty is to reinterpret the EM
algorithm using a constraint optimization framework [32, 33]. In this paper, we are going to show that the
EM-TVL1 process corresponds to a saddle point problem. Moreover, searching for such a saddle point with
an alternating minimization algorithm would lead to both the EM step and the regularized TV step. The
proposed EM-TV segmentation algorithm integrates the advantages of both the EM and the TV-based level
set method such as CV model [16]. Compared with EM, this proposed method has a geometrical constraint,
which makes this algorithm robust for noise. On the other hand, compared with the level set method, the
statistical information is taken into the model and it is more suitable for natural images. In addition, our
method can conveniently handle multi-clusters and does not need any extra method to reinitialize the level
set function.

In the second part of the paper, we propose a reduced algorithm by proposing a two-phase algorithm to
decouple the EM phase and the TV regularization step. The main idea is as follows. In this first phase,
regarding f as a set of d-dimensional data, we use statistical method (EM) to classify them into different
classes. Suppose there are K classes. Define u : Ω 7→ {1, 2, · · · ,K} by f(x) belongs to the k-th class, where
k is the labeling of the pixel at x. Next, in step two, we apply the TVL1 model to regularize u into ũ.
Moreover, it can be shown that ũ is again a piecewise constant function like u, i.e., ũ : Ω 7→ {1, 2, · · · ,K}
and hence this regularized classification ũ represents the final image segmentation of f . There are various
nice characteristics of the proposed algorithm. Similar to our earlier work in [31], the proposed method
combines both the local geometry information and the global statistics of vector-valued image. Based on
recent developed fast algorithms for TV-regularization, we can efficiently incorporate local geometry into
the regularization.

The outline of the paper is as follows. In section 2, we first introduce the Gaussian Mixture Model
(GMM) and briefly explain how the classification can be done using the EM algorithm. Then in section 3,
we consider the TVL1 regularization and describe various important properties for our algorithms. In section
4, we first propose a unified functional to naturally combine two approaches into one single energy with four
variables. By applying the convex relaxation technique and the dual method, we solve the resulting saddle
point problem by an alternating minimization algorithm. This gives an efficient EM-TV algorithm for image
segmentation. To simplify this algorithm, we propose in section 5 a two-phase method to decouple the GMM
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and the TV regularization. In section 6, extensive numerical experiments are conducted to demonstrate the
effectiveness of our algorithms.

2. Gaussian mixture model and EM algorithm

Gaussian mixture model (GMM) and EM algorithm have been widely used in image processing community
([12, 64, 43, 25, 19, 62, 63]). For image segmentation, the main idea is to classify the measurement at pixels
by modeling them using a linear mixture of Gaussian distributions. Therefore, the algorithm extracts global
statistics from the whole data set. Another advantage of such segmentation method is that the measurements
at each pixel can be from high dimensions, while the implementation is very simple.

In statistics, a Gaussian mixture model [5, 44, 36] uses a linear mixture of Gaussian distributions to
model the phenomenon of interest. It is particularly well-suited for image segmentation due to its simplicity
and power of representation. Let y ∈ Rd be a d-dimensional measurement vector at a pixel. A GMM models
its distribution using the following form

p(y) =
K∑

k=1

αkpk(y;µk,Σk) with
K∑

k=1

αk = 1, (1)

where K is the total number of mixtures, αk’s are the weights of each Gaussian component, and µk,Σk

are the mean vector and covariance matrix of the k-th Gaussian distribution probability density function pk
respectively. The number of components, K, is usually assumed to be known. Otherwise, it is possible to
use a model selection procedure to determine a good K along with estimations of other model parameters
[44].

The Gaussian assumption is flexible in capturing the image dynamics due to the mixing properties. In
practice, Gaussian or near-Gaussian noises are the most prominent noise types. Furthermore, it is possible
to use nonlinear transformation to make the transformed signal be of more Gaussian mixture-like [7]. We
will show in the experiment section that our algorithms can still get good result even if K is over-estimated.

The Expectation-Maximization (EM) constitutes an efficient algorithm to obtain parameter estimates
in maximizing the likelihood function. Given the image vectors f(x1), · · · ,f(xN ) at the set of pixels
{x1, · · · , xN}. We assume that all the vectors are independent of each other. Suppose the initial guess

for the Gaussian mixture model is α
(0)
k ,µ

(0)
k ,Σ

(0)
k , then the EM algorithm iterates between the following two

steps till the parameter estimates converge (t = 0, 1, . . .) [37]:

• E-step. For i = 1, · · · , N

ϕ
(t+1)
k (xi) =

αkpk(f(xi);µ
(t)
k ,Σ

(t)
k )∑K

l=1 αlpl(f(xi);µ
(t)
l ,Σ

(t)
l )

, (2)

• M-step

α
(t+1)
k =

∑N
i=1 ϕ

(t+1)
k (xi)

N
, µ

(t+1)
k =

∑N
i=1 ϕ

(t+1)
k (xi)f(xi)∑N

i=1 ϕ
(t+1)
k (xi)

,

Σ
(t+1)
k =

∑N
i=1 ϕ

(t+1)
k (xi)(f(xi)− µ

(t)
k )′(f(xi)− µ

(t)
k )∑N

i=1 ϕ
(t+1)
k (xi)

. (3)

After obtaining estimated parameters given the image data, the usual way to segment an image is to classify
pixels into the class (or segment) with the largest conditional probability of each pixel xi:

label(f(xi)) = arg max
1≤k≤K

ϕk(xi) (4)

= arg max
1≤k≤K

αkpk(f(xi);µk,Σk)
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The GMM can be viewed as a global method in the sense that all data contribute evenly to the final
parameter estimate. The EM algorithm is computationally fast; hence, it is suitable for many image or
data analysis. However, one shortcoming of this model is that the statistical model is solely based on the
distribution of the data and the classification does not utilize any neighborhood coherence or geometric
information. Moreover this model does not take into account of any adaptivity ability according to the
local statistic variation. These information might be crucial for image segmentation and other data analysis.
In [31], we have proposed a simple statistical method that directly incorporate adaptivity and spatial and
geometric information, and furthermore, we have combined the EM algorithm and a neighborhood based
penalty mechanism with a variational method in [34]. Using neighborhood and geometric information, such
as local orientation and anisotropy, we have proposed an optimal adaptive local filtering strategy which can
both improve the robustness of the method and also keep fine features in the image. In this paper, however,
we explore some other possibilities in regularizing the classification.

3. TVL1 Model

In this section, we summarize a popular image regularization model for grey-level intensity images which
is based on the TV-norm and an L1 fidelity.

Variational models for image regularization have become very influential since the work by Rudin, Osher
and Fatemi (ROF) [47]. The idea behind the ROF model is to consider the following minimization problem:

inf
v∈BV (Ω)

E2(v, u, λ) where E2(v, u, λ) =
∫
Ω

|∇v| dx+ λ

∫
Ω

|u− v|2 dx (5)

where λ is a positive real parameter, u : Ω ⊂ R2 → R is the original noisy grey scaled image in L2 and
BV (Ω) is the space of all functions with bounded variations on Ω.

However, the standard ROF model (5) has one limitation: it will cause the loss of contrast even for a
noise-free original image - suppose the image is a disk, then the regularized image is the same disk but with
a lower intensity (see [51] for more details). Indeed, significant improvements have recently been made based
on the Bregman iterations [40, 24, 60, 41]. In this paper, however, we will concentrate on the following
related minimization problem. A small but very significant change is to replace the L2 fidelity by a L1

fidelity,

inf
v∈BV (Ω)

E1(v, u, λ) where E1(v, u, λ) =
∫
Ω

|∇v| dx+ λ

∫
Ω

|u− v| dx (6)

for any given image u ∈ L1(Ω). This model usually refers to the TVL1 model and it has been seriously
studied in tremendous literatures, [2, 3, 39, 14] to name just a few.

This model has the following interesting properties which turn out to be desirable for the current appli-
cation:

1. (Affine invariance) Suppose v is a minimizer of E1(·, u, λ). Then for any real numbers a and b, av + b
is a minimizer of E1(·, au+ b, λ).

2. (Contrast invariance) Let g be an increasing C1−diffeomorphism with supR |g′| < +∞. Then v is a
minimizer of E1(·, u, λ) if and only if g ◦ v is a minimizer of E1(·, g ◦ u, λ).

We assume that u is piecewise constant with K levels, i.e.

u =
K∑

k=1

ck · 1Dk
(7)

where D1, . . . , DK are K bounded and disjoint domains that partition Ω and c1, . . . , cK are K distinct
positive real numbers. The following theorem says that there exists a minimizer of E1(·, u, λ) that has the
same form as u.

Theorem 3.1. Suppose u ∈ BV (Ω) is of the form (7). Then there exists a minimizer of E1(·, u, λ) such

that it is of the form
∑K

k=1 ck ·1D′
k
, where D′

1, . . . , D
′
K are K bounded (possibly empty) and disjoint domains

that partition Ω. □
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To prove this theorem, we first need to understand E1(v, u, λ) through the following layer-cake formula
[14]:

E1(v, u, λ) =
∫ +∞

−∞
Per(Vt) + λ|Vt △ Ut|dt (8)

where Vt = {x ∈ Ω|v(x) > t} and Ut = {x ∈ Ω|u(x) > t} are the upper level sets of v and u respectively.
Per(Vt) is the perimeter of Vt, which is well-defined since v ∈ BV (Ω). Vt△Ut is the symmetric difference of Vt
and Ut. Using this formula, we can see that the TVL1 minimization is closely related to the following family
of geometric problems: For any t ∈ R, we denote the following minimization problem Pt : infV⊂R2(Per(V )+
λ|V △ Ut|).

In [21], the following equivalence between Pt and the minimization of E1(·, u, λ) was proved:

Theorem 3.2. Suppose u ∈ L1, the following assertions are equivalent: (i) v is a solution to infv′∈BV E1(v
′
, u, λ).

(ii) The upper level set Vt is a solution to Pt for almost every t.

Having this equivalence, we are ready to prove Theorem 3.1:

Proof 3.1 (Proof of Theorem 3.1). By the contrast invariance property, we can assume u =
∑K

k=1 k·1Dk

without loss of generality. Then let Vk be a solution to Pk−1 for k = 1, 2, . . .K. That is to say, Vk =

argminV⊂R2(Per(V )+λ|U△Ck|) where Ck =
∪K

i=kDi = Uk−1. Let V ′
k =

∪K
i=k Vi for k = 1, 2, . . .K. By the

monotonicity results established in [61], V ′
k is also a solution to Pk−1. Define D′

K = V ′
K and D′

k = V ′
k \V ′

k+1

for k = 1, 2, . . .K − 1. Then let v =
∑K

k=1 k · 1D′
k
. Its level set Vt is V ′

k, where k − 1 ≤ t < k for any
t ∈ [0,K]. By definition, Vt is a solution to Pt. Hence, by Theorem 3.2, v is a minimizer of E1(·, u, λ). □

Unlike the ROF model, the above TVL1 model was not originally designed for image denoising but the
minimization of E1(·, u, λ) can be regarded as a shape regularization process that depends only on λ and the
geometry of Dk, k = 1, . . . ,K, but not on the intensity levels associated to them. Moreover, the parameter
λ corresponds to the scale of the geometry in the following way: as λ decreases, the D′

k will be coarser as
small scale objects will merge to form large scale structures.

4. A Unified Cost Functional for EM-TVL1

In this section, we propose a unified cost functional which naturally combines the GMM-EM algorithm
and the TVL1 regularization. Since the TV regularization is formulated in a variational form, we first
rephrase the EM algorithm with a continuous method. This can be achieved following our previous work
[32] on denoising. The log-likelihood functional derived from the usually GMM based model would contain
a log-sum functional, which makes the related maximum-likelihood estimation (MLE) problem difficult to
be directly optimized. In [32], we note that the difficulty of optimizing a log-sum type functional essentially
comes from the fact that the logarithm and summation operations are in general non-commutative. To
overcome this difficulty, we have introduced a constraint optimization framework with a convex relaxation
method to optimize the log-sum type functional. We have also shown that this constraint optimization
method is intrinsically equivalent to the EM algorithm. In a series of studies, we have generalized and have
extended the idea into various applications including denoising and illumination correction [32, 33].

In this part of the paper, we propose a generalization to incorporate a local geometry constraint for image
segmentation. This particular continuous analysis method can be shown to be well-suited for such extending
of the GMM. We here first recall some key steps of this constraint optimization method and refer interested
readers to [32, 33] for a complete discussion.

In continuous case, the negative log-likelihood functional of the GMM model is given by

L(Θ) = −
∫
Ω

log

K∑
k=1

αkpk(x;µk,Σk)dx, (9)

where Θ = (α1, · · · , αK ,µ1, · · · ,µK ,Σ1, · · · ,ΣK) is a parameter vector. The existence of the log-sum
function makes L non-quadratic even if each pk(x) is a Gaussian function. We notice that the log-sum
operations are commutative if we apply the Lagrangian multiplier method.
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Lemma 4.1. [Commutativity of Log-sum operations, [54, 33]] Given two functions αk(x) > 0, pk(x) > 0,
we have

− log
K∑

k=1

αk(x)pk(x) = min
ϕ(x)∈∆+

{
−

K∑
k=1

log[αk(x)pk(x)]ϕk(x) +
K∑

k=1

ϕk(x) log ϕk(x)

}
,

where ϕ(x) = (ϕ1(x), ϕ2(x), · · · , ϕK(x)) is a vector-valued function, and

∆+ =

{
ϕ(x) : 0 < ϕk(x) < 1, and

K∑
k=1

ϕk(x) = 1

}

is a convex relaxation of a characteristic function decomposition.

Now, since the logarithm and summation operations can be interchanged, L becomes a quadratic function and
can now be optimized easily. Applying this lemma, we obtain a new functional H(ϕ,Θ) with an additional
variable ϕ

H(ϕ,Θ) = −
∫
Ω

K∑
k=1

[log pk(x) + logαk(x)]ϕk(x)dx+

∫
Ω

K∑
k=1

ϕk(x) log ϕk(x)dx,

and we find a minimizer of L by minimizing H instead. The following proposition from [33] shows that both
L and H have the same global minimizer:

Proposition 4.1. Both H(ϕ,Θ) and L(Θ) have the same global minimizer Θ∗ if ϕ ∈ ∆+.

Moreover, if we minimize this new functional using the following alternative minimization scheme
ϕ(t+1) = argmin

ϕ∈∆+

H(ϕ,Θ(t)),

Θ(t+1) = argmin
Θ

H(ϕ(t+1),Θ),
(10)

we can also show that minimizing H will lead to the descent of L and, therefore, this guarantees the local
convergence of the iteration scheme (10) [33].

Proposition 4.2 (Energy Descent). The sequence Θ(t) produced by iteration scheme (10) satisfies

L(Θ(t+1)) ⩽ L(Θ(t)).

Let us point out that the first step in scheme (10) is in fact the E-step in the EM algorithm, and the
second step corresponds to the M-step: substituting pk with a Gaussian function into H, we have

ϕ
(t+1)
k (x) =

α
(t)
k pk(f(x);µ

(t)
k ,Σ

(t)
k )∑K

l=1 α
(t)
l pl(f(x);µ

(t)
l ,Σ

(t)
l )

,

α
(t+1)
k =

∫
Ω
ϕ
(t+1)
k (x)dx∫
Ω
1dx

,

µ
(t+1)
k =

∫
Ω
ϕ
(t+1)
k (x)f(x)dx∫

Ω
ϕ
(t+1)
k (x)dx

,

Σ
(t+1)
k =

∫
Ω
ϕ
(t+1)
k (x)(f(x)− µ

(t)
k )

′
(f(x)− µ

(t)
k )dx∫

Ω
ϕ
(t+1)
k (x)dx

,

(11)

which is the same as the iteration scheme of the EM algorithm in section 2.
In this paper, we propose to extend this approach in [33] by utilizing geometric information such as

TV regularization into the EM algorithm. Results from the GMM-EM model can be easily regularized by
constraining the function ϕ, and we get the following regularized functional based on the GMM model H
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we discussed above
E(ϕ,Θ) = H(ϕ,Θ) + λTV(ϕ). (12)

Note that each ϕk in equation (11) is actually a smoothed characteristic function which is related to the
classification results. To be precise, if each Gaussian function pk is a delta function (corresponds to Σk goes
to 0), then following (11), every ϕk would be a characteristic function given by

ϕk(x) =

{
1, f(x) = µk,
0, else.

Here Σk actually controls the width of the interface between 0 and 1. In particular, if f is a piecewise
constant image, then each Σk = 0 and the clustering results ϕk would be binary, and it also coincides
with k-means segmentation method. Like the well-known level set method, the total variation of ϕ in (11)
approximates the length of the boundaries of clusters. Therefore, the geometrical constraints such as the
smoothness of clusters boundaries can be realized by imposing a TV regularization on ϕ.

Unfortunately, this energy is difficult to optimize since the linear structures of ϕ is destroyed by the
newly added TV term. As a result, we cannot follow the same procedure as in [32] and directly employ the
iteration scheme (10) since there is no close-formed solution for each ϕ(t+1). To obtain a simple iterative
scheme for ϕ(t+1), we propose the following splitting technique and the dual method.

We first introduce an auxiliary variable v which gives the following constraint minimizing problem

min
ϕ,Θ,v

{H(ϕ,Θ) + λTV(v)} s.t. v = ϕ .

Using the penalty technique, we obtain the unconstraint problem

min
ϕ,Θ,v

{H(ϕ,Θ) + λTV(v) + η||ϕ− v||1},

where η > 0 is a penalty parameter and || · ||1 is the L1 norm. Indeed, one natural choice of the norm in the
penalty term is the quadratic penalty ||ϕ− v||22. However, when we minimize the functional with respect to
ϕ, such choice will still destroy the close-form solution. Even though the L1 norm is non-differentiable at 0
so minimizing it directly would not be easy, the dual representation of Lp norm (see e.g. [35]) can help us
to overcome the problem.

Lemma 4.2. [Dual representation of Lp norm] Let φ : RK 7→ R is a convex function, C ⊂ RK is a convex
set and φ∗ is the Fenchel transform of φ, i.e. φ∗(y) = sup

x∈C
{⟨x,y⟩−φ(x)}, then φ(x) = sup

y∈C∗
{⟨x,y⟩−φ∗(y)},

where C∗ is the conjugate set defined by C∗ = {y ∈ RK | sup
x∈C

{⟨x,y⟩−φ(x)} <∞}. Specially, if φ(x) = ||x||p,

then ||x||p = sup
y∈C∗

⟨x,y⟩, in which C∗ = {y ∈ RK | ||y||q ⩽ 1, 1p + 1
q = 1}. Here p = 1 or 2 and q = ∞ if

p = 1.

By applying Lemma 4.2, we get

min
ϕ,Θ,v

{H(ϕ,Θ) + λTV(v) + η

∫
Ω

||ϕ(x)− v(x)||pdx}

= min
ϕ,Θ,v

{H(ϕ,Θ) + λTV(v) + η

∫
Ω

sup
||d(x)||q⩽1

⟨ϕ(x)− v(x),d(x)⟩dx}

= min
ϕ,Θ,v

sup
||d||∞⩽1

{H(ϕ,Θ) + λTV(v) + η

∫
Ω

⟨ϕ(x)− v(x),d(x)⟩dx} ,

where ||d||∞ ≜ max
x

{||d(x)||q}.
Let us denote

E(ϕ,Θ,v,d) = H(ϕ,Θ) + λTV(v) + η

∫
Ω

⟨ϕ(x)− v(x),d(x)⟩dx .
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Then the primal problem is to find a saddle point of E with all constraint conditions ϕ,v ∈ ∆+, and
||d||∞ ⩽ 1, which can be easily solved by applying the following alternating method.

ϕ(t+1) = argmin
ϕ∈∆+

E(ϕ,Θ(t),v(t),d(t)), (13)

Θ(t+1) = argmin
Θ

E(ϕ(t+1),Θ,v(t),d(t)), (14)

v(t+1) = argmin
v∈∆+

E(ϕ(t+1),Θ(t+1),v,d(t)), (15)

d(t+1) = argmax
||d||∞⩽1

E(ϕ(t+1),Θ(t+1),v(t+1),d). (16)

The subproblems (13)- (16) can be efficiently implemented by some existing algorithms: the solutions of
subproblems (13) and (14) are the same as the EM iteration (11) except for

ϕ
(t+1)
k (x) =

α
(t)
k pk(f(x);µ

(t)
k ,Σ

(t)
k ) exp{−ηd(t)k (x)}∑K

l=1 α
(t)
l pl(f(x);µ

(t)
l ,Σ

(t)
l ) exp{−ηd(t)l (x)}

. (17)

As to subproblem (15), it is very similar to the TVL1 model except that the L1 norm is now replaced by
a linear data term together with a constraint v ∈ ∆+. Such constraint condition is very important since
the minimizer of subproblem (15) would be infinity if we remove the condition 0 < vk(x) < 1. In practice,
we relax 0 < vk(x) < 1 to 0 ⩽ vk(x) ⩽ 1 in order to obtain a close-formed scheme. Note that if K = 2,
(15) becomes a two-phase partition and it would be reduced to the global convex segmentation as in [9]. In
recent years, many fast and efficient algorithms have developed for TV regularization, such as split Bregman
method [24, 23], operator splitting [50], augmented Lagrangian method[52] and etc. In this part of the paper,
we use the split Bregman method to solve for v(t+1). Let us emphasize that the constraint v ∈ ∆+ can
be kept by the Lagrangian multiplier method in the split Bregman iteration scheme. Concerning the last
subproblem, since E is just a linear functional with respect to d, we can obtain a closed-form expression for
solving d(t+1). By using Holder’s inequality, we have∫

Ω

⟨ϕ(t+1)(x)− v(t+1)(x),d(x)⟩dx ⩽
∫
Ω

||ϕ(t+1)(x)− v(t+1)(x)||p||d(x)||qdx

⩽ ||d||∞
∫
Ω

||ϕ(t+1)(x)− v(t+1)(x)||pdx

⩽
∫
Ω

||ϕ(t+1)(x)− v(t+1)(x)||pdx .

Therefore, we conclude that {
dt+1
k (x) =

ϕ
(t+1)
k (x)−v

(t+1)
k (x)

N , N ̸= 0,
dt+1
k (x) = 0, N = 0

(18)

is a maximizer of subproblem (16). Here N = |ϕ(t+1)
k (x) − v

(t+1)
k (x)| for p = 1 and N = ||ϕ(t+1)(x) −

v(t+1)(x)||2 when p = 2,
To end this section, we summarize our algorithm as follows:

Algorithm 4.1 (EM-TV algorithm for segmentation). Choose an initial Θ0, set d0 = 0, for t =

1, 2, · · · . Repeat the following steps until ||v(t+1)−v(t)||2
||v(t)||2

< 10−3.

1. E-step: find ϕ(t+1) using equation (17).

2. M-step: update parameter Θ(t+1) according to the last three equations in (11).

3. TV-step: find v(t+1) in (15) using split Bregman iteration.

4. Dual-step: calculate the dual variable d(t+1) by equation (18).
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5. A Splitting Algorithm for Segmentation

As described in section 2, since the GMM model is based solely on the distribution of the measurements,
the classification u from the typical GMM does not utilize any local geometric information and hence the
function u might contain many unwanted fine features. Applying the algorithm we proposed in the previous
section, this labeling process is regularized geometrically by imposing the TV term for the function ϕ such
that label(f(xi)) = {k : ϕk(xi) = 1}. In other words, we can introduce u : Ω → {1, . . . ,K} such that

u =
∑K

k=1 k · 1Dk
where Dk = {xi ∈ Ω : label(f(xi)) = k}. Note however that the function value of u

itself has no other meaning than providing a labeling for each pixel. For instance, we might introduce a
permutation P : {1, · · · ,K} → {1, · · · ,K} and write u′ = P (u) =

∑K
k=1 P (k) ·1Dk

. For a given pixel xi ∈ Ω,
u(xi) ̸= u′(xi) in general. However, any two pixels xi and xj with u(xi) = u(xj) implies u′(xi) = u′(xj).

Unlike regularizing the measurement vectors in Rd where different components may have different scales,
this generalization of TV from a scale function to a vector ϕ is natural since each component of this RK

vector is a (smoothed) characteristic function and, therefore, these channels are of the same scale.
In this part, we propose to simplify the above unified function by decoupling the GMM and the TV

regularization. We first interpret the minimizer from the function H(ϕ,Θ) in equation (12) as a preliminary
segmentation of the image. For the geometry constraint, we propose not to impose the regularity penalty on
ϕ (using TV(ϕ)) which is a vector in RK , but directly on the scalar labeling function u(xi) = label(f(xi)) =
{k : ϕk(xi) = 1}. Since u corresponds to the preliminary classification, this labeling function is simply a
scalar function independent of the dimension of the measurement d or the number of classifications K. A
similar two-phase approach has been proposed recently in [31] which combines the global statistics from the
GMM with neighborhood coherence or local geometric information such as local probability distribution,
orientation and anisotropy. However, such algorithm requires computations directly on all measurements
and, therefore, the complexity of the resulting algorithm depends on the dimension of the vector-valued
image. This could cause computational difficulties when dealing with vector-valued images in extremely
high dimensions. There are many well-developed fast algorithms that can be utilized to speed up the TV
regularization process for a scalar function, and this simplification gives a computationally more efficient
algorithm. In particular, because of these realtime algorithms for TVL1 algorithms, we can easily regularize
the classification from the EM for a wide range of λ’s and the user can then pick a suitable solution for any
particular application.

Mathematically, we solve the following minimization problem: infv∈BV (Ω) E1(v, u, λ). By Theorem 3.1,

we already see that there exists a minimizer ũ which is of the same form as u, ũ =
∑K

k=1 k · 1D′
k
where

D′
1, . . . , D

′
K are bounded and disjoint domains in Ω. Therefore, ũ represents the required image segmentation

of the vector-valued image u. Moreover, it can be shown thatD′
k is generally smoother thanDk. For example,

the following result stems from Remark 1.5.2 in [1]:

Theorem 5.1. Suppose u =
∑K

k=1 k · 1Dk
∈ BV (Ω) and ũ =

∑K
k=1 k · 1D′

k
is a minimizer of E1(·, u, λ).

Then for any positive real number y, the boundary of U = {ũ > y} coincides with the reduced boundary ∂∗U
of U in the sense that H1(∂U \ ∂∗U) = 0, and the latter is a C1,1 curve.

Applying this theorem, it can be deduced that if D1, . . . , DK are sets of finite perimeter, each D′
k has a

C1,1 boundary outside a set of singular points which has 1-dimensional Hausdorff measure zero. Moreover,
it is known that by decreasing the value of the parameter λ, tiny objects in the preliminary segmentation of
the image will be destroyed progressively [21, 61]. Unwanted details of Dk can be eliminated by choosing a
suitable value of λ. Therefore, the choice of λ depends on how much fine scale details one wants to preserve
in the segmentation. In practice, such parameter would depend on the type and the variance of noise in the
image, and therefore it will be chosen for different applications in a case-by-case manner. These are desirable
properties for a good image segmentation.

Here we consider the following question: is TVL1 minimization of u invariant under a permutation
of the labeling of the pixels? That is to say, given any permutation P : {1, · · · ,K} → {1, · · · ,K}, if

ũ =
∑K

k=1 k · 1D′
k
is a minimizer of E1(·, u, λ), is P (ũ) a minimizer of E1(·, P (u), λ)? This is true for almost

all x ∈ Ω except for a small set of pixels depending on the regularization parameter λ. We consider the
following simple example as shown in Figure 1: Let u = 3 ·1Ω\(D2∪D3)+2 ·1D2

+1D3 , where D2 and D3 are
rectangles that share a common side and P be the transposition of 1 and 2. Then we can see from the figures

9



(a) (b)

(c) (d)

Figure 1: (a) The image of u, (b) the image of P (u), (c) TVL1 minimization of u, and (d) TVL1 minimization of P (u). The
TVL1 regularization is invariant under a permutation of labeling except in a small set of pixels.

that the discrepancy between P (ũ) and a minimizer of E1(·, P (u), λ) occurs only near the common corners
of two rectangles. More precisely, P (ũ) and the minimizer of E1(·, P (u), λ) are equal on the set of all pixels
x such that the open ball B(x, r) (centered at x with radius r) contains pixels from at most two classes for
some r > 4/λ (see [21]). Segmentation result in this particular example might be improved by replacing the
TV norm by the anisotropic TV

∫
|ux|+ |uy|dΩ. However such norm is not rotational invariant and similar

problem will occur for a T-junction making a non-zero angle with the x- or y-axis.
This splitting algorithm is different from the unified algorithm in various ways. The first is that the energy

TV(ϕ) in general has a different value than TV(u) where u(xi) = {k : ϕk(xi) = 1}. In particular, ∥ϕ(xi)−
ϕ(xj)∥2 =

√
2 if two adjacent pixels xi and xj are in different classes, while the quantity |u(xi)−u(xj)| would

depend on the initial labels. If each ϕk is a characteristic function of Dk for any partition Ω =
∪K

k=1Dk,

then L1-norm TV(ϕ) =
∫
Ω

∑K
k=1 |∇ϕk|dx =

∑K
k=1 length(∂Dk), which is 2 times of the length of the

clusters boundaries. But TV(u) do not have this property in general case. Another major influence of the
approximation is that the global statistics will not be updated according to the local geometry anymore
in this algorithm. Unlike the unified algorithm where we minimize both information through one single
functional, the decoupling in the reduced algorithm does not allow the geometry to improve the statistical
estimates from the GMM. One interesting improvement of this simplified approach is to feedback the local
geometry information to the EM classification by following a similar idea as in [31] to iterate between the
GMM-EM and the TVL1 regularization.

Here we end the section by summarizing the algorithm.

Algorithm 5.1 (A simplified EM-TV algorithm for segmentation). Choose an initial α
(0)
k ,µ

(0)
k ,Σ

(0)
k .

1. EM-Phase: Iterate (2-3) until convergence.
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(a) (b)

(c) (d)

Figure 2: (a) The clean image, (b) the noisy image (additive Gaussian noise: σ = 77), (c) the segmentation using Algorithm
4.1, (d) the segmentation using Algorithm 5.1.

2. TV-Phase: Let u = label(f) according to (4). The regularized classification is given by

ũ = argmin
v

{∫
|∇v| dx+ λ|u− v| dx

}
.

6. Numerical Experiment

The first example is a synthetic color 128-by-128 pixels image consisting of three geometric objects.
Gaussian noise of standard deviation σ = 77 is added to each of the channels, as shown in Figure 2(b). In
this example, we will demonstrate that our algorithm can eliminate any unnecessary classification class even
if we have over-estimated the number of classes K in the EM classification. We use our algorithm to segment
the image into four classes (i.e. K = 4). Since the segmentation is based on the similarity in pixel color,
the correct number of segments is actually 3 which implies that K = 4 over-estimates the required groups
for segmentation. Both the unified functional in Algorithm 4.1 and the reduced approach in Algorithm 5.1
can both eliminate this extra unwanted class in the final classification, as shown in Figure 2 (c) and (d).
Figure 3 shows several more color image examples where d = 3. As we can see from these solutions, the
unified algorithm and the simplified algorithm do generate different segmentation results. However, both are
qualitatively acceptable results.

The second example is to evaluate the segmentation accuracy of the two proposed algorithms. We
consider a synthetic image (Figure4(a)) corrupted by the Gaussian noise with different standard deviation
(σ). To evaluate the performances of different segmentation algorithms, we partition these images using
various algorithms and then calculate the following segmentation accuracy index (SAI)

SAI =
Na

Nt
,

11



(a)

(b)

(c)

(d)

Figure 3: (a) Original images. (b) Segmentation results by GMM-EM. (c) Segmentation results by Algorithm 4.1. (d) Segmen-
tation results by Algorithm 5.1. In these examples, we choose K = 2, 4 and 5, respectively.

where Na is the number of the correctly classified pixels, and Nt stands for the total number of the image.
In these experiments, the ground truth segmentation image is given by Figure4(c). Since the segmentation
results depend on the choice of regularization parameters, thus for each implementation in these experiments,
we test on a wide range of parameters values for each algorithm and report only the highest SAI values in
Table1. As can be seen from this table, the segmentation accuracy using the TV regularization is significantly
better than that from the simple EM algorithm.

Compared to the scalar valued function TV(v) in Algorithm 5.1, TV(ϕ) in algorithm 4.1 is a vector-
valued TV norm and thus it will be more computational expensive to minimize it. In this experiment, to
partition the 128 × 128 size image into 4 classes, the average CPU times for Algorithm 4.1 and Algorithm
5.1 are approximately 0.9 second and 0.7 second, respectively.

The third example is a noisy greyscale texture image of 250-by-250 pixels formed by patching images of
three different textures, as shown in Figure 5(a-b). To segment the image according to the texture rather
than the intensity level, we first extract the texture features of the image using the Gabor filters. A 2D
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Noise levels SAI
σ EM Alg. 4.1 Alg. 5.1
50 0.9887 0.9996 0.9989
70 0.8703 0.9967 0.9959
100 0.7330 0.9872 0.9935
150 0.5505 0.9602 0.9606

Table 1: Segmentation accuracy index (SAI) of different algorithms under different levels of noise with standard deviation σ.

(a) (b) (c) (c)

Figure 4: (a) The clean image, (b) the noisy image (additive Gaussian noise: σ = 70), (c) the ground truth segmentation, (d)
the segmentation results with the proposed method (K=4,Alg. 4.1).

Gabor filter is a linear filter whose kernel G is a Gaussian function modulated by a sinusoidal plane wave:

G(x, y) = e

(
− x′2+γ2y′2

2σ2

)
cos

(
2π
x′

ξ
+ ψ

)
(19)

where (x′, y′) is the clockwise rotation of (x, y) about (0, 0) by angle θ, σ2 is the variance of the Gaussian
function, ξ is the wavelength of the sinusoidal function, ψ is the phase of the sinusoidal function, and γ is the
spatial aspect ratio which specifies the ellipticity of the support of the Gabor function. Let f = (f1, . . . , fd).
Then for any chosen parameter vector a = (ξ, θ, γ, σ, ψ), we have f ia = f i ∗G for i = 1, . . . , d. Suppose there
are m parameter vectors a1, . . . , am. Then we define w : Ω → Rmd by

w = (f1a1
, . . . , f1am

, . . . , fda1
, . . . , fdam

) .

Therefore, w is a high-dimensional vector-valued image that we will use as the input to our algorithms.
Indeed different bank of Gabor filters might lead to different results, we will not concentrate on this issue
but will refer interested readers to, for example, [26, 20, 45]. In this example, we choose the parameters
θ = 0◦, 30◦, 60◦, 90◦, 120◦, 150◦, ξ = 4, 5, 6, γ = σ = 1. This implies that we construct an associated vector-
valued image f : Ω → Rd with d = 18. We set K = 4 in the first phase of our algorithm and λ = 0.5
in the second phase of the algorithm. Since the image is formed by combining only three different texture
patches, K = 4 over-estimates the required groups for segmentation. Results from Algorithm 4.1, the usual
EM algorithm and also Algorithm 5.1 are shown in Figure 5 (c) to (e), respectively. Pixels corresponding
to the same class are plotted in the same intensity color. The image is classified into 3 classes according to
their texture patterns after the TV-L1 regularization and the remaining class contains no pixel.

The last segmentation example is a noisy synthetic four-dimensional image of 128-by-128 pixels f : Ω →
R4 such that f = (f1, f2, f3, f4) where f1, f2 and f3 are the color channels with intensity level between 0 and
255, and f4 is the angle of the associated unit vector field such that 0 ≤ f4 ≤ 2π. Gaussian noise with the
standard deviation of σ = 76.5 is added to each of those color channels and that with the standard deviation
of 3π/20 to the fourth channel. Notice that the noise added to all four channels are of the same scaling. In
this example, we show the image by plotting each pixel in color (which takes care of the first three channels)
and on each pixel we draw also the unit vector given by (cos f4, sin f4). To better visualize the data, we
sub-sample both the clean and noise images so that only 50-by-50 pixels are shown in Figure 6(a) and (b)
respectively. The solution from Algorithm 4.1 is shown in 6(c). The classification from the EM algorithm,
with K = 16, is shown in Figure 6(d). Similar to previous results, since the usual EM algorithm does not
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(a) (b)

(c) (d)

(e)

Figure 5: (a) The clean image, (b) the noisy image (additive Gaussian noise: σ = 51), (c) the segmentation using Algorithm
4.1, (d) the classification by EM, and (e) the segmentation using Algorithm 5.1.

have local information in the classification, there are isolated pixels in the segmentation result. The output
from the second step of Algorithm 5.1 is shown in Figure 6(e). Our algorithms classifies the image decently
into 7 main classes while all other classes are empty.

7. Conclusion

In this paper, we propose two efficient segmentation algorithms for both gray and vector-valued images
using the EM algorithm together with the TVL1 regularization. Experiments show that the combination of
the EM algorithm and the TV regularization gives a good segmentation of a variety of vector-valued images.
Unlike straight-forward implementation to regularize the measurements in Rd, we propose in Algorithm 4.1
to impose a TV term on a vector-valued function of length K which acts as a convex relaxation of the
characteristic function decomposition. Experimental results have shown that multi-clusters with statistical
information and geometrical constraint in segmentation phases can be easily handled. To further lower the
dimension of the quantity to be regularized, we propose in Algorithm 5.1 to directly impose the TV constraint
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(a) (b)

(c) (d)

(e)

Figure 6: (a) The clean 4-dimensional image, (b) the noisy image (additive Gaussian noise: σ = 77 and 3π/20 for color channels
and the fourth channel respectively), (c) the classification by Algorithm 4.1, (d) the classification by GMM-EM, and (e) the
segmentation using Algorithm 5.1.
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on the labeling function. These approaches can be naturally extended to other image processing tasks such
as denoising. For example, following the proposed framework, the nonlocal denoising method [11] also can
be regarded as an expectation-maximization process and from this view of point, we can derive some new
models with better statistical information for a variety of noise. This will be the subject of a forthcoming
paper.
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