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A Splitting Algorithm for Image Segmentation on Manifolds Represented by
the Grid based Particle Method

Jun Liu · Shingyu Leung

Abstract We propose a numerical approach to solve variational problems on manifolds represented
by the Grid Based Particle Method (GBPM) recently developed in [20,19,21,18]. In particular, we
propose a splitting algorithm for image segmentation on manifolds represented by unconnected sampling
particles. To develop a fast minimization algorithm, we propose a new splitting method by generalizing
the augmented Lagrangian method (ALM). To efficiently implement the resulting method, we incorporate
with the local polynomial approximations of the manifold in the GBPM. The resulting method is flexible
for segmentation on various manifolds including closed or open or even surfaces which are not orientable.

Keywords Image Segmentation · Manifolds · Convex Relaxation · Operator Splitting · Local
Reconstruction · Eulerian Mesh · Lagrangian Sampling

1 Introduction

Image segmentation aims to partition a given image into several non-overlapping domains based on
statistical similarities such as means, distributions and structure tensors. In the past several decades,
many methods have been proposed to address this issue including the level set methods, expectation
maximization (EM) methods, and graph cut methods etc. The key difficulty of the image segmentation
task is to provide a stable and fast algorithm for working well with low quality images. For example,
the images may contain heavy noise and weak edges. To get a robust segmentation result under noise,
some smoothness constraints of the partitioned domains have to be imposed in the segmentation cost
functional.

For 2D plane and 3D volume images, segmentation can be achieved by minimizing the total variation
(TV) of the characteristic function for the segmented domains since the TV of a characteristic function
equals to the boundary length of an area according to the coarea formula. The Mumford-Shah segmen-
tation model [28] and its variants [6,24,1,8] are examples of high efficient TV regularization models in
image segmentation. However, since the space of the characteristic functions is not convex, segmentation
results obtained by TV-based level set methods such as the popular Chan-Vese model [6] depend heavily
on the choice of the initial guess. To obtain a global minimization in the image segmentation when the
means of the regional intensity are known, [3] has proposed to convexify the model by relaxing the char-
acteristic function from {0, 1} to the interval [0,1]. Combining a recently developed TV minimization
methods [13,38,32], a stable and fast segmentation algorithm for 2D plane and 3D volume images has
been introduced in [12,1,25].

However, the above algorithms have been originally for 2D plane or 3D volume images where given
data are defined over a closed subset of Euclidean space. It could be tricky to generalize these techniques
to images on manifolds depending on the way how the surface is represented.
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One choice to represent the manifold is an explicit formulation where the surface is represented by
triangulation. A recent work [9] extended the convex segmentation model [3] to manifolds using Delaunay
triangulation. It directly solves the degraded nonlinear PDE arises from the segmentation cost functional
on a triangulated mesh. Although it can handle open manifolds, the implementation is slow since the
TV defined on the triangulated manifolds is non-smooth and its associated PDE has a singularity ( See
for example [31,5,27,9,39]).

It worths also to point out a recent paper [17] which works directly on a given point cloud data rep-
resentation. The work proposes a local triangulation method for solving PDE’s and computing integrals.
It is therefore possible to combine with our proposed segmentation algorithm. However, the solution may
depend heavily on the quality of the given data and so we do not further explore this method.

Another class of formulations based on Eulerian representation of the manifold where the surface
is represented implicitly by embedding the manifold into a higher dimensional space using the level
set method [29]. For example, a geodesic curvature flow model and an active contour model have been
proposed in [15] and [16], respectively. Based on the intrinsic gradient and the work in [7], the Chan-Vese
model [6] has been extended to manifolds in [34] by the closest point method [26]. There are advantages of
using such implicit approach. For example, it can easily handle topology changes if the interface evolves
as in image registration. Also, numerical implementation on the underlying uniform mesh is usually easier
than working on the explicit triangulated surface mesh. However, these implicit representations require
to solve PDE not only on the manifold itself, but also have to be in a neighborhood of it. This introduces
extra computational requirements on the algorithm. A more challenging situation is to process images
on open manifolds. For implicit Eulerian methods, there is no natural way to represent open curves and
open surfaces since there is no distinction of interior and exterior regions. Recently, a few approaches have
been proposed for dealing with open curves and surfaces based on the level set method. One approach
was the work of [33] for modeling spiral crystal growth. The author used the intersection of two level
set functions to represent the codimension-two boundary of the open curve or surface. The curve or
surface of interest was implicitly defined as the zero level set of one signed distance function at which
another one was positive, i.e. S = {x : ϕ(x) = 0 and ψ > 0}. However such approach works only with
orientable manifolds. For instance, such approach will not work for surface like Möbius strip. Some other
methods combine the level set method with triangulated mesh technique are proposed in [39,40]. In
[36], an implicit surface representation and domain decomposition methods (DDM) has been proposed
to construct open surfaces and non-orientable surfaces using the graph cut methods. It is possible to
combine the convex relaxation proposed here and DDM to segment images on open and non-orientable
surfaces using the idea in [36]. However, the method still requires a triangulation of the manifold and so
we do not pursue the investigation here.

In this paper, we propose to apply and extend a recently developed interface representation called the
Grid Based Particle Method (GBPM) for modeling dynamic interface [20,19,21,18]. In this approach,
the interface is represented by meshless, i.e., no triangulation or parametrization, Lagrangian particles
which are associated to an underlying uniform or an adaptive Eulerian mesh. We assume that the given
Lagrangian sampling particles are the L2 projection from grid points next to the manifold. This results
in a quasi-uniform sampling of the interface. In this method, the model and the PDE solving are both
directly defined on the sampling points. Since the manifold has been directly represented, thus unlike
some implicit function methods, we do not need any extra steps to determinate the accurate position
of the surfaces. To describe the local topology of the manifolds and to solve PDEs on these sampling
locations, a local fitting method is employed to approximate the manifolds and the derivatives defined
on them.

In order to obtain a stable and fast algorithm, we propose a splitting scheme for a new segmentation
model. The idea is to move the singularity of the TV term in the convex model to a L1-L2 minimization
problem on manifolds, which can then be efficiently solved by a g-shrinkage operator. The Euler-Lagrange
equation from the optimality condition is the Laplace-Beltrami equation on the sampling points. It can
then be solved by the GBPM formulation [18]. A similar approach has been recently proposed to solve
PDEs on point cloud data [23,22]. Our sampling particles could also be interpreted as a special case of a
point cloud representation. However, our local interface approximation is different from the work of [23].

There are several contributions of the paper. First, we propose a new algorithm for image segmentation
on manifolds. Based on the splitting technique, the variational functional can be easily optimized. Because
of the flexible interface representation in the GBPM, our method can be applied to both open and closed
manifolds. We also introduce a method to compute integrals on a surface represented by the GBPM. The
idea is to first convert the GBPM to an implicit distance function representation and then the surface
integral can be converted into a volume integral as in the level set method.
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The rest of the paper is organized as follow. Section 2 summarizes existing methods on perform-
ing image segmentation on manifolds and introduces the GBPM representation of manifolds. Section 3
we propose a new algorithm to minimize the resulting variational functional defined on a given man-
ifold represented by unconnected sampling points in the GBPM formulation. Section 4 contains some
experimental results. Finally, concluding remarks and discussion can be found in section 5.

2 Background

2.1 Convex Segmentation Models on Manifolds

Total variation is a popular constraint in image segmentation because of its ability for removing small
variations while smoothing boundaries between large segments. Many image segmentation methods have
been proposed using TV regularization. For example, the well known Chan-Vese model [6] partitions
an image using the piecewise constants approximation and TV regularization. However, the result from
this model depends heavily on the choice of the initial guess. In order to overcome this difficulty, some
interesting convex models and algorithms for K-phase image segmentation have been recently proposed
in [3] (forK = 2) and [1,4]. The idea is to replace the typical indicator function u ∈ {0, 1} by a continuum
version

E(u) =

∫
Ω

< (f − c)2,u > dx+ λ

∫
Ω

|∇u| dx, (1)

where f : Ω → R is the given image intensity function, λ is a regularization parameter, and c =
(c1, c2, · · · , cK)T contains the mean intensity in each phase. The relaxed classification function u : Ω →
[0, 1]K is restricted on a convex set △+ = {u(x) :

∑K
k=1 uk(x) = 1, 0 ⩽ uk(x) ⩽ 1}, where uk(x) is

the k-th component of u. Since this cost functional is strictly convex, the model has a unique global
minimizer and so the segmentation result does not depend on the choice of the initial parameters.

This convex model has also been extended to manifolds recently in [9]

E(u) =

∫
M
< (f − c)2,u > dM + λ

∫
M

|∇Mu| dM . (2)

Here, the functions f and u are defined on a manifold M instead of a 2D Euclidean domain Ω, | · | is
the Riemannian norm, ∇M is the intrinsic gradient defined on M and dM is the manifolds element
measure.

Numerically, such approach may be difficult since the regularization term in the energy has a singu-
larity at 0, and the Euler-Lagrangian equation from the first order optimality is nonlinear and degraded.
It is, therefore, numerically challenging to directly solve the partial differential equation on the manifold.

2.2 Grid Based Particle Method for Dynamic Interfaces

For the convenience of readers, we give a brief summary of the Grid Based Particle Method (GBPM).
For a complete and detailed description of the algorithm, we refer the readers to [20,19,21,18].

In the GBPM, we represent the interface by meshless particles which are associated to an underlying
Eulerian mesh. Each sampling particle on the interface is chosen to be the closest point from each
underlying grid point in a small neighborhood of the interface. This one to one correspondence gives
each particle an Eulerian reference during the evolution.

At the first step, we define an initial computational tube for active grid points and use their cor-
responding closest points as the sampling particles for the interface. A grid point y is called active if
its distance to the interface is smaller than a given tube radius, ϵ, and we label the set containing all
active grids Γ . To each of these active grid points, we associate the corresponding closest point on the
interface, and denote this point by x. This particle is called the foot-point associated to this active
grid point. Furthermore, we can also compute and store certain Lagrangian information of the inter-
face at the foot-points, including normal, curvature and parametrization, which will be useful in various
applications.

This representation is illustrated in figure 1 (a) using a circular manifold as an example. We plot the
underlying mesh in solid line, all active grids using small circles and their associated foot-points on the
manifold using squares. To each grid point near the interface (blue circles), we associate a foot-point on
the interface (red squares). The relationship of each of these pairs is shown by a solid line link.
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(a) (b)

Fig. 1 (a) Grid Based Particle Method (GBPM) representation. (b) Determining the foot-point using a local least-square
reconstruction of the interface.

More importantly, associated to each of these footpoints and activated grid point, we also have a least
square local approximation of the interface using polynomials in a local coordinate system, {(n)⊥,n}
with x as the origin, figure 1 (b). This will be very useful in solving partial differential equations (PDEs)
on the interface [21,18].

3 The Proposed Method

3.1 The New Splitting Methods on Manifolds

To simplify the following expressions, we only consider the 2-phase segmentation, i.e. K = 2. Together
with the convex relaxation range △+, using the fact that u2 = 1− u1 and rewriting u1 with u, then the
cost functional (2) becomes

E(u, c1, c2) =

∫
M
(f − c1)

2u dM +

∫
M
(f − c2)

2(1− u) dM + λ

∫
M

|∇Mu| dM, (3)

where 0 ⩽ u ⩽ 1.
Instead of dealing with the energy directly, we propose to extend some recently developed operator

splitting methods proposed in [37,38,12,13,32] which have been shown to be very efficient for solving L1

or total variation (TV) minimization problems in the 2-D plane image processing. In these algorithms, the
singularity of L1 norm at 0 is transferred into a shrinkage problem together with a smooth minimization
problem so that one can apply various stable and fast algorithms. Here, we employ the Augmented
Lagrangian Method (ALM) (see e.g. [14]) to minimize the cost functional (3) on manifolds, which is an
extension of ALM for TV [38] on 2D plane images.

In order to overcome the non-smoothness of the L1 Riemannian norm, we have to separate the norm
and the intrinsic gradient operator ∇M. The intrinsic gradient ∇Mu is used to describe the variation
of u on a manifold M. Suppose a surface (or a manifold) M is embedded into the Euclidean space R3,
then ∇Mu is an orthogonal projection of the gradient vector ∇u in the embedding space onto M if u
is well defined on entire R3. Mathematically, the intrinsic gradient has been developed in the level set
method framework [7]

∇Mu = ∇u− < ∇u,N >

|N|2
N =

(
I− N⊗N

|N|2

)
∇u,

where N is the normal vector on M, I stands for the 3× 3 identity matrix, and the symbol ⊗ represents
the Kronecker tensor product. In this paper, we do not intend to directly use this formulation of intrinsic
gradient since it requires the gradient of u in the entire embedding space R3 which is not always available.
On the other hand, if the manifold or surface M in 3D space has a parameterized expression x(s1, s2),
then the intrinsic gradient also can be written as [10]

∇Mu =
(

∂x
∂s1

∂x
∂s2

)(E F
F G

)−1 ( ∂u
∂s1
∂u
∂s2

)
.
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Here E,F,G are the coefficients of the first fundamental form of surface M given by E =< ∂x
∂s1

, ∂x
∂s1

>,

F =< ∂x
∂s1

, ∂x
∂s2

>, G =< ∂x
∂s2

, ∂x
∂s2

>. As a result, one could obtain

|∇Mu| =
√

(∇Mu)T(∇Mu) =

√(
∂u
∂s1

∂u
∂s2

)(E F
F G

)−1 ( ∂u
∂s1
∂u
∂s2

)
=

√
(∇su)T

(
E F
F G

)−1

∇su . (4)

Now we let

g :=

(
E F
F G

)−1

.

Introducing an auxiliary variable v, the variational problem (3) is equivalent to the following constrained
optimization problem for ∇su

min
u∈[0,1],v,c1,c2

{∫
M
(f − c1)

2udM +

∫
M
(f − c2)

2(1− u) dM + λ

∫
M

√
vTgv dM

}
,

such that v = ∇su . (5)

Since g is positive definite for regular surfaces, the condition v = ∇su in (5) can be replaced by
g(v−∇su) = 0. By applying a similar idea as in the ALM (see e.g. [14,38]), the constraint problem (5)
can be further rewritten as the following unconstrained Lagrangian functional for saddle point problem

L(u,v,p, c1, c2) =

∫
M
(f − c1)

2udM +

∫
M
(f − c2)

2(1− u) dM + λ

∫
M

√
vTgv dM

+

∫
M
< p,g(v −∇su) > dM +

η

2

∫
M
(v −∇su)

Tg(v −∇su) dM , (6)

where p is the Lagrangian multiplier, and η is a positive penalty parameter.
Note however that such modification in (6) is not the classical ALM which should be given by

η

2

∫
M
(v −∇su)

TgTg(v −∇su) dM

(such as [14,38]). If one follows this original ALM directly, the sub-minimization problem for v would
have no closed-form solution and it could slow down the convergence of the overall algorithm. On the
other hand, our proposed modification in (6) would lead to a nice simple sub-minimization problem for
v which can be solved easily using shrinkage.

To numerically get a saddle point of L, we use the following alternating minimization algorithm
(un+1,vn+1, cn+1

1 , cn+1
2 ) = argmin

u∈[0,1],v,c1,c2

L(u,v,pn, c1, c2) ,

pn+1 = argmax
p

L(un+1,vn+1,p, cn+1
1 , cn+1

2 ) ,

which can be further reduced into 4 subproblems:

un+1 = argmin
u∈[0,1]

L̃(u,vn,pn, cn1 , c
n
2 ), (7)

vn+1 = argmin
v

L̃(un+1,v,pn, cn1 , c
n
2 ), (8)

(cn+1
1 , cn+1

2 ) = argmin
c1,c2

L̃(un+1,vn+1,pn, c1, c2), (9)

pn+1 = pn +
η

Λmax
g(vn+1 −∇su

n+1), (10)

where Λmax is the maximum eigenvalue of matrix g and L̃ is given by

L̃(u,v,p, c1, c2) =

∫
M
(f − c1)

2udM +

∫
M
(f − c2)

2(1− u) dM + λ

∫
M

√
vTgv dM

+
η

2

∫
M
(v −∇su+

1

η
p)Tg(v −∇su+

1

η
p) dM .

We can prove the following convergence theorem of the above iteration scheme:
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Theorem 1 For any fixed u and c, the sequence (vn,pn) produced by iteration (8) and (10) converges
and vn → ∇su.

Proof 1 See Appendix A for details.

Now, we only need to solve the above three minimization problems to update variables u, v, c1 and c2.
As to the subproblem (7), the associated Euler-Lagrange equation is the surface Laplace equation

− η√
EG− F 2

2∑
i=1

∂

∂si

√
EG− F 2

2∑
j=1

gij
∂u

∂sj

 +
η√

EG− F 2

2∑
i=1

∂

∂si

√
EG− F 2

2∑
j=1

gij(v
n
j +

1

η
pnj )


+(f − c1)

2 − (f − c2)
2
= 0, when u ∈ [0, 1]

(11)
where gij is the ij-th element of the matrix g, and the similar notations for vj and pj . The first term
in the equation is the Laplace-Beltrami operator. We leave in Appendix B a detailed calculation in
obtaining (11) from minimizing the subproblem (7).

The subproblem (8) is a L1 − L2 minimization problem on manifolds which can be efficiently solved
by the following g-shrinkage operator

vn+1 = shrinkg

(
∇su

n+1 − pn

η
,
λ

η

)
=

∇su
n+1 − pn

η

||∇sun+1 − pn

η ||g
max

(
||∇su

n+1 − pn

η
||g − λ

η
, 0

)
, (12)

where ||·||g is a weighted norm with the expression ||z||g =
√
zTgz for any vector z. A detailed derivation

of this g-shrinkage operator can be found in Appendix C. Indeed, there is another splitting scheme for this
subproblem by decomposing g into g̃Tg̃ using, for example, the Cholesky decomposition, and introducing
the condition v = g̃∇su. However, such formulation requires to differentiate g̃ in the subproblem for u
which is complicated.

Finally, the means cn+1
1 and cn+1

2 can be easily updated with

cn+1
1 =

∫
M
fun+1 dM∫

M
un+1 dM

, cn+1
2 =

∫
M
f(1− un+1) dM∫

M
(1− un+1) dM

. (13)

To summarize, we get the following ALM for image segmentation on manifolds:

Algorithm 1 Given initial guess values c01, c
0
2. We set v0 = p0 = 0 and iterate the following steps until

a convergence criterion is reached:
Step 1: calculate un+1 by solving the PDE (11);
Step 2: update vn+1 with the g-shrinkage operator (12);
Step 3: determine the mean vector cn+1 according to (13);
Step 4: find pn+1 using (10).

There are several complications in the above algorithms. The first is that Steps 2 and 4 require
computations of the surface gradient ∇su on the manifold or surface which might be tricky depending
on the manifold representation. The second is to solve the Laplace-Beltrami equation (11) in Step 1.
The third is to compute integrals (13) in Step 3 on a general manifold. Indeed, these problems might be
solved if we are given a surface triangulation. In this paper, however, we propose to apply and extend
a newly developed GBPM proposed in [20,19,21,18] which provides another natural way to solve these
subproblems. Details will be given in the next two subsections.

To end this section, we further note that the image segmentation model is convex if the averages of
the regional intensity are known. Otherwise, it is still possible to obtain a convex relaxation by following
the idea in [2].

3.2 Computing Derivatives and Solving PDE on Manifolds in the GBPM Representation

In this section, we explain how to incorporate the GBPM to compute derivatives of function and to solve
a PDE on manifolds. These ideas will be similar to those proposed in [21,18], but are slightly modified
to better fit the current application. We will explain the difference in details in later paragraphs.
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The GBPM originally proposed in [20] is to model the interface motions. The key idea of GBPM is to
sample the surface according to an underlying mesh such that each sampling particle is a L2 projection
of the grid point in a neighborhood of the interface. Then the function and its derivative defined on
surface can be approximated in a local coordinate system, and thus we can solve various PDEs defined
on an evolving interface represented by particles [21,18].

Assume that we are given a uniform Cartesian mesh in R3 which can well sample the manifold M. For
each grid point yi near the manifold, we assume also that we are given its L2 projection onto the surface.
We call this closest point the foot point and we denote it by xi = (xi1, x

i
2, x

i
3)

T . Further, we assume the
image f is defined on these foot point locations, and we denote it by f i = f(xi). These assumptions are
mild comparing to other representations. For instance, we do not require the connectivity of these foot
points as in the surface triangulation. Also, we do not require to specify the normal vector at these foot
points since it might not be available for non-orientable surface. Equivalent to this condition, we do not
require a global implicit representation as in the level set function.

Now, if the manifold M is smooth, it can be well-approximated by functions such as polynomials
in a local coordinate system in a small local neighborhood of each xi. A detailed description of the
construction is given here:

1. Determine the local neighborhood. For each neighboring grid point yi, we search m nearest activated
grid point yj and collect their associated footpoints. We denote this set {xj}mj=1.

2. Estimate the normal vector of the local coordinate system. We choose a unit direction n = (n1, n2, n3)
T

in R3 which minimizes the sum of the squared differences of all the variation between xj and n. Math-
ematically, we minimize

n = argmin
|ñ|=1

m∑
j=1

(
< xj , ñ > − < xi, ñ >

)2
. (14)

The minimizer of this problem can be determined by finding the eigenvector corresponding to the

smallest eigenvalue of the symmetry matrix H =
∑m

j=1

(
xj − xi

) (
xj − xi

)T
. A simple proof is given

in Appendix D for completeness. Further, if xi is the mean of all the xj (which is not the case in the
current application), (14) is equivalent to the well known principal component analysis (PCA).

3. Construct a coordinate system with the three eigenvectors T1,T2,n of H as the x-axis, y-axis and
z-axis respectively. We denote this coordinate system as {xi;T1,T2,n}.

Once we obtain the local coordinate system, we can easily approximate the metric tensor of manifold
and the derivatives of any function defined on this manifold. In particular, let us assume that the
manifold or the surface in a local neighborhood is approximated by a degree k polynomial. For each xj ,
j = 1, · · · ,m, let x̄j be the new coordinates of xj in the local system {xi;T1,T2,n}, i.e.

x̄j =


n2
1

1+n3
− 1 n1n2

1+n3
n1

n1n2

1+n3

n2
2

1+n3
− 1 n2

n1 n2 n3

(
xj − xi

)
.

Now, assume the underlying manifold is locally quadratic, i.e. x̄3(x̄1, x̄2) ≈
2∑

τ1=0

∑
0⩽τ1+τ2⩽2

ατ1τ2 x̄
τ1
1 x̄

τ2
2 ,

in which ατ1τ2 are some unknown coefficients. For every activated grid point yi near the manifold, these
local coefficients αi

τ1τ2 can be determined by minimizing the following least squares sum:

m∑
j=1

x̄j3 − 2∑
τ1=0

∑
0⩽τ1+τ2⩽2

αi
τ1τ2

(
x̄j1

)τ1 (
x̄j2

)τ2

2

.

Denote
αi =

(
αi
00 α

i
01 α

i
02 α

i
10 α

i
11 α

i
20

)T
,

A =


1 x̄12 (x̄12)

2 x̄11 x̄11x̄
1
2 (x̄11)

2

1 x̄22 (x̄22)
2 x̄21 x̄21x̄

2
2 (x̄21)

2

...
...

...
...

...
...

1 x̄m2 (x̄m2 )2 x̄m1 x̄m1 x̄
m
2 (x̄m1 )2


m×6

,

b =
(
x̄13 x̄

2
3 · · · x̄m3

)T
,
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then this least squares polynomial can be obtained by solving the over-determined linear system

Aαi = b

by the SVD or the QR decomposition.
As a result, the elements of metric tensor Ei, Gi, F i at xi occur in equation (11) can be approximated

using

Ei =< ∂x
∂s1

|x=xi , ∂x
∂s1

|x=xi > =< ∂x
∂x̄1

|x̄=x̄i , ∂x
∂x̄1

|x̄=x̄i > ≈ 1 + (αi
10 + αi

11x̄
i
2 + 2αi

20x̄
i
1)

2,

Gi =< ∂x
∂s2

|x=xi , ∂x
∂s2

|x=xi > =< ∂x
∂x̄2

|x̄=x̄i , ∂x
∂x̄2

|x̄=x̄i > ≈ 1 + (αi
01 + αi

11x̄
i
1 + 2αi

02x̄
i
2)

2,

F i =< ∂x
∂s1

|x=xi , ∂x
∂s2

|x=xi > =< ∂x
∂x̄1

|x̄=x̄i , ∂x
∂x̄2

|x̄=x̄i > ≈ (αi
10 + αi

11x̄
i
2 + 2αi

20x̄
i
1)(α

i
01 + αi

11x̄
i
1 + 2αi

02x̄
i
2).

Similarly, the relaxed classification function u defined on the manifold can be approximated using
least squares approximation [21,18]

u(x̄) ≈
2∑

τ1=0

∑
0⩽τ1+τ2⩽2

βτ1τ2 x̄
τ1
1 x̄

τ2
2 .

Mathematically, we need to solve the least square fitting problem with energy

m∑
j=1,j ̸=i

u(x̄j)−
2∑

τ1=0

∑
0<τ1+τ2⩽2

βi
τ1τ2

(
x̄j1

)τ1 (
x̄j2

)τ2

2

.

The corresponding linear system is given by

Āβi = b̄ ,

where
βi =

(
βi
01 β

i
02 β

i
10 β

i
11 β

i
20

)T
,

Ā =


x̄12 (x̄12)

2 x̄11 x̄11x̄
1
2 (x̄11)

2

x̄22 (x̄22)
2 x̄21 x̄21x̄

2
2 (x̄21)

2

...
...

...
...

...
...

x̄m2 (x̄m2 )2 x̄m1 x̄m1 x̄
m
2 (x̄m1 )2


(m−1)×5

,

b̄ =
(
u(x̄1) u(x̄2) · · · u(x̄m)

)T
.

In the above approximation, we let the fitting quadratic surface through the point (0, 0, u(x̄i)) and this
leads to βi

00 = u(x̄i).
Once these coefficients βi are determined, the derivatives of u at xi can be approximated by

∂u
∂s1

|x=xi = ∂u
∂x̄1

|x̄=x̄i ≈ βi
10 + βi

11x̄
i
2 + 2βi

20x̄
i
1,

∂u
∂s2

|x=xi = ∂u
∂x̄2

|x̄=x̄i ≈ βi
01 + βi

11x̄
i
1 + 2βi

02x̄
i
2,

∂2u
∂s1∂s2

|x=xi = ∂2u
∂x̄1∂x̄2

|x̄=x̄i ≈ βi
11,

∂2u
∂s21

|x=xi = ∂2u
∂x̄2

1
|x̄=x̄i ≈ 2βi

20,
∂2u
∂s22

|x=xi = ∂2u
∂x̄2

2
|x̄=x̄i ≈ 2βi

02.

Similarly, we can approximate the first order derivative of vnj + 1
ηp

n
j in equation (11) using exactly the

same strategy. With all these ingredients, we solve the PDE (11) using the gradient descent, i.e. we
introduce a pseudo-time t and update u using the following iteration

(ui)n1+1 = (ui)n1 +∆t(∆ui)n1 (15)

for some inner iteration index n1. Using the GBPM, all derivatives in the gradient descent update
∆ui can be represented using the coefficients of the second-degree polynomial in the local least-squares
approximation. The explicit formulation is given in Appendix E for completeness.

In practice, we do not obtain the steady state solution of the gradient descent equation to get un+1

in Step 1 of Algorithm 1, but only perform several inner iterations in (15). Similar treatment can be
found in the split Bregman iterations [12,13]. One motivation is that the outer iteration only provides
an intermediate solution to the final minimizer to (3). It is unnecessary to obtain the exact minimizers
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in these inner iterations. Moreover, we impose the convex relaxation condition u ∈ [0, 1] in this inner
iteration step, which leads to the following projection gradient descent method

(ui)n1+1 = Proj[0,1]
(
(ui)n1 +∆t(∆ui)n1

)
= min{max{(ui)n1 +∆t(∆ui)n1 , 0}, 1}. (16)

In this paper, the inner iteration number is fixed as 1, which already provides good results for image
segmentation according to our experiments.

There are some similarities and differences of the current approach comparing to the original GBPM
in [20,19,21,18] and also a recent approach for point cloud data in [23]. Similar to the original GBPM, we
have a local polynomial least squares approximation to the interface in a local coordinate system for each
grid point on a neighborhood of the interface. However, in the GBPM, we computed the L2 projection
of the active grid point onto the local polynomial. The current approach assumes, on the other hand,
that we are given the closest point x on the interface from any active grid point y. And then we use
these sampling points to construct the corresponding least square polynomial by constraining that the
local polynomial contains the closest point x. [23] has proposed to solve PDEs on manifolds by obtaining
an approximation to the local metric using a similar idea as in the original GBPM. Therefore, the local
reconstruction might not pass through it’s associated point cloud data location at all.

3.3 Computing Integrals on Manifolds in the GBPM Representation

In this subsection, we introduce a numerical approach to perform numerical integration on surfaces
represented in the GBPM without constructing a triangulation of the manifold. The idea is based on the
level set formulation where a surface integration is approximated by a volume integral using a smoothed
delta-function ∫

M
f(s) ds =

∫
Ω

f(y)δ(ϕ) dy , (17)

where the curve M contained in a domain Ω is represented by the zero level set of a signed distance
function ϕ : Ω → R (i.e. |∇ϕ| = 1), the function f(y) is an extension of f(s) from the interface to the
whole domain Ω, and the function δ(·) is the Dirac delta function. Numerically, this delta function has
to be smoothed over several ∆y [30]. For example, one might use

δϵ(ϕ) =

{
0 , |ϕ| > ϵ
1
2ϵ +

1
2ϵ cos

(
πϕ
ϵ

)
, |ϕ| ≤ ϵ

for ϵ = 1.5∆y. Note that in this integral formulation, the sign of the level set function plays no role at
all. For a more detailed analysis of the approximation, we refer interested readers to [35,11].

To approximate (17) in the current application, we first convert the GBPM representation to the
distance function representation within ϵ-distance from the interface, i.e. we will activate any grid point
which has distance from it’s foot point less than ϵ = 1.5∆y. This is simple in the GBPM since the foot
point xi is defined to be the L2 projection of the activated grid point yi onto the interface M, which
means the distance function |ϕi| = ∥xi −yi∥2. Because the sign of the level set function is not needed in
the evaluation, there is no need to determine the normal vector at the foot-points in practice.

Next, the level set formulation (17) requires an extension of f from M to Ω, at least in the ϵ-
neighborhood of M. A natural way to do this is the orthogonal extension. Once again, since xi is the
L2 projection of yi onto M, we simply use f(yi) = f(xi). To conclusion, we approximate the surface
integral (17) using ∫

M
f(s)ds ≃

∑
i

f(yi) δϵ(∥xi − yi∥2)∆y . (18)

If the manifold is open, we further require that the summation is done only on the grid point yi if it’s
associated foot-point xi is not at the boundary of the surface.

4 The Experimental Results

In this section, we show the image segmentation results on various 2-D manifolds with the proposed
algorithm. All these manifolds are represented by GPBM and the images defined on these manifolds
contain noise. In all the experiments, the image intensity f are normalized [0, 1], and the initial means
c01, c

0
2 are set as 0.33, 0.66 respectively. In addition, the classification functions u are often segmented into

a binary image using a simple threshold at the value 0.5.
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4.1 Segmentation on Closed Geometric Surfaces

First, we test our method on some closed geometric surfaces. Fig.2 shows some segmentation results with
algorithm 1 on a sphere. In this figure, several simple geometry objects are mapped onto a sphere surface.
The foot points xi are given by ||xi − 0.5||22 = 0.42 (a sphere centered at (0.5,0.5,0.5), with radius 0.4)
on domain [0, 1]× [0, 1]× [0, 1], while the underlying computation mesh grid size is 200× 200× 200. The
intensities on the sphere are piecewise constants and corrupted by noise with a standard deviation 100

255 .
In the experiments, the regularization parameter λ is set to 2.0×10−5 and the penalty parameter is fixed
as 10λ. In order to better show the visual effect of the segmentation, three images from different views
are given in Fig.2 (a)-(c), respectively. In the second row of this figure, the corresponding segmentation
results are displayed. In these figures, we use different colors to represent different classes. It can be seen
that the proposed algorithm can provide good results in this situation: the line on the sphere are straight
along with the sphere and the curves are smooth though there are heavy noise in the original images.
To compare the segmentation without regularization, the results with k-mean (i.e. set regularization
parameter λ as 0) are illustrated in the third row of Fig.2. Fig.3 shows some classification results for the
noisy world map on the earth. It can be seen that the proposed method can well segment this map.

Segmentation result on a smooth torus is displayed in Fig.4. In this experiment, a brain MR image
is mapped onto a cloud points based torus, then the proposed algorithm is applied to segment the torus
into 2 parts. Fig.4 (b) shows the final classification result. In this figure, we still use different color to
represent the different classes.

4.2 Segmentation on Open Geometric Surfaces

Since the PDE is directly solved on particles (foot points) in the proposed method, it works well on the
open surfaces, which may be difficult for implicit methods such as the level set method. Fig.5 shows that
the proposed method nicely segments the cameraman image on a cylindrical surface into 2 parts.

To test more complicated surfaces, we applied the proposed algorithm on a Mobius strip which is
open and is not orientable, and thus it has no level set representation. We have tested two different
images on the strip and the results are shown in Fig.6 (b) and (d), respectively. In order to show the
details of the GBPM surface, we zoom-in to these solutions and plot the results in Fig.6 (e) and (f). Note
that the colors in these figures do not correspond to the true intensity value of the binary label function
u, but is only used to represent the two different classes.

4.3 Segmentation on Some Scanned Surfaces in Applications

We test the proposed algorithm on the scanned Stanford bunny data (http://graphics.stanford.
edu/data/3Dscanrep/ ). We define a piecewise image f on the bunny with noise (see the figures in the
first row of Fig.7). The level of the noise is high, with a standard derivation 100

255 . We have shown our
segmentation results in Fig.7 (d)-(f). To better show our results, we zoom-in to these solutions and plot
our solutions in Fig.7 (g) and (h), respectively.

5 Discussions and Conclusions

We propose a method to segment images defined on manifolds represented by the GBPM. This method
extends the convex segmentation methods on 2-D plane images to some general manifolds. By integrating
the recently developed operator splitting techniques, we use some local approximation methods to solve
the PDE which comes from the energy minimization on the foot points. Compared to the level set
method, our proposed method provides a flexibly representation to handle open manifolds which are
difficult to be defined using a signed distance function.

In this paper, even though we have only discussed the 2 phases segmentation, one can easily extend
the method to address the multi-phases clustering. The proposed method can be further improved by
employing the adaptive mesh techniques and some other local fitting techniques. It can also be extended
to some other image processing areas such as image registration and restoration.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2 (a-c) The noisy image on a sphere with three different views (using MATLAB function view(75,30), view(-15,-45) and
view(-70,30), respectively). (d-f) Segmentation results using the proposed algorithm. (g-h) Segmentation results without
the regularization term.
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Appendix A. Proof of Theorem 1

We first prove the following lemma

Lemma 1 Suppose J1(v) is continuous and convex on a Hilbert space V, and

J = J1(v)+ < p,g(v − b) > +
η

2
< v − b,g(v − b) >
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(a) (b)

(c) (d)

(e) (f)

Fig. 3 (a,c,e) The world map on a sphere with three different views. (b,d,f) Our segmentation results.

(a) (b)

Fig. 4 (a) Brain image on torus. (b) Our segmentation result.

where η > 0 and g is a positive definite and linear symmetric operator with bounded inverse, then the
sequence {vn} produced by the iteration scheme

vn+1 =argmin
v

J (v,pn), (19)

pn+1 =pn + τg(vn+1 − b), (20)
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(a) (b)

Fig. 5 (a) The mapped cameraman image on the cylinder. (b) Our segmentation result.

(a) (b)

(c) (d)

(e) (f)

Fig. 6 (a,c) Noisy images mapped on the Mobius strip. (b,d) Our segmentation results. (e,f) Zoom-in of (a) and (b),
respectively.

converges, i.e. vn → v∗ when 0 < τ < 2η
Λmax

, where v∗ is the saddle point (v∗,p∗) of J (v,p) . Here
Λmax is the largest eigenvalue of g.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 7 Segmentation on the Stanford bunny data by our method. (a-c) The noisy images on the bunny. (d-f) Our segmen-
tation results. (g-h) Zoom-in of the results in (d-f).

Proof Since (v∗,p∗) is a saddle of J , we have v∗ = b by ∂J
∂p |(p∗,v∗) = 0. Let ∂J1(v) be the subgradient

of J1 at v, i.e. ∂J1(v) = {v̄ ∈ V̄ : J1(q) − J1(v) ⩾< v̄,q − v >, ∀q ∈ V}, where V̄ is the conjugate
space of V. According to the first order optimization conditions of (19), we have

dn+1 := −gpn − ηg(vn+1 − b) ∈ ∂J1(v
n+1),

d∗ := −gp∗ − ηg(v∗ − b) ∈ ∂J1(v
∗),

thus
dn+1 − d∗ = −g(pn − p∗)− ηg(vn+1 − v∗).

Taking the inner product with vn+1 − v∗ for both sides of the above equation, it becomes

< pn − p∗,g(vn+1 − v∗) >= − < dn+1 − d∗,vn+1 − v∗ > −η < vn+1 − v∗,g(vn+1 − v∗) > . (21)

By the iteration equation (20) and the fact that v∗ − b = 0, we have

pn+1 − p∗ = pn − p∗ + τg(vn+1 − v∗).
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Taking the norm for the both sides of the above equation, we get

||pn+1 − p∗||2 = ||pn − p∗||2 + τ2||g(vn+1 − v∗)||2 + 2τ < pn − p∗,g(vn+1 − v∗) > . (22)

Substituting (21) into (22), we have

||pn+1−p∗||2−||pn−p∗||2 = −2τ < dn+1−d∗,vn+1−v∗ > − < vn+1−v∗,
(
−τ2g2 + 2τηg

)
(vn+1−v∗) > .

(23)
Since J1 is convex, dn+1 ∈ ∂J1(v

n+1) and d∗ ∈ ∂J1(v
∗), thus

< dn+1 − d∗,vn+1 − v∗ >⩾ 0. (24)

With the condition 0 < τ < 2η
Λmax

, we conclude that the operator −τ2g2 + 2τηg is positive definite.

Now, using both (23) and (24), we have ||pn+1 − p∗||2 − ||pn − p∗||2 < 0, which implies that the
sequence ||pn − p∗||2 is monotonic decreasing with a lower bound 0 and so it must be convergent.

Finally from (23), we conclude that vn → v∗.

Now, we can use this Lemma to prove Theorem 1. It is easy to check that λ
∫
M

√
vTgv dM is convex

when g is positive definite. For any fixed u and c, let b = ∇su and follow the lemma, one can show that
{vn} produced by equations (8) and (10) converges to the saddle point (·,v∗,p∗, ·) of L(·,v,p, ·), i.e.
vn → v∗. Since (·,v∗,p∗, ·) is the saddle point, we have v∗ = ∇su, which completes the proof.

Appendix B. Derivation of (11)

The directional derivative

dL̃(u+ τw)

dτ
|τ=0 =

d

dτ

{∫
M
(f − c1)

2(u+ τw) dM +

∫
M
(f − c2)

2[1− (u+ τw)] dM

+
η

2

∫
M
(v −∇s(u+ τw) +

1

η
p)Tg(v −∇s(u+ τw) +

1

η
p) dM

}
|τ=0

=
η

2

d

dτ

{∫
∫

√
EG− F 2(v −∇s(u+ τw) +

1

η
p)Tg(v −∇s(u+ τw) +

1

η
p) ds

}
|τ=0

+

∫
M

[
(f − c1)

2 − (f − c2)
2
]
w dM

= −η
∫
∫

√
EG− F 2 < gv − g∇su+

1

η
gp,∇sw > ds+

∫
M

[
(f − c1)

2 − (f − c2)
2
]
w dM

= η

∫
∫
∇s ·

(√
EG− F 2(gv − g∇su+

1

η
gp)

)
w ds+

∫
M

[
(f − c1)

2 − (f − c2)
2
]
w dM

= η

∫
M

1√
EG− F 2

∇s ·
(√

EG− F 2(gv − g∇su+
1

η
gp)

)
w dM

+

∫
M

[
(f − c1)

2 − (f − c2)
2
]
w dM.

By the variational formulation
dL̃(u+ τw)

dτ
|τ=0 =<

δL̃

δu
,w >, one gets

δL̃

δu
= − η√

EG− F 2
∇s ·

(√
EG− F 2g∇su

)
+

η√
EG− F 2

∇s ·
(√

EG− F 2g(v +
1

η
p)

)
+(f − c1)

2 − (f − c2)
2 ,

which leads to equation (11).

Appendix C. Derivation of (12)

Denote qn = ∇su
n+1 − pn

η , we have

δL̃

δv
=

λ√
vTgv

gv + ηg(v − qn).



16

Solving δL̃
δv = 0 for v, we get

(
λ√

(vn+1)Tgvn+1
+ η)vn+1 = ηqn. (25)

Taking modulus || · ||g for the two sides of (25), it becomes

||vn+1||g = ||qn||g − λ

η

if ||qn||g ⩾ λ
η . Plugging it back to the above (25), we get

vn+1 =
qn

||qn||g
(||qn||g − λ

η
). (26)

On the other hand, if ||qn||g < λ
η , then

L̃(v, ·) = λ

∫
M

√
vTgv dM +

η

2

∫
M
(v − q)Tg(v − qn) dM

= λ

∫
M

√
vTgv dM +

η

2

∫
M
(||v||2g + ||qn||2g) dM − η

∫
M

vTgqn dM

⩾ λ

∫
M

√
vTgv dM +

η

2

∫
M
(||v||2g + ||qn||2g) dM − η

∫
M

||v||g · ||qn||g dM

>
η

2

∫
M
(||v||2g + ||qn||2g) dM.

This means that vn+1 = 0 must be the minimizer of L̃ with respect to v. Summarizing these two results,
we get the g-shrinkage operator (12).

Appendix D. Minimizer of (14)

Let H =
∑m

j=1

(
xj − xi

) (
xj − xi

)T
= U

λ1 λ2
λ3

UT, where λ1 ⩾ λ2 ⩾ λ3 and U =
(
U1 U2 U3

)
is

an orthogonal matrix. Then

E =
∑m

j=1

(
< xj , ñ > − < xi, ñ >

)2
= ñTHñ =

(
UTñ

)T λ1 λ2
λ3

(
UTñ

)
.

Since
(
UTñ

)T (
UTñ

)
= 1, thus we have E ⩾ λ3. If ñ = U3, E = UT

3 HU3 = λ3. Thus we conclude that
n = U3 is a minimizer of E such that |n| = 1, which completes the proof.

Appendix E. Explicit formula for the gradient descent update ∆ui

In this Appendix, we state explicitly the formula to compute the gradient descent update of ui as a
function of the coefficients of the second order polynomial approximation in the GBPM representation.
For convenience, let us denote hj = vnj +

1
ηp

n
j and write the coefficients of the approximated second-degree

polynomial at xi for functions h1 and h2 as γiτ1τ2 , δ
i
τ1τ2(0 ⩽ τ1 + τ2 ⩽ 2, τ1, τ2 ∈ N), respectively.

The PDE (11) in the explicit form is given by

− η

EG− F 2
(S1 + S2S3 + S4S5) +

η

EG− F 2

[
S6 + S7 + S8 +

1

EG− F 2
S9

]
+ (f − c1)

2 − (f − c2)
2 = 0 ,
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where

S1 = G
∂2u

∂s21
− 2F

∂2u

∂s1∂s2
+ E

∂2u

∂s22
,

S2 = <
∂2x

∂s1∂s2
,
∂x

∂s2
> − <

∂2x

∂s22
,
∂x

∂s1
> − 1

EG− F 2
(T1G− T2F ) ,

S3 =
∂u

∂s1
,

S4 = <
∂2x

∂s1∂s2
,
∂x

∂s1
> − <

∂2x

∂s21
,
∂x

∂s2
> − 1

EG− F 2
(T2E − T1F ) ,

S5 =
∂u

∂s2
,

S6 = h1

(
<

∂2x

∂s1∂s2
,
∂x

∂s2
> − <

∂2x

∂s22
,
∂x

∂s1
>

)
,

S7 = h2

(
<

∂2x

∂s1∂s2
,
∂x

∂s1
> − <

∂2x

∂s21
,
∂x

∂s2
>

)
,

S8 = G
∂h1
∂s1

− F

(
∂h2
∂s1

+
∂h1
∂s2

)
+ E

∂h2
∂s2

,

S9 = (Gh1 − Fh2)T1 + (−Fh1 + Eh2)T2

and

T1 = <
∂2x

∂s21
,
∂x

∂s1
> G+ <

∂2x

∂s1∂s2
,
∂x

∂s2
> E −

(
<
∂2x

∂s21
,
∂x

∂s2
> + <

∂2x

∂s1∂s2
,
∂x

∂s1
>

)
F ,

T2 = <
∂2x

∂s1∂s2
,
∂x

∂s1
> G+ <

∂2x

∂s22
,
∂x

∂s2
> E −

(
<

∂2x

∂s1∂s2
,
∂x

∂s2
> + <

∂2x

∂s22
,
∂x

∂s1
>

)
F .

Now, replacing all local geometry by the local polynomial least square approximation, we have

∆ui =
η

EiGi − (F i)2
(Si

1 + Si
2S

i
3 + Si

4S
i
5)−

η

EiGi − (F i)2

[
Si
6 + Si

7 + Si
8 +

1

EiGi − (F i)2
Si
9

]
−(f − c1)

2 + (f − c2)
2 ,

where

Si
1 = 2βi

20G
i − 2βi

11F
i + 2βi

02E
i ,

Si
2 = αi

11

(
αi
01 + αi

11x̄
i
1 + 2αi

02x̄
i
2

)
− 2αi

02

(
αi
10 + αi

11x̄
i
2 + 2αi

20x̄
i
1

)
− 1

EiGi − (F i)2
(T i

1G
i − T i

2F
i) ,

Si
3 = βi

10 + βi
11x̄

i
2 + 2βi

20x̄
i
1 ,

Si
4 = αi

11

(
αi
10 + αi

11x̄
i
2 + 2αi

20x̄
i
1

)
− 2αi

20

(
αi
01 + αi

11x̄
i
1 + 2αi

02x̄
i
2

)
− 1

EiGi − (F i)2
(T i

2E
i − T i

1F
i) ,

Si
5 = βi

01 + βi
11x̄

i
1 + 2βi

02x̄
i
2 ,

Si
6 = hi1

[
αi
11

(
αi
01 + αi

11x̄
i
1 + 2αi

02x̄
i
2

)
− 2αi

02

(
αi
10 + αi

11x̄
i
2 + 2αi

20x̄
i
1

)]
,

Si
7 = hi2

[
αi
11

(
αi
10 + αi

11x̄
i
2 + 2αi

20x̄
i
1

)
− 2αi

20

(
αi
01 + αi

11x̄
i
1 + 2αi

02x̄
i
2

)]
,

Si
8 = Gi

(
γi10 + γi11x̄

i
2 + 2γi20x̄

i
1

)
+ Ei

(
δi01 + δi11x̄

i
1 + 2δi02x̄

i
2

)
−F i

(
γi01 + γi11x̄

i
1 + 2γi02x̄

i
2 + δi10 + δi11x̄

i
2 + 2δi20x̄

i
1

)
,

Si
9 = (Gihi1 − F ihi2)T

i
1 + (−F ihi1 + Eihi2)T

i
2
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and

T i
1 = 2αi

20

(
αi
10 + αi

11x̄
i
2 + 2αi

20x̄
i
1

)
Gi + αi

11

(
αi
01 + αi

11x̄
i
1 + 2αi

02x̄
i
2

)
Ei

−
[
2αi

20

(
αi
01 + αi

11x̄
i
1 + 2αi

02x̄
i
2

)
+ αi

11

(
αi
10 + αi

11x̄
i
2 + 2αi

20x̄
i
1

)]
F i ,

T i
2 = αi

11

(
αi
10 + αi

11x̄
i
2 + 2αi

20x̄
i
1

)
Gi + 2αi

02

(
αi
01 + αi

11x̄
i
1 + 2αi

02x̄
i
2

)
Ei

−
[
2αi

02

(
αi
10 + αi

11x̄
i
2 + 2αi

20x̄
i
1

)
+ αi

11

(
αi
01 + αi

11x̄
i
1 + 2αi

02x̄
i
2

)]
F i,

hi1 =
2∑

τ1=0

∑
0⩽τ1+τ2⩽2

γiτ1τ2(x̄
i
1)

τ1(x̄i2)
τ2 ,

hi2 =

2∑
τ1=0

∑
0⩽τ1+τ2⩽2

δiτ1τ2(x̄
i
1)

τ1(x̄i2)
τ2 .
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