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1 Introduction

Image segmentation is a fundamental but important task in computer vision and pat-

tern recognition. It has received much attention by researchers during the past several

decades. The objective of image segmentation is to partition an image into several parts

according to some similarity measures such as intensity means, histograms, structure

tensors and so on. There are many image segmentation methods proposed in the lit-

erature, in which the partial differential equation (PDE) based techniques and graph

cut based approaches are two of the most popular image segmentation methods.

For PDE methods, the well known level set methods have been proven to be very

flexible and quite efficient for image segmentation. The Mumford-Shah segmentation

model [1] is an important approach to find a piecewise smooth approximation for a

given image. However, the original Mumford-Shah functional is difficult to compute

due to its weak mathematical properties such as discontinuity and non-convexity. By

using a level set approximation, the discontinuity in the Mumford-Shah model can be

easily handled and computed.

For two-phase segmentation, Chan-Vese model [2] is a very sucessful simplified

version of the Mumford-Shah model. In the Chan-Vese model, the regional character-

istic function, which is used to represent a cluster, can be approximated by a level

set function together with a smooth Heaviside function. The Chan-Vese model is not

convex. This explains why the numerical algorithm may sometimes get stuck at a local

minimum close to the initial condition and produce undesirable segmentation results.

Later, a binary level set method was proposed in [3] as a variant of the level set method.

Meanwhile, the convex relaxation approach developed in [4] shows that one can get

global minimizers for the piecewise constant Mumford-Shah functional with the binary

approach [3] if we relax the binary constraint. The main idea of the convex relaxation

is to relax the binary characteristic function into a continuous interval [0,1] such that

the non-convex original problem becomes convex. Solving such a relaxed convex prob-

lem can enable one to find a global minimizer, and then the global binary solution of

the original problem can be obtained by a threshold process. Combining the convex

relaxation and some recently developed total variation (TV) minimization techniques

[5,6], Bresson etc. have proposed some fast two-phase global minimization algorithms

for image segmentation in [7,8].

For multi-phase segmentation, a generalization of Chan-Vese model has been pro-

posed in [9] to partition an image into n parts by using log2 n level set functions. Similar

to the two-phase case, the model is non-convex and thus the global minimization can

not be guaranteed. Recently, a convex formulation of 4-phase Chan-Vese model has

been proposed in [10,11] provided that the segmentation data term satisfies a con-

vexity condition. Numerical tests shows that this condition may be often satisfied in

practice. In case this condition is violated, some “truncation” procedure needs to be

used.

Another multi-phase segmentation method is to use the label function or a piecewise

constant level set method PCLSM [12] to represent different classes. By using a graph

cut implementation, the PCLSM can be globally solved [13]. In the continuous case,

functional lifting method [14] can be regarded as a convex formulation of PCLSM. As

pointed out in [9,15], the TV of the label function or level set functions in PCLSM

and multi-phase Chan-Vese model does not correspond exactly to the length term

in Mumford-Shah model. The main drawback of these models is that some parts of
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the boundary are counted multiple times. Therefore pixels near some of the cluster

boundaries will be misclassified (see e.g. [15]).

More recently, some continuous convex relaxation of the Potts model [16] have

become popular. Bae etc. proposed a smooth dual model of the Potts model in [17].

Pock etc. [18] developed a tight convex relaxation framework for Potts model. Yuan

etc [19,20] have designed a max-flow approach to the Potts model. These continuous

methods need to solve K unknown characteristic functions with a partition condition

for K-phase clusters.

For discrete partition problem, graph cut is a powerful tool to optimize the related

energy. For example, the discrete Potts model restricted to 2-phase segmentation is

computationally tractable by using some graph cut based min-cut/max-flow algorithms

[21,22]. It is well known that the discrete Potts model is a NP-hard problem. Namely,

if the number of segmentation classes is larger than two, there is no low-complexity

algorithm which can find the exact global minimizer of Potts model (see [23,24]).

Instead of exactly solving the Potts model in a discrete setting, some algorithms for

approximately minimizing the energy in Potts model have been proposed in [23], which

are known as the popularly used alpha-expansion and alpha-beta swap algorithms.

Another approximation for the multi-phase Potts model is Ishikawa’s graph cut

method [25], in which the regularization term of the Potts model is modified such

that it can be solved by a graph cut algorithm, c.f [25,13]. However, the graph-based

methods generally suffer from metrication errors since the isotropic TV can not be

minimized by discrete max-flow algorithm. This difficulty could cause some zigzag edges

in the clusters, which gives unnatural segmentation results. Recently, some continuous

max-flow [26,19] algorithms have been developed by analyzing the primal min-cut and

the dual max-flow problems with the Lagrangian multiplier method. These algorithms

combine the advantages of both the continuous method and discrete model, and thus

can provide impressive results.

This paper is devoted to propose a new graph cut based multi-phase segmentation

method based on the binary super-level set representation of a label function. We

will show that it is possible to minimize a modified piecewise constant Mumford-Shah

segmentation model with the super-level set representation by solving the min-cut

problem of a constructed graph. Following the continuous min-cut/max-flow framework

[26], we formulate a new continuous dual model. We theoretically show that the binary

solutions of the model can be obtained by a convex relaxation and a thresholding step.

Compared to some existing continuous methods, the proposed algorithm uses K − 1

super-level set functions to partition K classes, which reduces the number of unknown

variables, so providing a computationally very efficient algorithm. In addition, we use

K dual variables to keep the regularization term in the model to be the exact length

of the boundary in the continuous dual model, experimental results have shown that

this can significantly improve the quality of the segmentation results.

The rest of the paper is organized as follows: section 2 gives some backgrounds on

multi-phase segmentation methods; in section 3, we introduce the proposed method,

including the model, the algorithms and related analysis; section 4 contains some ex-

perimental results; finally, some conclusions and discussions are presented in section

5.
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2 Related Works

The generic problem of image segmentation is to partition an image domain Ω into K

non-overlapping regions Ωk such that Ω =
⋃K
k=1Ωk. The Potts model generalized to

the continuous case is to minimize the energy

EPotts
(
{Ωk}Kk=1

)
=

K∑
k=1

∫
Ωk

dk(x)dx+ µ

K∑
k=1

|∂Ωk| (1)

such that ∪Kk=1Ωk = Ω and Ωi
⋂
Ωj = ∅ if i 6= j, where |∂Ωk| stands for the perimeter

of the boundary of Ωk and µ > 0 is a parameter. Here the first term is the data term,

and each dk should depend on the input image I. For example, dk(x) = |I(x) − ck|λ,

λ = 1, 2 represents that the pixels are classified in terms of the intensity means {ck}Kk=1.

The second term, namely the regularization term, measures the sum of the perimeters

of the sets Ωk, k = 1, · · · ,K. When λ = 2 and {ck}Kk=1 are unknown, (1) coincides

with the energy of the piecewise constant Mumford-Shah model [1]:

EMS

(
{Ωk}Kk=1 ,

{
ck
}K
k=1

)
=

K∑
k=1

∫
Ωk

|I(x)− ck|2dx+ µ

K∑
k=1

|∂Ωk|. (2)

Usually, the unknown variables {Ωk}Kk=1 and
{
ck
}K
k=1

in (2) can be alternately min-

imized by a simple algorithm. By introducing a vector-valued characteristic function

ψ(x) = (ψ1(x), · · · , ψK(x)) with component functions

ψk(x) =

{
1, x ∈ Ωk,
0, x /∈ Ωk,

Potts model (1) can be reformulated as

EPotts(ψ) =

K∑
k=1

∫
Ω

dk(x)ψk(x)dx+
µ

2

K∑
k=1

∫
Ω

|∇ψk(x)|dx (3)

in terms of coarea formula [27]. The partition condition also can be satisfied by the

constraint

ψ ∈ B =

{
ψ = (ψ1, · · · , ψK) : ψk ∈ {0, 1},

K∑
k=1

ψk = 1

}
. (4)

For numerical implementation, the binary function ψ is approximated by a smooth

function. If ψ is approximated by the level set functions, this leads to the level set

segmentation method [2,9,3]. While if ψ is approximated by some exponential type

functions, which leads to the expectation maximization (EM) algorithm for segmenta-

tion [17,28].

In case of two phases (K = 2), the last condition in (4) can be easily kept. The

energy of two-phase Chan-Vese model [2] can be written as

ECV (φ) =

∫
Ω

H(φ)d1dx+

∫
Ω

(1−H(φ))d2dx+ µ

∫
Ω

|∇H(φ)|dx,
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where φ is the level set function which satisfies φ(x) > 0 for x ∈ Ω1 and φ(x) < 0 for

x ∈ Ω2, H is a Heaviside function H(x) = 0 if x < 0 and H(x) = 1 if x > 0. To address

the non-convexity of B in (4), convex relaxation methods are developed in recent years.

In the convex relaxation, B is usually relaxed as a convex set

u ∈ B1 =

{
u = (u1, · · · , uK) : uk ∈ [0, 1],

K∑
k=1

uk = 1

}
. (5)

The energy of the global minimization model for two-phase in [3,4,7] can be expressed

by

Econv−2(u) =

∫
Ω

ud1dx+

∫
Ω

(1− u)d2dx+ µ

∫
Ω

|∇u|dx,

where 0 6 u 6 1, which is a special case for condition (5). This continuous model

is connected to the discrete 2-phase Potts model, which can be exactly and globally

solved by a number of recent developed global minimzation methods, for example [22,

?,?,?,8].

However, when the number of the phase is more than two, i.e. K > 2, the prob-

lem becomes complex. For continuous case, a natural choice is to extend the convex

relaxation method to multi-phase, and to minimize the following energy

Econv−K(u) =

K∑
k=1

∫
Ω

ukdkdx+
µ

2

K∑
k=1

∫
Ω

|∇uk|dx (6)

such that u ∈ B1. This is essentially the model solved in [29,18,30,17]. In this work,

we shall proposed a fast max-flow algorithm which just needs to solve K − 1 unknown

functions.

Another way to solve a multiphase segmentation problem is to use a piecewise

constant level set function or the so-called label function to indicate the segmented

phases. The label function can be expressed as

l(x) =

K∑
k=1

k · ψk(x), (7)

in which different integer values of l(x) stand for different phases. With this label func-

tion, the energy of multi-phase segmentation problem can be modified as the following

PCLSM [3]

ELab(l) =

K∑
k=1

∫
Ω

δl,kd
kdx+ µ

∫
Ω

|∇l|dx, (8)

where

δl,k =

{
1, l(x) = k,

0, l(x) 6= k.

Instead of minimizing the vector-valued TV in (6), we only need to optimize the TV

of the scalar label function in PCLSM. Similar idea of replacing the vector TV by

the typical TV has been recently proposed in [31] in the content of vector-valued

image segmentation. More important, the anisotropic TV version of this model can be

efficiently solved by Ishikawa’s graph cut method [25,13]. However, the regularization

term in (8) is slightly different from the original Potts model’s. In fact, the last term
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in (8) is not exactly equal to the length of the cluster boundary. More precisely, some

parts of the cluster boundary may be counted multiple times in (8), and it corresponds

to that each part of the boundary has different weights to be penalized. This may lead

to mis-classification of some pixels near these boundaries. We shall show this in the

later experiments.

A third way to do multiphase segmentation is to express different phases through

the super-level set representation of the label function l(x). A γ-super-level set function

of any given function l(x) is defined as

φ(x, γ) =

{
1, when l(x) > γ,

0, when l(x) 6 γ.
(9)

By using the generalized co-area formula [27]∫
Ω

|∇l|dx =

∫
Ω

(∫ +∞

−∞
|∇φ(x, γ)|dγ

)
dx (10)

and the layer cake formula [4]

l(x) =

∫ +∞

−∞
φ(x, γ)dγ, (11)

a functional lifting method (FLM) has been developed in [14]. Using (10)-(11), we can

see that the minimization problem (8) for PCLSM [3] can be written:

EFLM (φ) =

∫ +∞

−∞

{∫
Ω

|∂γφ(x, γ)|dγ(x)dx+ µ

∫
Ω

|∇φ(x, γ)|dx
}

dγ. (12)

This is the problem considered in [14] and it shows clearly the relationship between

FLM [14] and PCLSM [3]. Recently, a continuous max-flow method has been proposed

in [20], which can be regarded as the dual model of (12). Like the models we mentioned

earlier, the regularization term in FLM does not give exactly the length of the cluster

boundary.

Our method is built upon this super-level set function representation. We shall

show that the discrete energy of (12) plus a constant term can be globally minimized

by finding the minimum cut over a properly designed graph, which is different from

Ishikawa’s graph [25]. To overcome the mentioned flaw of the regularization term in

the discrete setting, we propose a continuous dual max-flow model. The relaxation we

are going to use is different from relaxing the non-convex binary set B (4) to a convex

square area B1 (5) in most of the exisitng convex relaxation methods. Instead, we relax

B to a convex triangle constraint, which has the advantage that we need to solve one

less unknown function. The condition
∑K
k=1 u

k = 1 in (5) can also be satisfied exactly.

3 The Proposed Method

3.1 The Super-Level Set Representation

For better formulations, let us rewrite the super-level set function φ(x, γ) in (9) as

φγ(x). For a label function l(x) which takes the intergers from 1 to K, it can be
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easily calculated that its super-level set function 1 = φ0(x) > φ1(x) > · · · > φK−1 >
φK(x) = 0 and

φk−1(x)− φk(x) =

{
1, l(x) = k,

0, l(x) 6= k,
= δl,k (13)

for k = 1, 2, · · · ,K. Therefore, (8) and (12) can be formulated as

ELab−sup(φ) =

K∑
k=1

∫
Ω

(φk−1 − φk)dkdx+ µ

K−1∑
k=1

∫
Ω

|∇φk|dx

=

∫
Ω

d1dx+

K−1∑
k=1

∫
Ω

(dk+1 − dk)φkdx+ µ

K−1∑
k=1

∫
Ω

|∇φk|dx,
(14)

where φ = (φ1, φ2, · · · , φK−1) and φ0 = 1, φK = 0. This particular formulation for

data term is equivalent to that in the energy EPotts if one replaces ψ in (3) by

ψk = φk−1 − φk, k = 1, 2, · · · ,K.

It is easy to check that ψ ∈ B can be guaranteed by

φ ∈ B̃ = {φ = (φ1, φ2, · · · , φK−1) : φk ∈ {0, 1}, 1 = φ0 > φ1 > φ2 > · · · > φK−1 > φK = 0}.
(15)

We shall treat the discrete problem firstly. Let P be the set of mesh grid points in

Ω, and Nmp be the set of m nearest neighbors of p ∈ P. For Ω ⊂ R2, P = {(i, j) ⊂ Z2}
and for each p = (i, j) ∈ P

N4
p = {(i± 1, j), (i, j ± 1)}

⋂
P,

N8
p = {(i± 1, j), (i, j ± 1), (i± 1, j ± 1)}

⋂
P.

Let φkp , d
k
p be the function values of φk and dk at p ∈ P.

Since the minimizer is independent of any constant term in the energy, we can

ignore the first constant term in (14) and write the discrete approximation as

ELab−sup−d(φ) =

K−1∑
k=1

∑
p∈P

(
dk+1
p − dkp

)
φkp + µ

K−1∑
k=1

∑
p∈P

∑
q∈Nm

p

|φkq − φkp |.

Please note that the last regularization term is chosen to be the anisotropic TV

TV1(φk) =

∫
Ω

|∇φk|1dx =

∫
Ω

|∂x1φ
k|+ |∂x2φ

k|dx1dx2

such that the regularization term can be minimized by graph cut (see [24,13]).

In the next section, we shall construct a graph cut method to exactly solve the

problem

φ∗ = arg min
φ∈B̃

ELab−sup−d(φ). (16)
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3.2 Graph Cut Implementation

3.2.1 Brief Introduction of Min-cut and Max-flow

The min-cut and max-flow are discrete optimization problems defined over a graph.

An advantage of min-cut and max-flow optimization is that the global minimization

can be found by some max-flow algorithms. In this section, we shall construct a graph

such that its min-cut corresponds to the minimizer of problem (16).

The basic principle for minimizing energy using graph cut can be found in [23,24].

A graph G = (V,E) is constituted by a set of vertices V and a set of directed edges E.

For any v1, v2 ∈ V, let (v1, v2) ∈ E be the directed edge from vertex v1 to vertex v2,

and denote C(v1, v2) the weight on this edge. In the s-t graph, there are two special

distinguished vertices in V, the source s and the sink t. A cut on a graph G is to

partition the vertices V into two disjoint connected set Vs and Vt such that s ∈ Vs
and t ∈ Vt. The cost of the cut is defined by

C(Vs,Vt) =
∑

(v1,v2)∈E,v1∈Vs,v2∈Vt

C(v1, v2). (17)

The min-cut problem is to find the minimum cost of the cut. As to max-flow problem,

a flow f on the graph G is a function f : E→ R. ∀(v1, v2) ∈ E, and the flow f satisfies

the following conditions:

1. Maximum capacities

f(v1, v2) 6 C(v1, v2). (18)

2. Flow conservation ∑
v2∈N+

v1

f(v2, v1)−
∑

v2∈N−v1

f(v1, v2) = 0, (19)

where N+
v1 ,N

−
v1 stand for two neighborhood systems of v1, and

N+
v1 = {v2 ∈ V : (v2, v1) ∈ E},

N−v1 = {v2 ∈ V : (v1, v2) ∈ E}.

The max-flow problem is to find the maximum amount of flow f that can be pushed

from source s to sink t under the above two flow constraint conditions (18) and (19).

The theorem of Ford and Fulkerson showed that the min-cut and max-flow are dual

problems, and the min-cut problem can be solved by some efficient max-flow algorithms

such as [22].

3.2.2 Graph Construction

A cut of graph partition vertices into 2 clusters. In order to represent multi-phase

segmentation, we must use several binary functions to distinguish the different classes.

Generally speaking, a binary vector-valued function φ = (φ1, φ2, . . . , φK−1) without

any constraints can represent 2K−1 phases, this is the idea used in the multiphase

Chan-Vese model [9]. The representation related to φ ∈ B̃ in (15) can be used to

identify K phases. For example, when K = 4, then 4 different phases can be represented

with 3 binary functions φ1, φ2 and φ3 with condition φ1 > φ2 > φ3. At any x ∈ Ω, φ

can only take the 4 values (1, 1, 1), (1, 1, 0), (1, 0, 0), (0, 0, 0).
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Now, we shall construct a graph G such that there is a one-to-one correspondence

between feasible cuts on G and the binary vector-valued function φ ∈ B̃. Furthermore,

the minimum cost cut will correspond to the minimizer of problem (16) and

min
(Vs,Vt)

C(Vs,Vt) = min
φ∈B̃
ELab−sup−d(φ) + constant. (20)

The vertices, edges, and weights of the graph G are defined as follows:

1. Vertices : for each mesh grid point p ∈ P, φkp corresponds to a vertex denoted by

vkp . Hence the set of vertices can be defined as

V = {vkp : p ∈ P, k = 1, 2 · · · ,K − 1}
⋃
{s}

⋃
{t}.

2. Edges: for each vertex vkp , t-links (terminal links) are defined as

Et(p) = {(s, vkp ) : k = 1, 2, · · · ,K − 1}
⋃
{(vkp , t) : k = 1, 2, · · · ,K − 1}.

It means that every vertex is connected to both source s and sink t. The t-links is

associated with the data term of energy in (16). There will be two types of n-links

(neighbor links) in the graph. The one is given by

En(p) = {(vkp , vkq ) : ∀p, q ∈ P, q ∈ Nmp , k = 1, 2, · · · ,K − 1},

which is associated with the regularization term. The other n-links is the links

among layers (different k values), the set of the edges is defined by

El(p) = {(vkp , vk+1
p ) : k = 1, 2, · · · ,K − 2},

which is used to satisfy the condition φ ∈ B̃. In the left figure of Fig. 1, we show

the t-links and part of the n-links (layers) in the 1-dimension case. Combining the

t-links and n-links of each vertex vkp , the set of the all edges in the graph is defined

as

E =
⋃
p∈P

{
Et(p)

⋃
En(p)

⋃
El(p)

}
.

3. Weights: the weights are assigned as following

C(s, vkp ) = dk+1
p , k = 1, 2, · · · ,K − 1.

C(vkp , t) = dkp , k = 1, 2, · · · ,K − 1.

C(vkp , v
k+1
p ) = +∞, k = 1, 2, · · · ,K − 2.

C(vkp , v
k
q ) = µ

2 .

In fact, the weights of the edges (vkp , v
k+1
p ) can be set to be any relatively large

values, but they can not be removed from the graph.

In our graph, some edges have infinity capabilities, and thus the cost of a cut may

equal to infinity. Obviously, such a cut would not be the minimum cut. For a cut

(Vs,Vt), we say (Vs,Vt) is a feasible cut when C(Vs,Vt) < +∞.

We can show the following result:
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Theorem 1 There is a one-to-one correspondence between the feasible cuts of graph

G = (V,E) and the super-level set φ ∈ B̃, and

min
(Vs,Vt)

C(Vs,Vt) = min
φ∈B̃

ELab−sup−d(φ) +

K−1∑
k=1

∑
p∈P

dkp .

Proof For any cut (Vs,Vt), we let

φkp =

{
0, if vkp ∈ Vs,
1, if vkp ∈ Vt,

(21)

where k = 1, 2, · · · ,K − 1. This means that there is a one-to-one relationship between

the cut of G and φ = (φ1, · · · , φK−1) without any conditions. Denote the set of the

edges in the cut as EC = {(v1, v2) ∈ E : v1 ∈ Vs, v2 ∈ Vt} and |EC | = C(Vs,Vt). If φ /∈
B̃, i.e. the condition φ1p > · · · > φK−1p fails, then there must be a k (k = 1, 2, · · · ,K−2)

such that φkp < φk+1
p . Since both φkp and φk+1

p are binary, we have φkp = 0, φk+1
p = 1.

Then in the cut (Vs,Vt) defined by (21), we get vkp ∈ Vs, vk+1
p = Vt. By the definition

of the cut, we conclude (vkp , v
k+1
p ) ∈ EC and |EC | = +∞. Hence such a cut is not a

feasible cut. Conversely, if φ ∈ B̃, a similar discussion can show (vkp , v
k+1
p ) /∈ EC and

thus EC < +∞, which indicates this cut is a feasible cut. The first part of the theorem

has been proven.

For equation (20), we only need to prove that the cost of the t-links in a feasible

cut is equal to the data term in ELab−sup−d plus a constant term since the connections

between the n-links and regularization term part can be handled by a standard discus-

sion just as [23,25,24,13]. In the constructed graph, for each vertex vkp , there is one

and only one of the t-links (s, vkp ) and (vkp , t) belongs to the edges set EC of a feasible

cut. For a fixed p, all the possible K cases of the feasible cut are listed as following:

1. (v1p, t), · · · , (vK−1p , t) ∈ EC(p).

In this case, the cost of the t-links of the cut |ECt (p)| =
∑K−1
k=1 C(vkp , t) =

∑K−1
k=1 dkp

and the associated φkp = 0. Therefore we can write

|ECt (p)| =
K−1∑
k=1

dkp =

K−1∑
k=1

(
dk+1
p − dkp

)
φkp +

K−1∑
k=1

dkp .

2. (s, v1p), · · · , (s, vK−1p ) ∈ EC(p).

In this case, |ECt (p)| =
∑K−1
k=1 C(s, vkp ) =

∑K−1
k=1 dk+1

p and the associated φkp = 1.

Therefore we can write

|ECt (p)| =
K−1∑
k=1

dk+1
p =

K−1∑
k=1

(
dk+1
p − dkp

)
φkp +

K−1∑
k=1

dkp .

3. For k = 1, · · · ,K − 2, (s, v1p), · · · , (s, vkp ), (vk+1
p , t), · · · , (vK−1p , t) ∈ EC(p).

In this case, |ECt (p)| =
∑k
k′=1 C(s, vk

′
p ) +

∑K−1
k′=k+1 C(vk

′
p , t) =

∑k
k′=1 d

k′+1
p +∑K−1

k′=k+1 d
k′
p and the associated φk

′
p = 1 when 1 6 k′ 6 k and φk

′
p = 0 when

K − 1 > k′ > k. It can be checked that we also can write

|ECt (p)| =
K−1∑
k=1

(
dk+1
p − dkp

)
φkp +

K−1∑
k=1

dkp .
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p
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p

· · ·
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T

d1
p d2

p d3
p dK−1

p dKp

Fig. 1 Comparison of the constructed graphs for different multi-label methods in the 1-D
case. Left: the proposed method; top right: Ishikawa’s [25]; bottom right: Yuan etc.’s [32].

Combining the above K cases, we have∣∣∣∣∣∣
⋃
p∈P

ECt (p)

∣∣∣∣∣∣ =

K−1∑
k=1

∑
p∈P

(
dk+1
p − dkp

)
φkp +

K−1∑
k=1

∑
p∈P

dkp .

Please note the first term is just the data term in ELab−sup−d. A standard discussion

about the n-links and the regularization term can guarantee the conclusion as needed.

Theorem 1 shows that we can exactly solve problem (20) by the discrete max-flow

algorithms on the graph G.

3.3 Continuous Dual Model

Though the discrete model (16) can be globally solved by graph cut, a main drawback

is that the regularization term is not exactly equal to the length of the boundary,

which causes undesirable results. So, in this section, we apply the continuous method

to improve it.

3.3.1 Continuous Max-flow Model

In this section, we shall build a continuous max-flow model of the constructed graph.

The continuous max-flow method for image segmentation was proposed in [26]. Here,

we apply a similar idea to build a new dual model with the super-level set representation

according to the previous constructed graph.
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To simplify the expression, we denote the flow functions as following:

fkp,q = f(vkp , v
k
q ),

fkq,p = f(vkq , v
k
p ),

fks,p = f(s, vkp ),

fkp,t = f(vkp , t),

fk,k+1
p = f(vkp , v

k+1
p ).

In addition, let us introduce two convex sets:

B̃1 = {φ = (φ1, φ2, · · · , φK−1) : φk ∈ [0, 1], φ1 > · · · > φK−1},
C = {g = (g1, · · · , gK) : gk = (gk1 , g

k
2 ), ||gk||∞ = max

x
||gk(x)||2 6 µ}.

Here B̃1 is a convex relaxation set of binary set B.
A max-flow problem is to find the maximum amount of flow f that tries to stream

from source s to sink t under the two flow constraint conditions (18) and (19), i.e.
max

fk
p,t,f

k
s,p,f

k,k+1
p

∑
p∈P

K−1∑
k=1

fkp,t

fks,p 6 dk+1
p , fkp,t 6 dk, fk,k+1

p = +∞, 0 6 fkp,q, f
k
q,p 6

µ
2 , k = 1, · · · ,K − 1, p ∈ P,

fks,p + fk−1,kp − fk,k+1
p − fkp,t +

∑
q∈N4

p
(fkq,p − fkp,q) = 0, k = 1, · · · ,K − 1, p ∈ P.

In the above equation, f0,1p = fK−1,Kp = 0. For 2-D case, i.e. p = (i, j) ∈ R2,N4
p =

{(i± 1, j), (i, j ± 1)}, then∑
q∈N4

p
(fkq,p − fkp,q) =

(
fk(i−1,j),(i,j) − f

k
(i,j),(i−1,j)

)
−
(
fk(i,j),(i+1,j) − f

k
(i+1,j),(i,j)

)
+
(
fk(i,j−1),(i,j) − f

k
(i,j),(i,j−1)

)
−
(
fk(i,j),(i,j+1) − f

k
(i,j+1),(i,j)

)
.

Let
gk1 (i, j) = fk(i,j),(i+1,j) − f

k
(i+1,j),(i,j),

gk2 (i, j) = fk(i,j),(i,j+1) − f
k
(i,j+1),(i,j),

we have∑
q∈N4

p
(fkq,p − fkp,q) =

(
gk1 (i− 1, j)− gk1 (i, j)

)
+
(
gk2 (i, j − 1)− gk2 (i, j)

)
= −∂−x1

gk1 − ∂−x2
gk2 = −∇ · gk,

where gk = (gk1 , g
k
2 ),∂−x1

, ∂−x2
,∇· are the backward finite difference schemes with respect

to x1, x2 and the discrete divergence operator, respectively. From 0 6 fkp,q, f
k
q,p 6

µ
2 , we

have ||gk(i, j)||1 6 µ. It is well known that the L1 norm in dual space would lead to an

anisotropic TV in the primal problem. To get the isotropic TV in the primal problem,

we modified this condition as ||gk(x)||2 6 µ in continuous case. As to the condition

fk,k+1
p = +∞, it is used to keep the linear inequality constraint φ1 > · · · > φK−1

according to the proof of theorem 1. Similarly, we can prove that for any large enough

constant α > max
p∈P

2
∑K
k=1 d

k
p , the condition fk,k+1

p > α can still ensure that the linear

inequality constraint holds. In addition, in order to recover φ0 = 1 and φK = 0, the

layer number k takes the values from 0 to K, which means there will be two extra

layers vertices v0p and vKp in the continuous graph. Accordingly, d0 and dK+1 are both
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extended to an arbitrary large value. Then the above discrete max-flow problem can

be generally reformulated as
max

fk
t ,f

k
s ,f

k,k+1,gk

K∑
k=0

∫
Ω

fkt (x)dx

fks (x) 6 dk+1(x), fkt (x) 6 dk(x), fk,k+1(x) > α, ||gk(x)||2 6 µ, k = 0, 1 · · · ,K, x ∈ Ω,
fks (x)− fkt (x) + fk−1,k(x)− fk,k+1(x)−∇ · gk(x) = 0, k = 0, 1, · · · ,K, x ∈ Ω,

(22)

wheref−1,0(x) = fK,K+1(x) = 0.

It can be shown the following proposition

Proposition 1 The max-flow problem (22) is equivalent to a dual problem of

min
φ∈B̃1

{
ELab−sup(φ) + constant

}
,

where ELab−sup(φ) is defined in (14).

Proof The proof is similar as in [26]. By introducing K + 1 Lagrangian multiplier

functions φ(x) = (φk(x), · · · , φK(x)), the max-flow problem (22) can be rewritten as
min
φ

max
fk
t ,f

k
s ,f

k,k+1,gk



K∑
k=0

∫
Ω

(1− φk(x))fkt (x)dx +

K∑
k=0

∫
Ω

φk(x)fks (x)dx

K−1∑
k=0

∫
Ω

(φk+1(x)− φk(x))fk,k+1(x)dx −
K∑
k=0

∫
Ω

φk(x)∇ · gk(x)dx


fks (x) 6 dk+1(x), fkt (x) 6 dk(x), fk,k+1(x) > α, ||gk(x)||2 6 µ, k = 0, 1 · · · ,K, x ∈ Ω.

.

(23)

The min and max operators can be interchanged because (23) satisfies all the conditions

of the min-max theorem [33]. It follows that there is at least one saddle point for (23).

The first three terms in (23) can be reformulated as

max
fk
t (x)6dk(x)

(1− φk(x))fkt (x) =

{
(1− φk(x)dk(x), φk(x) 6 1,

+∞, φk(x) > 1,
(24)

max
fk
s (x)6dk+1(x)

φk(x)fks (x) =

{
φk(x)dk+1(x), φk(x) > 0,

+∞, φk(x) < 0,
(25)

max
fk,k+1(x)>α

(φk+1(x)− φk(x))fk,k+1(x) =

{
(φk+1(x)− φk(x))α, φk(x) > φk+1(x),

+∞, φk(x) 6 φk+1(x).
(26)

From (24),(25) and (26), it follows that 1 > φ0 > φ1 > · · · > φK > 0 because the

energy of (23) would be infinite if this condition is failed and this contradicts with the

existence of a saddle point. To combine with the dual norm of TV,

max
g∈C
−

K∑
k=0

∫
Ω

φk(x)∇ · gk(x)dx = µ

K∑
k=0

∫
Ω

|∇φk(x)|dx,
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the problem (23) becomes

min



K∑
k=0

∫
Ω

(1− φk(x))dk(x)dx+

K∑
k=0

∫
Ω

φk(x)dk+1(x)dx

+α

∫
Ω

(φK(x)− φ0(x))dx+ µ

K∑
k=0

∫
Ω

|∇φk(x)|dx

 .

Since α can be very large, the minimizer of above problem must satisfy φK = 0 and

φ0 = 1. Rearranging the expression, we get the problem

min
φ∈B̃1

K∑
k=1

∫
Ω

(φk−1−φk(x))dk(x)dx+µ

K−1∑
k=1

∫
Ω

|∇φk(x)|dx+

K∑
k=1

∫
Ω

dk(x)dx−α|Ω|.

Therefore, the conclusion holds.

The model (22) can be directly optimized by the augmented Lagrangian method

[34,35]. Since fk,k+1 in the graph is used to impose φ such that φ1 > · · · > φK−1, thus

we can remove fk,k+1 from the energy and replace it by condition φ1 > · · · > φK−1.

Moreover, we do not need to solve φ0 and φK because φ0 = 1 and φK = 0 are fixed in

terms of the proof of proposition 1. By applying the augmented Lagrangian method,

we get the following dual model

min
φ∈B̃1

max
fk
t 6dk,fk

s 6dk+1,g∈C

{
EDual(ft,fs, g,φ)

}
, (27)

where

EDual(ft,fs, g,φ) =

K−1∑
k=1

∫
Ω

fkt (x)dx+

K−1∑
k=1

∫
Ω

φk(x)
(
fks (x)− fkt (x)−∇ · gk(x)

)
dx

− r
2

K−1∑
k=1

∫
Ω

(
fks (x)− fkt (x)−∇ · gk(x)

)2
dx,

and r > 0 is a penalty parameter in the augmented Lagrangian method. In the above

model, the second term is the Lagrangian multiplier terms, while the third term is a

concave penalty functional in the maximization problem.

The dual model (27) can be efficiently solved by the following alternating optimiza-

tion algorithm

(ft)
(ν+1) = arg max

fk
t 6dk

EDual
(
ft, (fs)

(ν), (g)(ν), (φ)(ν)
)
,

(fs)
(ν+1) = arg max

fk
s 6dk+1

EDual
(

(ft)
(ν+1),fs, (g)(ν), (φ)(ν)

)
,

(g)(ν+1) = arg max
g∈C

EDual
(

(ft)
(ν+1), (fs)

(ν+1), g, (φ)(ν)
)
,

(φ)(ν+1) = arg min
φ∈B̃1

EDual
(

(ft)
(ν+1), (fs)

(ν+1), (g)(ν+1),φ
)
.

Here, we summarize the details of updating formulation of each variable in algorithm

1.
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Algorithm 1 Given the initial values (φ)(0) = (g)(0) = (fs)
(0) = 0 , we choose a time

step parameter τφ > 0, and update the following steps until a convergence criterion is

reached:

step 1 for k = 1, · · · ,K − 1,optimize (fkt )(ν+1) by

(fkt )ν+1 = min

{
(fks )(ν) −∇ · (gk)(ν) +

1− (φk)(ν)

r
, dk
}
.

step 2 for k = 1, · · · ,K − 1,optimize (fks )(ν+1) by

(fks )ν+1 = min

{
(fkt )(ν) +∇ · (gk)(ν) +

(φk)(ν)

r
, dk+1

}
.

step 3 for k = 1, · · · ,K − 1, update

(gk)(ν+1) = arg min
gk∈C

|| − (φk)(ν)

r
+ (fks )(ν+1) − (fkt )(ν+1) −∇ · gk||2

with Chambolle projection algorithm [5].

step 4 for k = 1, · · · ,K − 1, optimize (φk)(ν+1) by

(φk)(ν+1) = ProjB̃1

(
(φk)(ν) − τφ

(
(fks )(ν+1) − (fkt )(ν+1) −∇ · (gk)(ν+1)

))
.

Here the symbol ProjB̃1 is a projection operators on a convex set B̃1.

As to the projection on convex set B̃1, in 2-dimension case (i.e. K = 2), for k = 1, 2,

[ProjB̃1(a)]k =

{
max{min{ak, 1}, 0}, when a1 > a2,

max{min{
∑2

k=1 ak
2 , 1}, 0}, when a1 < a2.

When the dimension is more than 2, the explicit mathematical formulation of this

projection is complicated, and we do not list it here. But it can be easily calculated by

a simple algorithm 2, just as similar as the recursive algorithm in [36].

Algorithm 2 (Projection on B̃1) Let z = a, set k = 1,

step 1 if zk > zk+1, go to the step 4;else let S = {k, k+1}, zk = zk+1 =
∑

i′∈S ai′
|S| ,where

|S| represents the number of elements in S. let i = k.

step 2 If i > 1, then go to the next step; else go to the step 4.

step 3 if zi−1 > zi, go to the next step; else let S = S
⋃
{i− 1}, zj =

∑
i′∈S ai′
|S| for each

j ∈ S, let i = i− 1, and go back to step 2.

step 4 if k = K − 1, end the algorithm; else k = k + 1, and go back to step 1.

When the algorithm is done, we have z1 > z2 > · · · > zK , then [ProjB̃1(a)]k =

max{min{zk, 1}, 0}.

The solution produced by algorithm 1 will be nearly binary in most applications.

For obtaining a binary solution, we have the following threshold theorem:
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Theorem 2 (Binary solution by threshold) Let (f∗t ,f
∗
s , g
∗,φ∗) be any optimal

saddle point of problem (27), for any threshold γ ∈ (0, 1), define ψ∗γ = ((ψ∗γ)1, · · · , (ψ∗γ)K−1)

with the component function

(ψ∗γ)k(x) =

{
1, (φ∗)k(x) > γ,

0, (φ∗)k(x) < γ,

then ψ∗γ is a global minimizer of the binary problem min
φ∈B̃

ELab−sup(φ), where ELab−sup(φ)

is defined in (14).

Proof From the proposition 1, the problem (27) is equivalent to the dual problem

of convex relaxation model min
φ∈B̃1

ELab−sup(φ). Thus φ∗ is a global minimizer of

this convex relaxation model by the duality and convexity. In the next, we only need

to prove that the binary function ψ∗γ is the global minimizer of the binary problem

min
φ∈B̃

ELab−sup(φ). First, it is easy to check ψ∗γ ∈ B̃ because of φ∗ ∈ B̃1.

By the layer cake formula [4] and co-area formula [27], we have

ELab−sup(φ) =

K∑
k=1

∫
Ω

(φk−1(x)− φk(x))dk(x)dx+ µ

K−1∑
k=1

∫
Ω

|∇φk(x)|dx

=

∫ 1

0

{
K∑
k=1

∫
Ω

(ψk−1γ (x)− ψkγ(x))dk(x)dx

}
dγ + µ

∫ 1

0

{
K−1∑
k=1

∫
Ω

|∇ψkγ(x)|dx

}
dγ

=

∫ 1

0

ELab−sup(ψγ)dγ.

Assume to the contrary that ψ∗γ is not the global minimizer of min
φ∈B̃

ELab−sup(φ),

then there must exist a binary function ψ̂ ∈ B̃ ⊂ B̃1 such that ELab−sup(ψ̂) <

ELab−sup(ψ∗γ). This directly implies that

ELab−sup(ψ̂) =

∫ 1

0

ELab−sup(ψ̂)dγ <

∫ 1

0

ELab−sup(ψ∗γ)dγ = ELab−sup(φ∗),

which means that φ∗ is not a minimizer of problem min
φ∈B̃1

ELab−sup(φ). This contradicts

with our previous condition. Therefore, we conclude that φ∗γ is a global minimizer of

the binary problem min
φ∈B̃

ELab−sup(φ).

3.3.2 Simplification and Improvements

In the continuous max-flow model, the Lagrangian multiplier functions play the same

role of super-level set functions in the primal min-cut problem. It can be seen from

the proof of the proposition 1 and theorem 1 that fkt , f
k
s , f

k,k+1 are used to keep the

Lagrangian multiplier functions satisfy 1 = φ0 > φ1 > · · · > φK−1 > φK = 0 in the

continuous max-flow (22). In fact, we do not need to directly impose constraints to the

flow functions and to solve so many unknown variables in the dual space. Based on

the analysis of the min-cut, max-flow problems and equations (24) (25) in the previous

section, we can confirm that the flow functions fkt , f
k
s would reach the maximum capa-

bilities dk and dk+1 respectively when the flow is the max-flow. Thus, we can directly
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set fkt = dk, fks = dk+1 in max-flow model (22) and impose each Lagrangian function

0 6 φk 6 1 . Let φ0 = 1, φK = 0,φ = (φ1, · · · , φK−1). From proposition 1, we can

directly solve

min
φ∈B̃1

K∑
k=1

∫
Ω

(φk−1 − φk(x))dk(x)dx+ µ

K∑
k=1

|∂Ωk|.

Since

µ

K∑
k=1

|∂Ωk| =
µ

2

K∑
k=1

∫
Ω

|∇ψk(x)|dx

=
µ

2

K∑
k=1

∫
Ω

|∇φk−1(x)−∇φk(x)|dx

= max
g∈C

{
K∑
k=1

∫
Ω

(
φk−1(x)− φk(x)

)
∇ · gk(x)dx

}
,

and thus we propose the following convex relaxation dual model

min
φ∈B̃1

max
g∈C

EConv−sup(φ, g) =

K−1∑
k=1

∫
Ω

(dk+1 − dk)φkdx+

K∑
k=1

∫
Ω

(φk−1 − φk)∇ · gkdx.

(28)

In the above model, we use K−1 super-level set functions to segment the image into

K parts, while to exactly penalize the length of boundary, K dual variables are adopted.

Please note that the regularization terms in the above EConv−sup and ELab−sup are

slightly different. For φk, k = 1, · · · ,K − 1 are a series of super-level set functions, the

regularization term in EConv−sup equals to the length of cluster boundaries exactly

but ELab−sup usually not.

The saddle point of EConv−sup can be found by a simple alternating algorithm

φ(ν+1) = arg min
φ∈B̃1

EConv−sup(φ, g(ν)), (29)

g(ν+1) = arg max
g∈C

EConv−sup(φ(ν+1), g), (30)

where ν is the number of iterations. The subproblems (29) and (30) can both be solved

by projection gradient algorithms, which are sumarized in algorithm 3.

Algorithm 3 Given the initial values φ(0), g(0) = 0, and choosing two time step

parameters τφ, τg > 0, updating the following steps until a convergence criterion is

reached:

step 1, for k = 1, 2, · · · ,K − 1,

(φk)(ν+1) = (φk)(ν) + τφ

(
dk − dk+1 +∇ · (gk)(ν) −∇ · (gk+1)(ν)

)
.

φ(ν+1) = ProjB̃1

(
φ(ν+1)

)
.

step 2, for k = 1, 2, · · · ,K,

(gk)(ν+1) = (gk)(ν) − τg
(

(∇φk−1)(ν+1) − (∇φk)(ν+1)
)
.

g(ν+1) = ProjC

(
g(ν+1)

)
.



18

Here the symbol ProjB̃1 , P rojC are projection operators on convex sets B̃1 and C.

Both of the projections onto C and B̃1 can be easily calculated. For any vector

a = (a1, a2, · · · , aK) ∈ RK , the projection of a on convex set C has a closed-form

expression

ProjC(a) =

{
a, ||a||2 6 µ,

µa
||a||2 , ||a||2 6 µ.

On the other hand, the projection on B̃1 can be solved by the algorithm 2.

Compared to algorithm 1 and algorithm 3, for K-phase segmentation, it at least

requires to solve 3 × (K − 1) variables. But in algorithm 3, it only needs to solve

K − 1 super-level set functions, K dual variable and two projections onto convex sets.

Though the convergence of the augmented Lagrangian method is faster than that of the

projection gradient method, the cost of algorithm 3 at each iteration is much less than

algorithm 1 since both of the projections can be easily calculated. Generally speaking,

algorithm 3 is slightly faster than algorithm 1.

It is well known that the existence of the global minimizer of the Potts model is

still an open problem, but we can show that the global minimizer of Potts model can

be achieved under a certain condition:

Theorem 3 Suppose (φ∗, g∗) is a saddle point of the convex relaxation model (28),

∀x ∈ Ω, if there is an unique minimizer for min{d1(x) +∇ · (g∗)1(x), · · · , dK(x) +∇ ·
(g∗)K(x)}, then ψ∗ = ((ψ∗)1, · · · , (ψ∗)K), where (ψ∗)k = (φ∗)k−1 − (φ∗)k is a global

minimizer of Potts model min
ψ∈B

EPotts(ψ).

Proof To simplify the notations, we still use φ0 = 1 and φK = 0. Obviously, the primal

problem of the dual model (28) is

min
φ∈B̃1

EP (φ) =

K∑
k=1

∫
Ω

(φk−1 − φk)dkdx+
µ

2

K∑
k=1

∫
Ω

|∇φk−1 −∇φk|dx, (31)

thus φ∗ is a global minimizer of (31) by the duality.

Let m(x) = min
k∈{1,··· ,K}

{dk(x) +∇(g∗)k(x)}, ∀φ ∈ B̃1,

EConv−sup(φ, g∗) =

K∑
k=1

∫
Ω

(
(φ)k−1(x)− (φ)k(x)

)(
dk(x) +∇ · (g∗)k(x)

)
dx

6
K∑
k=1

∫
Ω

(
(φ)k−1(x)− (φ)k(x)

)
m(x)dx =

∫
Ω

m(x)dx.

Since (φ∗, g∗) is a saddle of problem (28) and the minimizer of min{d1(x) + ∇ ·
(g∗)1(x), · · · , dK(x) +∇ · (g∗)K(x)} is unique, we have

(φ∗)k−1(x)− (φ∗)k(x) =

{
1, when k = arg min

i∈{1,··· ,K}
{di(x) +∇(g∗)i(x)},

0, else,

is the unique minimizer of EConv−sup(φ, g∗) with respect to φ.
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Let ψk = φk−1 − φk, (ψ∗)k = (φ∗)k−1 − (φ∗)k. Since
ψ1

ψ2

ψ3

...

ψK

 =


1 −1 0 · · · 0 0

0 1 −1 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · 1 −1

0 0 0 · · · 0 1




1

φ1

φ2

...

φK−1

 ,

this linear transformation is reversible and thus there is a one-to-one relationship be-

tween ψk and φk, which means the problem (31) is equivalent to the convex relaxation

Potts model

min
ψ∈B̃

EPotts(ψ) =

K∑
k=1

∫
Ω

ψkdkdx+
µ

2

K∑
k=1

∫
Ω

|∇ψk|dx. (32)

Hence, ψ∗ = ((ψ∗)1, · · · , (ψ∗)K) is the a global minimizer of problem (32). By the

binary of ψ∗, we conclude that it is also the global minimizer of binary Potts model.

3.4 Comparison with Some Related Methods

Let us first point out the difference between the proposed graph and Ishikawa’s [25].

Just as shown in Fig. 1, in Ishikawa’s graph, only the vertices in first layer are connected

with the source s, and the vertices connected with sink t are all located at the last

layer. But in the proposed graph, every vertices are both connected source and sink.

This means that paths from source to sink in our graph are alway much shorter than

Ishikawa’s, especially when K is large. The efficiency of many max-flow algorithms

depend highly on the length of these paths. Generally speaking, the shorter the path

is, the higher efficiency for the algorithm. Thus, to find the max-flow with algorithm

[22] on the proposed graph would cost much less computational time than Ishikawa’s.

We will show this in the numerical experiments. Because of the different structures,

the weights dk assigned to the edges are totally different in the two graphs, see the

second figure in Fig. 1 for details. Of course, for two-phases segmentation, i.e. K = 2,

these two graphs would be the same.

There is another graph cut based method proposed by Bae etc. [10,11] for 4-phases

Chan-Vese model. However, in this method, it is not easy to extend it to any K-

phase segmentation other than 4 clusters because the weights of the edges in the graph

is difficult to be determined in the general cases. Moreover, there is a mild convex

condition for the data term. In [10], the authors have proposed an approximation

method to handle the cases when the convex condition is failed. In our method, the

model is convex without any conditions and thus it can be optimized by the graph cut

algorithm for any positive data terms such as L1, L2 and other norms.

Recently, Yuan etc. [32] have proposed a continuous max flow model for Potts

model. In their particular graph, the vertices are copied as K layers for K-phase seg-

mentation, see Fig. 1 for the structure of the graph. To obtain the continuous Potts

model, the weights of the edges connected to source are constrained as the same but

without any maximum capability for these edges in their graph. To be precise, the

weights of the t-links connected to source in the graph can not be determined in ad-

vance of the computation, thus in the discrete case, the max-flow on a such graph
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can not be found by the existing max-flow algorithms. Compared to their graph, the

maximum flow of the proposed graph can be efficiently found by the augmented path

based max-flow algorithm. In the continuous case, our method solves one less unknown

variable function than theirs because of the super-level set representation.

In [14], Pock etc. proposed a functional lifting method (FLM) for multiphase label

problem using the super-level set representation. In FLM, the data term is L1 norm

and there is no linear inequality constraint for the super-level set. Compared to FLM,

the data term in our method is linear and thus it is easier to minimize. Moreover, just as

mentioned earlier, the regularization term in the FLM is different from the Potts model.

To represent the length of the clusters boundaries more precisely, in [18], the authors

used a tight approximation for the regularization term. For K-phase segmentation, it

requires to find the intersection of projections of the dual variables on
K(K+1)

2 convex

sets, which does not have a closed-form solution and thus the calculation of such a

projection is often time-consuming. Our graph cut method can be regraded as a direct

graph cut implementation for FLM continuous convex method in some sense. The

continuous max-flow algorithm can also be regarded as the dual algorithm of FLM.

For our improved continuous methods, we use another dual representation for TV of a

vector-valued function whose component functions satisfy a partition condition. Such

a method can enable us to compute the projections of the dual variables on one convex

set, which is easier than [18].

For the continuous model, the relaxation we are using is different from [29,18,30,

17] etc.. We relax B to a convex triangle constraint B̃1. Such a convex relaxation can

enable us to solve one less PDE and this improves the computational efficiency.

4 Experimental Results

In this paper, the data term is set as dk(x) = |I(x)− ck|λ, λ = 1, 2, where I(x) ∈ [0, 1]

is image. The intensity means ck can be obtained by K-means algorithm or chosen

as some uniformly distributed numbers in interval [0, 1], and ck also can be updated

by the alternating algorithm. In the following experiments, the convergence criterion

of the algorithms is chosen as ||φ(ν+1) − φ(ν)||2 < ε||φ(ν)||2, where ε is alway set as

1.0× 10−6.

For the discrete model (16), we employ the algorithm in [22] to implement the

max-flow algorithm.

From the layer cake formula (11), we can represent the segmentation results by

label function

l(x) =

K−1∑
k=1

φk(x).

In the following experiments, we will use it to show the results.

4.1 Choice of Parameters

To the best of our knowledge, there is no generalized method for choosing the regu-

larization parameter µ. In the following experiment, µ is manually chosen. The time

step parameter τφ for φ is set as 1.0 in both algorithm 1 and algorithm 3. The penalty
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parameter for augmented Lagrangian method in algorithm 1 is chosen as r = 20µ,

while the time step parameter for dual variable g in algorithm 3 is set as τg = 0.1.

In the next, we shall make some comparisons among the proposed algorithms and

several related methods.

4.2 Comparisons

4.2.1 Comparison of the Discrete Model and Continuous Model

The first example is to illustrate the difference between discrete models and continu-

ous models. The main difference for the two methods is the regularization term. As

mentioned earlier, the TV of the label function may have different weights for different

boundaries, and it is not exactly equal the length of boundaries. This would lead to

some undesirable segmentation results.

In Fig. 2(a), a synthesized piecewise constant image is shown. In this image,

from the boundary to center, the intensity values of the areas in the image are set as

0, 60
255 ,

120
255 ,

180
255 , respectively. The noisy image corrupted by heavy Gaussian noise with

variance σ2 = 0.2 is demonstrated in Fig. 2(b). We implement different algorithms to

partition the noisy image into 4 clusters by fixed means c = (0.2, 0.4, 0.6, 0.8). The seg-

mentation results with discrete graph cut method, dual continuous methods algortihm

1, algortihm 3 are displayed in Fig. 2(c)-Fig. 2(e). The regularization parameters are

all set as µ = 0.3 in these algorithms. It can be found that there are more zigzags in the

result provide by graph cut than continuous method’s. The reason of this phenomena

is that discrete graph cut method suffers from metrication errors caused by anisotropic

TV. The isotropic TV in continuous method has a better performance. In this case,

since each region is nested and the label function l takes the values 0, 1, 2, 3 from outside

to inside, thus
∫
Ω
|∇l|dx is exactly equal the length of the boundaries and there is no

undesirable phenomena expect for the zigzags near the boundaries. But if we changed

the original image intensity values as 0, 120255 ,
180
255 ,

60
255 from outside to inside and other

settings are all kept to be the same as in the previous case, then we get the results

displayed in Fig. 3. Now, the label function l(x) take the values 0, 2, 3, 1 from outside to

inside. Besides the zigzags, it can be seen from this figure that the results provided by

graph cut and algorithm 1 have a narrow bands (label 1) near the boundary between

labels 0 and 2. The similar phenomena also occurs in the boundary between the areas

labeled with 1 and 3. But it does not take place near the boundary between label 2

and 3. Please see the local areas of the red rectangle in the segmentation results. For

details, we show the enlargement of them in Fig. 3(f)-Fig. 3(i). This phenomena is

caused by the different weights of the boundaries in the regularization terms for graph

cut method and algorithm 1. As can be seen from the label function, the length of

boundaries between labels 0 and 2, 1 and 3 is computed 2 times in the regularization

term
∫
Ω
|∇l|dx =

∑3
k=1

∫
Ω
|∇φk|dx, but only 1 time for boundary between label 2 and

3. These different weights produce spitting boundaries and they would not be disap-

peared by increasing the value of the regularization parameter. The finally calculated

super-level set function φ (in algorithm 3, others are similar) for both of the cases are

illustrated in Fig. 4. It can be seen that they are all nearly binary in practice.

To quantitatively evaluate the segmentation accuracy (SA) of different results, we

use an index

SA =
Nc
Nt
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to indicate the quality of the results. Here Nc is the number of the correctly segmented

pixels by the segmentation algorithms and Nt is the total number of the pixels in the

images. The SA values of the segmentation results in this experiment are all reported

in Table 1. It also can be found that the continuous methods have better performance

(higher SA values) than the discrete approach.

Other results for segmenting natural images with different algorithms are displayed

in Fig. 5, Fig. 6 and Fig. 7. For color images, we choose the segmentation data term

as the vector-valued L2 norm in RGB color channels. Since the ground truth seg-

mentations of the natural images are not available, and thus the SA values cannot be

calculated in this case. However, it can be seen from these examples that the continuous

max-flow algorithm 3 looks like to produce the best segmentation results.

SA
graph cut Alg.1 Alg.3

Fig. 2 0.9782 0.9850 0.9850
Fig. 3 0.9774 0.9845 0.9900

Table 1 The segmentation accuracy (SA) for different algorithms in Fig. 2 and Fig. 3.

4.2.2 Comparison of the Proposed Discrete Algorithm and Ishikawa’s Method [25]

Since every vertices of the proposed graph are connected to both source s and sink t,

compared to Ishikawa’s graph [25], our approach would be faster to search trees from

source s to sink t in the augmenting paths based max-flow algorithms such as [22].

Hence, to solve the max-flow on the proposed graph is much faster than Ishikawa’s,

especially when the number of clusters K is large. In this experiment, we employ the

max-flow algorithm [22] to solve the maximum flows. Our experimental platform is a

laptop with 2.3 GHz Intel Core i5 CPU and Matlab R2011b. We partition the images

into different clusters with updating the intensity mean ck. When the segmentation is

finished, we record the CPU time of the max-flow algorithm in each iteration and then

take the average CPU time to make a comparison. Table 2 shows the results of the

CPU time of solving max-flow on the proposed graph and on the Ishikawa’s graph. It

can be seen that both of the two methods require almost the same CPU time when

K = 2. This is reasonable since both of the graphs would be reduced to the same one

when K = 2. However, when K > 2, searching the maximum flows on the proposed

graph is much faster than that by [25]. Generally speaking, based on our experiments,

our method is more than 2 times faster than [25] when the number of clusters K > 2.

The proposed discrete method would have the same segmentation results as Ishikawa’s

method [25] since they are both to minimize the same energy (different with a con-

stant term). Compared to Ishikawa’s graph, the only advantage of the proposed graph

is the higher computational efficiency. However, the proposed continuous max-flow al-

gorithms 1 and 3 can produce better segmentation results than [25]. Please see Fig. 3,

Fig. 5 and Fig. 6 for examples.
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(a) ground truth (b) noisy image

(c) graph cut (d) Alg. 1 (e) Alg. 3

(f) Truth (g) graph cut (h) Alg. 1 (i) Alg. 3

Fig. 2 Segmentation results of the discrete graph cut method, and our dual continuous meth-
ods algorithm 1 and algorithm 3.

4.3 Comparison of the Multi-phase Chan-Vese Model and Proposed Method

In the multi-phase Chan-Vese model [9], any K-phase segmentation can be represented

by log2K level set functions. For the 4-phase Chan-Vese model, a relaxation convexity

method has been proposed in [10]. This model can be optimized by the graph cut

method provided that the data term in the energy satisfies a mild convex condition

(please see [10] for details). When this condition fails, the authors have also proposed

an approximation convex energy to replace the original Chan-Vese model. Here we

compare the proposed method with the graph cut based 4-phase Chan-Vese model.

Fig. 8 shows the results with different methods to partition some brain MR images to

4 clusters. In Fig. 8(b), the image contains Gaussian noise and thus we apply the L2
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(a) ground truth (b) noisy image

(c) graph cut (d) Alg. 1 (e) Alg. 3

(f) Truth (g) graph cut (h) Alg. 1 (i) Alg. 3

Fig. 3 Segmentation results of the discrete graph cut method, and our dual continuous meth-
ods algorithm 1 and algorithm 3.

data term to segment it. Since the level of noise is not very high and the data term is

L2 norm, thus the convex mild condition usually holds and the results produced by [10]

is good. The results produced by the Chan-Vese model and the proposed algorithms

are very similar except for a little smoothness difference caused by the choice of the

regularization parameters. But in Fig. 8(g), the image was corrupted by heavy impulse

noise and we need to use L1 data term to classify the pixels. In this case, the convex

mild condition fails and thus the segmentation result (Fig. 8(h)) with graph cut based

Chan-Vese is not good as the proposed algorithms (Fig. 8(i),8(j)) .
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(a) φ1 (b) φ2 (c) φ3

(d) φ1 (e) φ2 (f) φ3

Fig. 4 The output super-level set functions φ1, φ2, φ3 in algorithm 3 for Fig. 2 and Fig. 3.

Fig. 5(a) Fig. 6(a)
K=2 K=3 K=4 K=8 K=10 K=2 K=3 K=4

Ishikawa’s [25] 0.049 0.350 1.843 3.727 4.907 0.049 0.208 0.479
Proposed 0.047 0.106 0.183 0.716 1.384 0.044 0.098 0.196

Table 2 The average CPU time (seconds) for solving maximum flows of the Ishikawa’s graph
[25] and the proposed graph using the max-flow algorithm [22]. (The sizes of Fig. 5(a) and
Fig. 6(a) are both 321 × 481).

4.4 Application to stereo benchmark

The stereo benchmark problem (see e.g. [37]) is to calculate the depth mapping l

between a pair of color images IL and IR taken from horizontally different viewpoints.

Such a depth mapping l can be obtained by minimizing the non-convex data term

D(l) =
∑
x∈Ω

||IL(x)− IR(x+ (l, 0)T )||1 =
∑
x∈Ω

3∑
i=1

|IiL(x)− IiR(x+ (l, 0)T )|,

where IiL, I
i
R, i = 1, 2, 3 stands for the i-th component function of IL and IR in RGB

color channels. Usually, a regularization term such as µTV(l) should be added to force

the depth mapping to be a piecewise constant function. If l only takes integers from 1

to K, then

D(l) =
∑
x∈Ω

3∑
i=1

K∑
k=1

|IiL(x)− IiR(x+ (k, 0)T )|δk,l.

By (13), D(l) can be represented by a series of super-level set functions φ and thus

D(φ) is convex. Here, we use the proposed algorithm 3 and the proposed discrete graph

cut method to solve this problem.
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(a) Image (b) graph cut

(c) Alg. 1 (d) Alg. 3

(e) graph cut (f) Alg. 1 (g) Alg. 3

Fig. 5 Segmentation results with different algorithms. The number of the clusters K = 4.
The last row is the corresponding enlargement of the red rectangle area in the segmentation
results.

Fig. 9 shows the results of depth mapping estimation using our method. In this

experiment, IR is produced by the given input image IL according to the ground truth

depth mapping shown in Fig. 9(c). Then we use the image pair IL and IR to reconstruct

the depth mapping. We set the phases K = 17 according to [37] and the regularization

parameter µs are both set as 0.09. The final results with the graph cut method and

continuous algorithm 3 are displayed in Fig. 9(d) and in Fig. 9(f), respectively. It can

be found that the result produced by algorithm 3 is better than the discrete method’s

according to the errors of these two methods which are displayed in the Fig. 9(e) and

Fig. 9(g). This is because the regularization term in the continuous method is more

suitable for the smoothness constraints in this problem.
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(a) Image (b) graph cut

(c) Alg. 1 (d) Alg. 3

(e) graph cut (f) Alg. 1 (g) Alg. 3

Fig. 6 Segmentation results with different algorithms. The number of the clusters K = 3.
The last row is the corresponding enlargement of the red rectangle area in the segmentation
results.

5 Conclusion and Discussion

In this paper, we have proposed a graph cut based continuous max-flow for multi-phase

segmentation, which is associated to the super-level set representation in continuous

method. Due to the energy of the model is convex, in the discrete case, its global min-

imization can be exactly solved by searching a maximum flow on a special constructed

graph. We experimentally show that finding the maximum flow on the proposed graph

is faster than the earlier methods such as Ishikawa’s [25]. Meanwhile, we mathemati-

cally show that the min cut of the proposed graph is corresponding to the super-level

set representation of the PCLSM model. To overcome the drawback of PCLSM model

that each boundary of the clusters may have a non-uniform weight, we propose a con-

tinuous max-flow model by using K − 1 super-level set functions and K dual variables
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(a) (b) (c)

(d) 4 phases, µ = 1 (e) 5 phases, µ = 1 (f) 8 phases, µ = 5

(g) 4 phases, µ = 8 (h) 5 phases, µ = 8 (i) 8 phases, µ = 10

Fig. 7 Segmentation results of the proposed Alg. 3 for some natural images.

(a) Original (b) Gaussian
noise

(c) Chan-Vese,
graph cut [10]

(d) Super Level
Set (discrete)

(e) Super Level
Set (continous)

(f) Original (g) 60% impluse
noise

(h) Chan-Vese,
graph cut [10]

(i) Super Level
Set (discrete)

(j) Super Level
Set (continous)

Fig. 8 Comparison of the graph cut based 4-phase Chan-Vese model [10] and the proposed
algorithms. First column, original images; second column, the noisy images with different types
noise; third column, the segmentation results with 4-phase Chan-Vese model using graph cut
algorithm [10]; fourth column, the clusters with the super level set representation using the
proposed graph cut method; fifth column, the segmentation results with the super level set
representation by the proposed continuous dual model.

to partition any image into K phases. Compared to some existing methods, experimen-
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(a) IL (b) IR (c) ground truth

(d) graph cut (e) error=15.30% (f) Alg. 3 (g) error=6.29%

Fig. 9 Results of depth mapping estimation. The regularization parameter µ = 0.09 and the
number of the clusters K = 17 for both of the two methods.

tal results have illustrated that our method can improve the segmentation accuracy or

computational efficiency.

Although the general Potts model can not be exactly solved by graph cut, but a

tight approximation is possible. As discussed in the paper, in the continuous model,

since the regularization term in the Potts model must have some connections between

k − 1 and k layers vertices, one could improve the discrete graph cut method by con-

sidering such a relationship.

We emphasize that we can obtain the global minimization under the condition that

ck is known (corresponding to dk is known). However, in many applications, the real

intensity means ck may be unknown. In this case, one can use the alternating algorithm

to update ck and get some good results. Theoretically, the segmentation model is no

longer convex by considering ck together, especially when the number of clusters K is

unknown. Therefore, how to get a totally convex relaxation model including ck and K

is one of our future work.
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