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Abstract. Wavelet frames have been successfully applied in various image restoration problems,
such as denoising, inpainting, deblurring, etc. However, they are rarely used in geometric applica-
tions, except for recent work of [22, 23]. Motivated by the theoretical connection between wavelet
frame based and total variation based image restoration models recently established in [7] we pro-
pose here a convex multi-phase segmentation model based on wavelet frame transform. The proposed
model allows to automatically identify complex tubular structures, including blood vessels, leaf vein
system, etc. Numerical results show that our method can extract many more details than existing
variational methods especially when the image contains different scales of structures. The proposed
method can be parallelized easily and its efficiency is further improved by a GPU implementation.
In addition, we analyze the connection between solutions of the convexified model and the original
binary constrained one.
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1. Introduction. Multi-phase image segmentation, or multi-phase labeling is
the process of partitioning an image into multiple regions with respect to specific
goals and applications. It is a basic but very important image analysis task that has
been extensively investigated for many years. Among all the models, regularization
based variational models have proven to be especially successful. Variational models
started with the classic work by Mumford and Shah [38] and active contour models
[31, 35]. Later, Chan-Vase active contour model [18] and its variants based on level
sets and total variation [42] were proposed to improve earlier results in terms of both
segmentation accuracy and computation efficiency, see [17, 18, 32, 33]. However, the
quality of Chan-Vese model relies on initializations due to the non-convexity of the
model. Meanwhile, it is well known that Mumford-Shah model is a special case of
classical Pott’s model in discreet setting. The general Pott’s model consists of solving
the image segmentation problem by minimizing a sum of the lengths of the boundaries
of the regions and data fidelity. It is well known that solving Pott’s model is NP
hard and can not be solved in a polynomial time for multi-phase cases. Many kinds
of graph-cut based models such as alpha expansion, alpha-beta swap [4] have been
developed to approximate global minimization solution. Recently, convexified models
by relaxation of binary partition in both discreet and continuous setting [16, 5, 6, 2, 48]
were proposed to improve the robustness of segmentation as well as computational
efficiency. A detailed study on the convex model based on total variation is recently
present in [12].

On the other hand, the theory of tight wavelet frames, also called framelets, has
been extensively studied in the past two decades with many successful applications
in image processing, including image denoising, image deblurring, inpainting, etc, see
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[45, 27, 8, 24, 7] and references therein. Examples of tight frames include translation
invariant wavelets, wavelet frame and curvelets, etc [21, 40, 41, 10]. Unlike orthogonal
wavelets, tight frames give redundant representations of signals. The redundancy of
tight frames often provides the flexibility that is a desired property in various applica-
tions. Despite the success of tight frames and wavelet frame in many applications in
image processing, there are few geometric applications such as image segmentation.
Motivated by recent theoretical progress in [7] that establishes the fundamental con-
nection between wavelet frames based and total variation based approaches for image
restoration, we intend to continue the attempt of [22] and further explore the applica-
tion of wavelet frames for image segmentation. Some previous attempts to do so have
been made in [22] and [9]. In [22], the authors proposed a two-phase segmentation
model utilizing wavelet frame. In [9], the authors also proposed an iterative procedure
with thresholding on wavelet frame coefficients to segment tubular structures. Both
papers use numerical results to show that wavelet frame based models are superior to
existing variational segmentation models, especially for fine structures. Both models
deal with two-phase segmentation. There are also some previous work on texture
classification using wavelet frames, see [46, 1]. But to the best of our knowledge,
utilizing the property of sparse approximation of tight frames and convex approaches
for multi-phase segmentation has not been well studied in the literature. This paper
aims to fill this gap.

We derive a multi-phase segmentation model based on wavelet frame and convex-
ified segmentation model. The proposed model is applied to automatically identify
complex tubular structures, including blood vessels in magnetic resonance angiog-
raphy images and leaf vein systems. These kinds of images are challenging due to
intensity inhomogeneity, intersection of different scales of structures and the presence
of noise. The early results from [22] and the nature of the wavelet frame based ap-
proach indicate that the wavelet frame performs efficiently and specially well when
the intensity is not homogenous, which is another motivation of our current adven-
ture. The quality of segmentation is crucial for further structure analysis. One major
difficulty shared by the two kinds of images is that they contain different scale of struc-
tures and existing segmentation algorithms may not be able to get satisfactory results.
For existing algorithms for identifying blood vessels, interesting reader should consult
[29, 28, 36] for details. Wavelet frames, constructed from multi-resolution analysis
(MRA), adapt to different scales naturally, and therefore are suitable to these appli-
cations. The advantage of using wavelet frame to do segmentation is partially proved
in the two-phase case in [22, 9]. More generally, the tubular structure often belongs to
one of the many regions in a given image, therefore, a multi-phase segmentation model
is desirable. The proposed model can segment the given image into multiple regions
and utilize some properties of wavelet frame such as natural multi-scale description
of structures as well as sparse approximation of piecewise smooth images.

Like other variational models, the proposed model yields a minimization problem.
There are a variety of frameworks and algorithms that aim to solve sparse optimiza-
tion problems, for example [47, 30, 8, 25, 12, 50, 49]. In particular, we apply a first
order primal-dual framework [25, 12] to build our algorithm due to its efficiency and
simplicities. Details will be given in later sections. We also point out that unlike usual
image restoration model where low frequencies coefficients is never penalized, using
of low frequencies encourages binary solutions and also yield faster numerical conver-
gence. Finally, numerical results show that the proposed model extracts many more
details than total variation based models especially when the input image contains
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Fig. 1.1: Fine structure segmentation

different scales of structures and singularities in low contrast setting.

The rest of this paper is organized as follows: in the rest of this section, we
present variational image segmentation models and our motivations of using wavelet
frame, and then review some concepts for wavelet frame and the basic framework of
primal-dual algorithms. In section 2, we present the formulation of wavelet frame
based multi-phase segmentation model and give the detail of the algorithm to solve
the minimization problem. We also analyze the connections between the solutions of
the convexified and the original binary models. In section 3, we give some numerical
results and compare our results with some existing models. We also give remarks on
the role of low frequency. Sections 4 concludes the paper.

1.1. Variational segmentation model and convex relaxation. Given an
image I(x) defined on an image domain Ω ⊂ Rd for d = 2, 3, the image segmentation
problem is to find a partition of Ω into K disjoint subdomains {Ωk}Kk=1, that is:

Ω =

K⋃
k=1

Ωk , Ωk
⋂

Ωj = ∅, if k 6= j.

Mumford-Shah [38] proposed minimizing the interface between the partitions with
a piecewise constant variational model:

min
Ωk,ck

{
K∑
k=1

|∂Ωk|+
λ

2

K∑
k=1

∫
Ωk

|I(x)− ck|2dx

}
, (1.1)

where ck ∈ R for k = 1, · · · ,K is the mean value in each region Ωk. The parameter
λ > 0 is used to balance the data fitting term and the total length of interfaces. It is
well known that this model is a special case of classical Pott’s model where the fidelity
term is given in a more general setting. The discreet Pott’s model is NP hard and to
simplify the task, it is often assumed that the mean value ci of each region is known
and fixed. The model (1.1) is thus used to look for a smooth and tight boundary
between regions.

By introducing the labelling function uk of the disjoint subdomains Ωk

uk(x) =

{
1 if x ∈ Ωk
0 otherwise

for k = 1, · · · ,K. (1.2)
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we can formulate the model (1.1) in the generic form

min
u

{
K∑
k=1

|∂Ωk|+
K∑
k=1

∫
Ω

uk(x)fk(x)dx

}

s.t. uk(x) = {0, 1},
K∑
k=1

uk(x) = 1, ∀x ∈ Ω (1.3)

where fk(x) = λ
2 |I(x)− ck|2.

The interface lengths can be further convert to total variation thanks to the co-
area formula [17, 13]

K∑
k=1

|∂Ωk| =
K∑
k=1

∫
Ω

|∇uk(x)|dx (1.4)

This transform allows us to develop efficient algorithms based on the well studied
total variation minimization [42, 16, 13] . However, the above model is nonconvex
due to the binary constraint of the uk. Generally, a convex relaxation is made by
relaxing the binary constraint over the interval [0, 1]. By denoting u = (u1, · · · , uK),

f = (f1, · · · , fK) and J(u) =
∑K
k=1

∫
Ω
|∇uk(x)|dx, the convex minimization problem

is formulated as:

u∗ = arg min
u∈S

{J(u) + 〈u,f〉} (1.5)

where S is the simplex constraint at each pixel and defined as

S =

{
u : Ω→ RK : uk(x) ∈ [0, 1], for 1 ≤ k ≤ K;

K∑
k=1

uk(x) = 1, ∀x ∈ Ω

}
(1.6)

and the inner product 〈u,f〉 =
∑K
k=1

∫
Ω
uk(x)fk(x)dx is understood in usual sense.

If the minimizer of (1.5) happens to be binary everywhere, then it is also a global
minimizer of the original problem (1.3). On the other hand, a global minimizer of
(1.5) might not be binary even when the solution of (1.3) is unique. Generally, a final
thresholding step is taken to get a binary solution

u∗k(x) =

{
1 if u∗k(x) = max{u∗1(x), u∗2(x), . . . , u∗K(x)}
0 otherwise

(1.7)

If the maximizer is not unique, the maximizer with smallest subscript is generally
used as a convention.

This region based model has also been combined with an edge based approach to
generalize the above model, such as in [43, 5, 3]. By introducing an edge indicator
g(x) ≥ 0, the model (1.5) is extended by setting

J(u) =

K∑
k=1

∫
Ω

g(x)|∇uk(x)|dx (1.8)

The edge indicator function takes small values at locations with large gradient
and big values for smooth region. For a given image I(x), a usual choice is

g(x) =
1

1 + σ‖∇Ĩ(x)‖2
(1.9)
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where Ĩ is a smoothed version of I and σ > 0 is a positive number. Note that if g(x)
is identically 1, it reduces to the model (1.5).

The above total variation based methods have been proved to be very efficient
for segmenting piecewise constant types of cartoon-like images, while it may not so
efficient for complex tubular or vascular structures such as blood vessel, vein systems
in medical images. Recently, connections between total variation and wavelet frame
based image restoration models are established in [7]. One of main results of this
work shows that total variation based image restoration model can be viewed as
the limit of a wavelet frame based model when the resolution goes to infinite. The
analysis therein provides geometric interpretations to wavelet frames approach as well
as its solutions. The successes of wavelet frame based images motivate us to further
investigate the application of wavelet frame based method on image segmentation
with multiple phases. Based on the theoretical connection to continuous differential
operator and wavelet frame filters given in [7], wavelet frame based approaches can
adaptively choose proper filter of different vanishing moment according to the order of
the singularity of the underlying images. This is particularly useful for segmentation
since the main goal of segmentation is to capture singularities of different order and
scale which represent edges in images. These observations will enable us to design
new multi-phase image segmentation methods based on wavelet frame, especially for
images with multilevel fine structures in very low contrast setting.

1.2. MRA based wavelet frames. In this section, we briefly introduce the
concepts of tight frames and wavelet frames. Interested readers should refer to [20,
40, 41, 21, 24] for the theories and applications of wavelet frames.

A countable set X ⊂ L2(Rd) is called a tight frame of L2(Rd) if

f =
∑
ψ∈X

〈f, ψ〉, ∀f ∈ L2(Rd),

where 〈 , 〉 is the inner product of L2(Rd)
For a given set Ψ = {ψ1, . . . , ψr} ⊂ L2(Rd), the affine system is defined by the

collection of the dilations and shifts of Ψ as

X(Ψ) =
{
ψ
l,i,k : l ∈ Z, 1 ≤ i ≤ r,k ∈ Zd

}
with ψ

l,i,k = 2l/2ψi(2
l · −k). (1.10)

When X(Ψ) forms a tight frame of L2(Rd), it is called a tight wavelet frame, and
ψl, l = 1, . . . , r are called (tight) wavelet frame or framelets.

To construct a set of framelets, one usually starts from a compactly support-
ed refinable function (also called scaling function) that generates a multi-resolution
analysis (MRA) space of L2(Rd), satisfying

φ̂(2·) = ĥ0φ̂

for some h0. Here φ̂ is the Fourier transform of φ, and ĥ0 is the Fourier series of
h0. For a given compactly supported refinable function, a tight framelet system is
constructed by finding a finite set Ψ that can be represented in the Fourier domain as

ψ̂l(2·) = ĥlφ̂

for some 2π-periodic function ĥl. The unitary extension principle (UEP)[40, 41] shows
that the system in (1.10) generated by Ψ forms a tight frame in L2(R) provided that
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the masks of ĥl for l = 0, 1, . . . , r satisfy

r∑
i=0

|ĥi(ξ)|2 = 1 and

r∑
i=0

ĥi(ξ)ĥi(ξ + π) = 0 (1.11)

for almost all ξ in R. Here h0 corresponds to a low pass filter, while {hi : i =
1, 2, . . . , r} must correspond to high-pass filters by UEP (1.11). The sequences of
Fourier coefficients of {hi : i = 1, 2, . . . , r} are called framelet masks.

In our implementation, we adopt two kinds of wavelet frame. One is constructed
from a piecewise linear B-spline. The filter banks coefficients are

h0 =
1

4
[1, 2, 1], h1 =

√
2

4
[1, 0,−1], h2 =

1

4
[−1, 2,−1].

The other is also constructed from B-splines but with higher vanishing moments. The
filter banks are

h0 = [
1

16
,

1

4
,

3

8
,

1

4
,

1

16
], h1 = [

1

16
,−1

4
,

3

8
,−1

4
,

1

16
], h2 = [−1

8
,

1

4
, 0,−1

4
,

1

8
]

h3 = [

√
6

16
, 0,−

√
6

8
, 0,

√
6

16
], h4 = [−1

8
,−1

4
, 0,

1

4
,

1

8
].

The framelet transform can be obtained by convolving the signal with these
filter bank coefficients. With a one-dimensional framelet system for L2(R), the d-
dimensional framelet system for L2(Rd) can be easily constructed by tensor products
of one dimensional wavelet frame.

1.3. Primal-Dual algorithm. In this section, we briefly review a class of primal
dual algorithms that we will apply later for solving our proposed model. The general
optimization problem that we consider takes the following form :

min
u∈X
{F (Bu) +G(u)} (1.12)

where X is convex set in Rd, G : X 7→ [0,+∞) and F : X 7→ [0,+∞) are two proper,
convex, lower-semicontinuous (l.s.c) functions and the map B : X 7→ Y is a continuous
linear operator with induced norm:

‖B‖ = max {‖Bu‖Y : u ∈ X with ‖u‖X ≤ 1} .

Generally, the convex functional F is not differentiable, e.g. `1 norm type, thus
making the optimization difficult to solve. There is considerable interest in finding
efficient algorithms to solve this optimization problem recently due to its applications
arising in imaging sciences, such as total variation based image restoration, inverse
problem regularization, low rank matrix restoration, etc. In [30], a splitting based
method was proposed to solve this problem efficiently for total variation case. In
[50], a primal dual hybrid method (PDHG) method was proposed to solve total vari-
ation regularization problem. In [25, 12] more general algorithm framework has been
proposed for this type of problem.

Using Fenchel-Legendre transform, we obtain the generic saddle-point problem:

min
u∈X

max
p∈Y
{〈Bu, p〉+G(u)− F ∗(p)} , (1.13)
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where F ∗ is the convex conjugate of the l.s.c. function F . The corresponding dual
problem is written as

max
p∈Y
{−(G∗(−B∗p) + F ∗(p))} . (1.14)

where B∗ is the adjoint operator of B.
We assume that these problems have at least one solution (û, p̂) ∈ X × Y , which

satisfies:

Bû ∈ ∂F ∗(p̂)

−(B∗p̂) ∈ ∂G(û),

where ∂F ∗ and ∂G are the subgradients of the convex function F ∗ and G. The
resolvent operator (also known as the proximity operator) is defined by

u = (I + τ∂G)−1(v) = arg min
v∈X

{
‖u− v‖2

2τ
+G(u)

}
. (1.15)

Assume F and G are simple in the sense that this resolvent has a closed for-
m. With these notations, the primal-dual algorithm proposed in [25, 12] is given as
follows:

Algorithm 1 Modified PDHG algorithm [25, 12].

Require: Choose τ, σ > 0, (x0, y0) ∈ X × Y and set x̄0 = x0

1: for n ≥ 0, update pn+1, un+1, ūn+1 do

2:

 pn+1 = (I + σ∂F ∗)−1(pn + σBūn)
un+1 = (I + τ∂G)−1(un − τB∗pn+1)
ūn+1 = 2un+1 − un

3: end for.

As shown in [25, 12], if τσβ2 < 1 where β = ‖B‖2, the sequence defined by
Algorithm 1 converges and the primal dual gap has the convergence rate O (1/N) in
ergodic sense.

2. Wavelet frame based segmentation: model and algorithm.

2.1. Notations. In this section, we consider the discrete setting of wavelet frame
transform. For simplicity, we still denote the pixel/voxel index set as x ∈ Ω, where
Ω is the image domain in R2 or R3. Let n = |Ω| be the number of pixels of image
domain, U = Rn be the vector space of images that region indicator u(x) belongs to
regardless of its dimension.

We use W to denote the fast tensor product framelet decomposition and denote
an L-level framelet decomposition of u as

Wu =
{
W0u;Wl,iu; for ∀0 ≤ l ≤ L− 1; ∀i ∈ I

}
,

where W0 denotes the lowest frequency at decomposition level L and

I = {(i1, · · · , id), for 0 ≤ i1, · · · , id ≤ r, (i1, · · · , id) 6= (0, · · · , 0)} (2.1)
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denotes the index set of all framelet bands, and l denotes the decomposition level.
We use W> to denote the fast reconstruction and by UEP we have W>W = I, i.e.
u = W>Wu for any image u.

We denote the set of wavelet frame coefficients as P. For each element in p ∈ P,
it can be expressed as

p =
{
p0; pl,i, p0 ∈ Rn; pl,i ∈ Rn for ∀0 ≤ l ≤ L− 1; ∀i ∈ I

}
Here p0(x) denotes the low frequency coefficients vector, and pl,i denotes the coeffi-
cients vector at filterband i and decomposition level l.

Furthermore, we introduce the discrete `1,2 semi-norm of a framlet-coefficient
vector p ∈ P without low frequency:

‖p‖01,2 =

∥∥∥∥∥∥∥
L−1∑
l=0

∑
i∈I

|pl,i|
2

1/2
∥∥∥∥∥∥∥

1

(2.2)

where | · |2 and (·) 1
2 are componentwise operations and ‖ · ‖1 denotes the `1 norm

in Rn. The summation goes over all the L levels and the set of bands except the
low frequencies. For this reason, this definition is a semi-norm. This is usually used
for image restoration application, see [8, 24]. It is also used in the two-phase image
segmentation in [22]. Here, we are also interested in the norm including the low
frequency, defined as

‖p‖1,2 = ‖p0‖1 + ‖p‖01,2 (2.3)

Finally, given image I(x) for x ∈ Ω, we want to segment in K subregions
{Ω1, · · · ,ΩK}. We denote U = UK as the product space of K region indicator
functions u = (u1, · · · , uK) belongs to. Let P = PK be the corresponding product
space of K- wavelet frame coefficients vector spaces. Thus for any u ∈ U , we denote
Wu = (Wu1, · · · ,Wuk, · · · ,WuK) and Wu ∈ P .

2.2. Model. As we stated previously, total variation based image restoration
model can be viewed as the limit of a wavelet frame based model when the resolution
goes to infinite. The theoretical connection to continuous differential operator and
wavelet frame filters given in [7] provides geometric interpretations to wavelet frames
approach as well as its solutions. The successes of wavelet frame for image restoration
motivate us to further investigate the application of wavelet frame to image segmen-
tation with multiple phases.

We consider the general model (1.5). For the fidelity term, we first assume that
we have an initial guess of the mean of each subregion ck for k = 1, · · · ,K and

fk(x) =
λ

2
‖I(x)− ck‖β (2.4)

for β = 1, 2.
For the regularization term in (1.5), total variation can be considered as a special

case of framelet coefficients ‖ ·‖01,2 norm defined in (2.3) when Harr filter is considered
as shown in [7]. We consider wavelet frame regularization instead of total variation
since wavelet frame based approaches can adaptively choose proper filter of different
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vanishing moment according to the order of the singularity of the underlying images.
This is particularly useful for segmentation since the main goal of segmentation is to
capture singularities of different order and scale which represent edges in images. By
introducing an edge function g ∈ Rn with g(x) ≥ 0 for each x ∈ Ω and generalizing
the definition of the norm, we define the weighted tight frame `1,2 norm for a given
image uk(x)

‖g ·Wuk‖1,2 : = 〈g, |W0uk|〉+

〈
g,

L−1∑
l=0

∑
i∈I

|Wl,iuk|
2

1/2〉
= ‖g ·W0uk‖1 + ‖g ·Wuk‖01,2

(2.5)

where | · |, | · |2 and (·)1/2 are componentwise for each x ∈ Ω.
We point out here that unlike applications in image restorations, where the low

frequency part of the framelet transform is not used, the low frequency is used and
it has several additional advantages for segmentation application. Therefore, our
proposed binary constrained wavelet frame based multi-phase segmentation model is
formulated as

min
(u1,··· ,uK)

{
K∑
k=1

‖g ·Wuk‖1,2 +

K∑
k=1

〈uk, fk〉

}

s.t. uk(x) ∈ {0, 1},
K∑
k=1

uk(x) = 1, ∀x ∈ Ω

(2.6)

For a given edge indicator function g(x), x ∈ Ω, g(x) takes small values when
the transition of the image intensity is sharp at x ∈ Ω. It is used to slow down the
evolution of the interface when it arrives at the boundaries. In our case, we may use
the high frequency part to measure this transition, which is similar to the gradient in
total variation based models. In our implementation, we set

g(x) =
1

1 + σ
∑
l,i∈I

|(Wl,iĨ)(x)|β
(2.7)

for all x ∈ Ω, where σ > 0 is a given positive number and Ĩ(x) is a smoothed image
of the input I(x). Other possible choice of edge indicator function can be also used.

The model is not convex due to the binary constraints on u, which brings much
numerical difficulty. As considered in several previous work, we relax the constraints
so that each uk is allowed to take values continuously from [0, 1]. Along with the
relaxation, the constraint becomes

∑
k uk(x) = 1. Finally, the convex relaxation

model in vector form is written as

min
u∈S

EP (u) := ‖g ·Wu‖1,2 + 〈u,f〉 (2.8)

where S ⊂ U is the simplex constraint defined in (1.6) and

‖g ·Wu‖1,2 =

K∑
k=1

‖g ·Wuk‖1,2 = ‖g ·W0u‖1 + ‖g ·Wu‖01,2, (2.9)
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〈u,f〉 =

K∑
k=1

〈uk, fk〉 (2.10)

2.3. Algorithm. In this subsection, we give the details of the algorithm for
solving the optimization problem above. The main framework is based on a primal
dual algorithm introduced in both [25] and [12], as described in Algorithm 1.

We can reformulate the proposed model (2.8) in the general form of (1.12) in
Section 1.3. Let

F (Wu) = ‖g ·Wu‖1,2 , G(u) = 〈u,f〉+ δS(u),

where δS(u) is the characteristic function of convex set S defined in (1.6), i.e.

δS(u) =

{
0 if u ∈ S
∞ otherwise.

(2.11)

For this general form, we have the primal-dual model as (1.13):

min
u∈U

max
p∈P

{〈Wu,p〉+G(u)− F ∗(p)} , (2.12)

where p = (p(1), · · · , p(K)) and each p(k) ∈ P corresponds to a dual variable of uk in
the tight wavelet frame coefficients space, i.e.

p(k) =
{
p

(k)
0 (x); p

(k)

l,i
(x), for 0 ≤ l ≤ L− 1, i ∈ I, x ∈ Ω

}
(2.13)

We need to compute the resolvent operator (1.15) (I+∂F ∗)−1 and (I+∂G)−1 for
applying Algorithm 1. In the following, we first compute the conjugate function F ∗.

For notational convenience, we first drop the index k. Let q =
(
q0(x), ql,i(x)

)
∈ P

be a vector in the wavelet frame transform domain and F (q) denote the g- weighted
`1,2 norm of q:

F (q) = ‖g · q‖1,2 = 〈g, |q0|〉+ 〈g,
L−1∑
l=0

∑
i

|ql,i|
2

1/2

〉 (2.14)

By the definition of a conjugate function, we have

F ∗(p) = max
q
{〈p, q〉 − F (q)}

= max
q

〈q0, p0〉 − 〈g, |q0|〉+

L−1∑
l=0

∑
i

〈pl,i, ql,i〉 − 〈g,

∑
i

|ql,i|
2

1/2

〉




=

 0, if |p0(x)| ≤ g(x) and max
l

(
∑
i∈I

∣∣∣pl,i(x)
∣∣∣2)1/2 ≤ g(x) ∀x ∈ Ω

∞, otherwise

Denote Y ⊂ P as

Y =

p =
(
p0(x), pl,i(x)

)
: |p0(x)| ≤ g(x); max

0≤l≤L−1

∑
i∈I

∣∣∣pl,i(x)
∣∣∣2
1/2

≤ g(x) ∀x ∈ Ω

 .

(2.15)



FRAMELET BASED IMAGE SEGMENTATION 11

We can easily see that Y is a convex set.
Now if we consider K regions, for a vector p = (p(1), · · · , p(K)) ∈ P , we have

F ∗(p) as the characteristic function of convex set Y for each p(k):

F ∗(p) =

{
0, if p(k) ∈ Y , k = 1, · · · ,K
∞, otherwise

For a given tight frame coefficients vector q = (q(1), · · · , q(K)), the resolvent
operator defined in (1.15) for F ∗ (2.16) is given by

(I + σ∂F ∗)(q) = arg min
p

{
‖p− q‖2

2σ
+ F ∗(p)

}
= arg min

p(k)∈Y

{
‖p− q‖2

2σ

}

=

∏
Y

(q(1)), · · · ,
∏
Y

(q(K))


where

∏
Y

denotes the projection operator onto the convex set Y for each q(k). Let

q̃ =
∏
Y

(q). We drop the index k for simplicity. For 0 ≤ l ≤ L − 1, high frequency

coefficients q̃l,i, i ∈ I are given by

q̃l,i(x) =


ql,i(x), if

(∑
i∈I
|ql,i(x)|2

)1/2

≤ g(x)

g(x)q
l,i(x) ∑

i∈I

|q
l,i(x)|2

1/2 , otherwise
(2.16)

and for the low frequency coefficients q̃0(x) is given by

q̃0(x) =

{
q0(x), if |q0(x)| ≤ g(x)
g(x), otherwise

(2.17)

We next focus on how to compute the resolvent (I + ∂G)−1. Recall that G is
defined as

G(u) = 〈u,f〉+ δS(u)

For a given v = (v1, · · · , vk), we compute the resolvent ṽ = (I + ∂G)−1(v) by

ṽ = (I + τ∂G)−1(v)

= arg min
u

‖u− v‖2

2τ
+ 〈u, f〉+ δS(u)

= arg min
u∈S

‖u− (v − τf)‖2

=
∏
S

(v − τf)
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where
∏
S

denotes the orthogonal projection onto the simplex constraint S. In the

literature, there are some classic algorithms to compute the orthogonal projection
onto a simplex constraint in RK , see [37]. For completeness, we describe the algorithm
presented in a recent report [19] in Algorithm 2.

Algorithm 2 Projection onto a simplex ∆ in RK

Require: Input ~z = (z1, z2, . . . , zK) ∈ RK
1: Sort zi in ascending order, z1 ≤ z2 ≤ . . . zK , set i = K − 1.

2: Compute ti =
∑K

j=i+1 zj−1

K−i . If ti > zi set t∗ = ti, and go to 4. Otherwise, set
i← i− 1 and repeat 2. if i = 0, go to 3.

3: Set t∗ =
∑n

j=1 zj−1

n .
4: Return x∗ = (z − t∗)+ as the projection.

To complete Algorithm 1, we also need to update

ūn+1 = 2un+1 − un. (2.18)

We have built in our model a collection of ci, which represents the average inten-
sity of each region. In doing so, we are actually using piecewise constant functions to
approximate the original image. The framelet based segmentation model itself does
not give any information about these constants, so we need some rough estimates to
start with. We use the K-means algorithm to get these rough estimates. We note
that although the mean value ci is assumed given in the proposed model (2.8), in
practice, the vector ci can also be updated for a better estimation. According to the
Mumford-Shah model (1.1), for a fixed segmentation Ωi,

ci =

∑
x∈Ω I(x)uk(x)∑
x∈Ω ui(x)

. (2.19)

Finally, suppose that we successfully solved the relaxed minimization problem (2.8)
and that the solution u∗ = (u∗1, · · · , u∗k) happens to be binary. It is then a solution to
the original nonconvex problem (2.6). If it is not binary, we need to force the solution
to be binary as in (1.7).

Overall, the complete wavelet frame based image segmentation model is present
as Algorithm 3.

2.4. Analysis. It is important to analysis the relation between the convexified
model (2.8) and the original nonconvex problem (2.6). As we declared previously, if
the global minimum u∗ of (2.8) is binary, then it is naturally a global minimum of the
nonconvex model. However, the existence of a global binary solution is unknown. In
[3], an analysis of binary solution under specific conditions for total variation based
segmentation model (1.8) are provided. Here, we provide a similar analysis from the
point of view of saddle point formulation.

We observe that the objective function EP (u) in (2.8) is convex and the constraint
set S is compact; thus the set of minima of EP (u) is nonempty and compact by
classical convex analysis. On the other hand, if we consider the dual model of the
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Algorithm 3 Multi-phase wavelet frame segmentation method

Require: Initialization. Use the K-mean algorithm to obtain an initial guess of the
mean intensity value for each region ck for k = 1, · · · ,K. Compute f by (2.4).
Choose σ > 0 and τ > 0.

1: for n ≥ 0, update pn+1, un+1, ūn+1 by do
2: Compute pn+1 = ΠY (pn + σWūn) where ΠY is given by (2.16) for high

frequency coefficients and (2.17) for low frequency ones.
3: Compute un+1 = ΠS(un− τW>pn+1− τf) by computing the projection onto

simplex set for each pixel using Algorithm 2.
4: Update ūn+1 = 2un+1 − un

5: Update the mean intensity value ci by (2.19) for k = 1, · · · ,K.
6: end for.
7: Obtain binary solution by (1.7)

primal dual form (2.8), we have

max
p∈P

{
−F ∗(p) +

(
min
u∈U

〈W>p + f , u〉+ δS(u)

)}

= max
p(k)∈Y

{
min
u∈S

K∑
k=1

〈W>p(k) + fk, uk〉

}
(2.20)

Denote

E(u,p) :=

K∑
k=1

〈W>p(k) + fk, uk〉 (2.21)

ED(p) := min
u∈S

K∑
k=1

〈W>p(k) + fk, uk〉 (2.22)

By classical convex analysis theory, the minimization problem (2.8) satisfies Slater’s
constraint qualification, and strong duality holds. In other words, we can exchange
the order of the max and min in (2.12) and obtain the equivalent saddle point form

max
p(k)∈Y

min
u∈S

E(u,p) (2.23)

On the other hand, we may derive the close form of the dual function ED(p).
For any v = (v1, · · · vK) ∈ S, denote ~v(x) = (v1(x), · · · , vK(x)) as the vector at each
pixel x, then ~v(x) is in K-dimensional simplex constraint

∆K := {~z = (z1, · · · , zK)|
K∑
k=1

zk = 1, zk ≥ 0}.

Therefore, for any vector ~z = (z1, · · · , zK) ∈ RK and ~w ∈ RK , we have

min
~z∈∆K

K∑
k=1

viwi = min {w1, · · · , wK} .
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Thus, the above dual model (2.20) is

ED(p) =

〈
min
k

{
W>p(k) + fk

}
, 1

〉
(2.24)

where 1 is the all-one vector in Rn.
Furthermore, there exist a primal solution u∗ and a dual solution p∗ that form a

saddle point pair of (2.12), i.e.

E(u∗,p) ≤ E(u∗,p∗) ≤ E(u,p∗), ∀u ∈ S, ∀p(k) ∈ Y

and

EP (u∗) = E(u∗,p∗) = ED(p∗)

Conversely, if (u∗,p∗) is a saddle point of E(u,p), then (u∗,p∗) are solutions for the
primal and dual problems respectively.

Remark 1. Let (u∗,p∗), u∗ = (u∗1, · · · , u∗K),p∗ = (p(1),∗, · · · , p(K),∗) be a saddle
point pair of (2.23). If at some pixel location x ∈ Ω, there exists a unique index k0

such that

k0 = arg min
k

{
(W>p(k),∗)(x) + fk(x)

}
(2.25)

then u∗(x) satisfies

u∗k(x) =

{
1 if k = k0

0, otherwise.

If there are several k1(x), · · · , kJ(x) that achieve the minimum condition, then

J∑
j=1

u∗kj (x) = 1 and u∗k(x) = 0 for k /∈ {k1, · · · , kJ}

When p∗ is obtained, we can see from (2.20) that minimal of E(u,p∗) over u ∈ S
is achieved only when uk(x) = 1 for k = k0 if k0 is the only index achieving the
maximum of the . Thus u is binary at x ∈ Ω. Similar argument is applied for several
minimum index.

Remark 2. Note that the low frequency ‖W0uk‖1 is also penalized in our model,
which is not usual for wavelet frame based image restoration model. In fact, since
uk(x) ≥ 0 for all x and W0(x) is a low pass average filter, (W0uk)(x) ≥ 0 for all x.
We have

K∑
k=1

‖g ·W0uk‖1 =
∑
x∈Ω

g(x)W0

K∑
k=1

uk(x) = ‖W0g‖1

Since it is constant for a given g(x), the regularization min
∑K
k=1 ‖Wuk‖1,2 is equiv-

alent to min
∑K
k=1 ‖Wuk‖01,2. The proposed model is thus equivalent to the usual high

frequency `1,2 penalization model. However, the penalization of low frequencies allows
the algorithm to converge faster and also more likely yields binary solution than the
one without low frequency during iterative steps. This will be further illustrated and
explained in Section 3.6.
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3. Numerical results. In this section, we give some numerical tests of the
proposed model (2.8) and compare them with some other existing ones.

3.1. Example 1: 2D piecewise constant images. We first show some 2D
toy examples. Given the input image corrupted by some noise, we want to label the
image pixels into K regions. The framelet based model almost perfectly reconstructs
the ground truth. In this example, segmentation is equivalent to denoising in some
sense. In Figure 3.1, we show the segmentation result with 4 regions for a piecewise
constant image, and after plugging back in the mean value of each region, it is very
close to the ground truth image.

(a) input image (b) ground truth (c) wavelet frame model

Fig. 3.1: Segmentation of a piecewise constant test image

In the following, we compare the performance of framelet method with other
existing methods. Figure 3.2 shows the segmentation results with different algorithms
on the same test image as Figure 3.1 but with much heavier noise. Alpha expansion
and alpha-beta swap [4] are often considered as two state-of-the-art graph based
methods using anisotropic discrete total variation (TV) in the model (1.1). The other
method we draw into comparison is the smoothed dual total variation model proposed
in [3], where isotropic total variation and a smoothed dual algorithm is applied. Note
that in Figure 3.2, as well as Figure 3.3, 3.4, we do not implement these algorithms
by ourselves but quote these results directly from [3] for a fair comparison.

(a) (b) (c) (d) (e)

Fig. 3.2: From left to right: (a) input image, (b) alpha expansion [4], (c) alpha-beta
swap [4], (d) smoothed dual total variation model [3], (e) wavelet frame model

In Figure 3.3, we show another toy example with three circles. The image is
segmented into 4 regions with different methods. In Table 3.1, we compare the per-
centage of misclassified pixels for the tests in Figure 3.2 and 3.3. Note that the results
for other experiments are draw directly from Table 1 in [3]. This table shows that our
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proposed method has lower misclassified rate for these two toy examples.

(a) (b) (c) (d) (e)

Fig. 3.3: From left to right: (a) input image, (b) ground truth, (c) alpha-expansion
[4] , (d) smoothed dual total variation [3], (e) wavelet frame model

Table 3.1 Rate of misclassified pixels

Test Alpha expansion Alpha-beta swap Dual model Framelet model
Figure 3.2 8.89% 6.12% 5.51% 4.93%
Figure 3.3 1.17% 1.17% 1.06% 1.03%

In Figure 3.4, we compare the segmentation results for a color image in 10 re-
gions. For the three methods in comparison, the images with alpha-expansion [4] and
smoothed dual total variation model are directly taken from [3]. The segmentation
obtained by our method shows more details for the cloud in the sky and sharper edges
for the leaves and flowers since our method can adapt to different scales present in
the images.

3.2. Example 2. Triple junction test. The input image (a) in Figure 3.5
arises in the minimal partition test and it is often used to illustrate if the global
solution can be found. The color of the pixels in the gray area of input image are
unknown and to be filled in. By setting the data term fi = 0 for i = 1, 2, 3 inside
the gray disk, and by the color distance as in (2.4) outside the gray area. The exact
global solution to the Mumford-Shah model is known as triple junction such that
the boundary meets with 120 degree angles in the center. For this example, the
algorithms produce different results. Alpha expansion algorithm is able to produce a
binary solution, but is not correct. The dual model produces a nearly correct binary
result. The wavelet frame based model is not able to produce a binary result before
the final thresholding step. However, the final thresholding successfully produce the
right result, which in some sense justifies the thresholding scheme proposed above.

3.3. Example 3. 3D Kidney vascular system. This example shows the
segmentation result on 3D image. The input image is a stack of slices of the kidney
vascular system. Figure 3.6 shows the segmentation result rendered from 3 different
angles using our home made software.

We also compare our results with other models in figure 3.7. We compare with
the Chan-Vese active contour method [18]1 and smoothed dual total variation model
[3].

1Code is downloaded from http://www.mathworks.com/matlabcentral/fileexchange/34548-
active-contour-without-edge

http://www.mathworks.com/matlabcentral/fileexchange/34548-active-contour-without-edge
http://www.mathworks.com/matlabcentral/fileexchange/34548-active-contour-without-edge


FRAMELET BASED IMAGE SEGMENTATION 17

(a) (b)

(c) (d)

Fig. 3.4: Color image. From left to right: (a) input image, (b) alpha-expansion [4] ,
(c) smoothed dual total variation [3], (d) wavelet frame model

(a) (b) (c) (d)

Fig. 3.5: Triple junction test. From left to right: (a) input image, (b) alpha expansion
[4], (c) smoothed dual total variation model [3], (d) wavelet frame model

Fig. 3.6: 3D view of kidney vascular system from different angles
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Fig. 3.7: Comparison of different models for two views. From left to right: Chan-Vese
model [18], smoothed dual total variation model [3], the framelet model. From up to
down: different 3D views.

3.4. Example 4. Leaf vein system. The input image is a patch taken from a
simulated leaf vein system which involves some preprocessing. Here, we compare with
the smoothed dual total variation method and a fuzzy level set method for medical
image segmentation [34] (code is downloaded from the authors’ webpage). These
models all require in advance some constants ci which roughly represents the average
intensity of each region. In order to compare their performance in a fair manner, we
set ci equal for each method. Framelet based model extracts many more details than
other compared models.

We also test the segmentation algorithm for a real leaf image, see Figure 3.10.
Some preprocessing is also made to the patch, such as fixing lighting inhomogeneity.
The constants ci is also set to be the same for each method. Again, the framelet
based model outperforms the other models.

3.5. Efficiency and GPU acceleration. Finally, we given some comments
on the efficiency and convergence of the algorithm here. The major computation
complexity lies in the framelet transform. Since the transform is redundant, the
efficiency is lower compared with TV based models. For 2D images, each iteration
steps is 4 to 6 times slower than the TV based models. In practice, wavelet frame
based model usually takes very few steps to converge. In all the examples above, the
algorithm takes less than 50 steps to meet the stopping criteria, (relative error less
than 10−4). TV based models usually take hundreds of steps to converge. In total,
the time complexity is thus comparable to TV based models. The spatial storage,
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Simulated leaf Real leaf

Fig. 3.8: Simulated and real leaf vein system examples

(a) (b)

(c) (d)

Fig. 3.9: Simulated leaf vein system: (a)smoothed dual total variation model [3],
(b)fuzzy level set model [34], (c) Chan-Vese model [18], (d) wavelet frame model.

however, is still several times higher than TV based models. To further speed up the
algorithm, we use a GPU implementation. To compare the performance of GPU and
CPU implementations, we use a test image of size 256*256*100 and do a two-phase
segmentation. The time cost per step is 480.3ms for GPU (Nvidia Quadro 5000) and
16103ms for CPU(Xeon E5500*2), the efficiency is improved by a factor of 33, see
Figure 3.11.

3.6. Discussions on binary solutions. In this subsection, we give some in-
tuitive explanation and numerical evidence why utilizing of low frequency has some
advantages although the model is not changes as stated in Remark 2.

Denote the solution to a relaxed segmentation model by u∗ = {u∗1,u∗2, . . . ,u∗K},
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(a) (b)

(c) (d)

Fig. 3.10: Segmentation results with real leaf image: (a) smoothed dual total variation
model [3], (b) fuzzy level set model [34], (c) Chan-Vese model [18], (d) wavelet frame
model.

Fig. 3.11: GPU acceleration
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usually we expect them to have two properties. One is that each u∗k should have
some regularity yet retain sharp edges which can be achieved by doing thresholding
in the high frequencies; the other is to be close to binary solution. Since u∗ satisfy
the simplex constraint at each pixel, the second property implies that the support of
uk should overlap as little as possible. Together, these two properties require that
uk has sparsity not only in the high frequencies but also in the low frequencies in the
framelet domain. The usual practice of `1 minimization is essentially to pursue the
sparsity asymptotically by doing thresholding. This is essentially why we introduce
the low frequencies in the `1 minimization model and do thresholding to both high
and low frequencies. During the iteration process, uk would be sparser but it won’t
vanish since the simplex constraint also means that the union of the support of uI is
Ω. As a consequence, doing thresholding on the low frequencies only contributes to
enlarging the difference among W Tpn + u at every pixel x ∈ Ω. An extreme point
solution of un will be more likely to be obtained when projected onto the simplex.
This is exactly the desired property that we want. For these reasons, we observe that
in many cases, the solution is almost binary even before the final thresholding step.
Figure 3.12 shows segmentation result before the final binary step (1.7). We can see
that the solution is almost binary already.

Furthermore, the usage of low frequency `1 norm penalization can significantly
speed up the convergence as shown in Figure 3.13. The acceleration is especially
eminent at the beginning of the iteration. Once a binary solution is attained for
some subregion, we observe that it usually tends to stay binary for the subsequent
iterations, which accelerates the convergence.

(a) (b)

Fig. 3.12: (a)original kidney image, (b)wavelet frame image segmentation solution u1.
The solution is almost binary before the binaryization step (1.7).

4. Conclusion. In this paper, we propose a multi-phase segmentation model
based on wavelet frame. A primal-dual framework combined with a fast projection
algorithm is applied to solve the proposed optimization problem. Numerical results
show that the proposed model outperforms existing total variation and level set based
models in segmentation of tubular structures, especially when the input image has
different scales of structures. We also point out that unlike in applications such as
image restoration and inpainting, in image segmentation problems, incorporating the
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Fig. 3.13: Comparison of convergence rate

low frequencies of the framelet transform of an image has additional advantages, such
as speed up the convergence of the algorithm and more likely yield a binary solution.
However, theoretical analysis and connections between the global solution and the
binary ones remain open and we will investigate along this direction in a future work.
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