
A reweighted `
2 method for image restoration with Poisson and

mixed Poisson-Gaussian noise∗

Jia Li† Zuowei Shen† Rujie Yin‡ Xiaoqun Zhang§

September 27, 2012

Abstract

We study weighted `2 fidelity in variational models for Poisson noise related image
restoration problems. Gaussian approximation to Poisson noise statistic is adopted to de-
duce weighted `2 fidelity. Different from usual weighted `2 approximation, we propose a
reweighted `2 fidelity with sparse regularization by framelets. Based on Split Bregman algo-
rithm introduced in [20], the proposed numerical scheme is composed of three easy subprob-
lems that involve quadratic minimization, soft shrinkage and matrix vector multiplications.
Unlike usual least square approximation of Poisson noise, we dynamically update the under-
lying noise variance from previous estimate. The solution of the proposed algorithm is shown
to be the same as the one obtained by minimizing Kullback-Leibler divergence fidelity with
the same regularization. This reweighted `2 formulation can be easily extended to mixed
Poisson-Gaussian noise case. Finally, the efficiency and quality of the proposed algorithm
compared to other Poisson noise removal methods are demonstrated through denoising and
deblurring examples. Moreover, mixed Poisson-Gaussian noise tests are performed on both
simulated and real digital images for further illustration of the performance of the proposed
method.

Keywords: weighted `2 fidelity, Gaussian approximation, split Bregman iteration, framelets

1 Introduction

We consider an imaging system whose output data is a vector f ∈ R
M and true underlying

image is u ∈ R
N . The observation model is often described by

f = Au (1)

where A denotes a linear operator from R
N to R

M . In this paper, we focus on variational
image restoration from Poisson and mixed Poisson-Gaussian noisy observation f . Typically,
variational models for image restoration are composed of two terms, one is data fidelity term
and the other is regularization term for modeling a priori knowledge on unknown images. In
general, data fidelity term keeps true image u close enough to input data f , otherwise useful
information may be discarded in the solution. According to different noise statistics, fidelity
term takes different forms. It is well known that the least square fidelity is used for additive white
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Gaussian noise (AWGN), and it is mostly considered in literature for its good characterization
of system noise. Whereas, non-Gaussian types of noise are also encountered in real images.
An important variant is Poisson noise, which is generally observed in images produced by low
number of photons, such as fluorescence microscopy, emission tomography, etc. A vast amount
of literature in image restoration is devoted to problems encountering Poisson noisy images
(see [2] and the references therein). The poisson noise data, i.e. the probability of receiving y
particles is given by

P(y) =
e−τ τy

y!
, y = 0, 1, 2, · · · (2)

where τ is the expected value and the variance of random counts. Moreover, in the case of image
acquired with CCD camera, the mixture of Poisson and read-out noise (modeled as AWGN)
is a more appropriate model, although it is seldom considered in literature. In [23], a SURE
estimator based on Poisson-Gaussian statistics is constructed in wavelet transform for mixed
noise denoising, however the complicated construction of estimators can not be easily extended
for more general image restoration problem such as deblurring. Recently, Gong et al. proposed
in [21] a universal `1 + `2 fidelity term for mixed or unknown noise and achieve encouraging
numerical results, however it is hard to derive a meaningful statistical understanding.

Besides fidelity term, we need a regularization term to control noise and artifacts in recon-
structed images. A simple but effective idea is to urge a sparse representation in some transform
domain for the recovered image. Wavelet type of transforms are often chosen to sparsify natural
images. For a large class of applications, penalizing the `1 norm of its transform coefficients
leads to sparse representation, as largely illustrated in compressive sensing communality in re-
cent few years. On the other hand, choosing an appropriate transform basis for natural images
are also important. One popular choice is total variation proposed by Rudin-Osher-Fatemi [27].
Framelets becomes very useful for different restoration tasks, see [12] and the reference therein.
Recently, the relation of sparse framelets representation and total variation has been revealed
in [9], and theoretically total variation can be interpreted as a special form of `1 framelets
regularization. For this reason, we will consider framelets regularization in this paper.

The generalized Kullback-Leibler (KL)-divergence [10] fidelity is usually used in Poisson
image restoration, and it is directly derived based on exact statistics of Poisson noise (see sec-
tion 2.3.1 below). However, difficulties on computation stability and efficiency arise due to the
logarithm function appeared in the KL-divergence function. We are interested in considering
a least square based fidelity by approximating Poisson noise with appropriate Gaussian noise.
In fact, the approximation of KL-divergence by a fixed weighted least-square method has been
used for a long time in medical imaging reconstruction and image deblurring [2]. Recently, such
a technique is restudied by Stagliano et al. [32], where the fidelity term is defined as a weighted
least square involving the unknown image. Combining with regularization, a scaled gradient
method with line search technique has been applied to solve the resulted problem. Here, we
consider utilizing the efficiency of `2 fidelity based regularization algorithm and dynamically
estimate Poisson noise variance. More precisely, we propose an iterative algorithm based on
split Bregman iteration [20], originally proposed for `2 fidelity based `1 regularization, to solve
the model with reweighted `2 fidelity. With this formulation, soft-shrinkage can be naturally
incorporated as an efficient `1 minimization algorithm. Furthermore, the model gives a reason-
able extension to the mixed Poisson-Gaussian noise case immediately with a small modification
on the weight.

This paper is organized in three consecutive parts. In the first part, we review the back-
ground of variational restoration models, split Bregman method and existing Poisson fidelities.
Then we present the weighted `2 fidelity for Poisson noise through Gaussian approximation and
maximizing likelihood (ML) and then build the corresponding image restoration models and
algorithms. We also provide an analysis of the proposed models and algorithms which reveals
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the connection to the classical KL-divergence model. The models are further extended to the
mixed noise cases. The last part is dedicated to numerical simulation where other fidelity terms
and models are compared numerically to ours for Poisson image denoising/deblurring and the
mixed Poisson-Gaussian noise case.

2 Background

2.1 Variational image restoration model

The observation model in consideration takes the following generic form

f = Au+ c+ ε (3)

where A denotes a linear operator from R
N → R

M , c is fixed background and possibly 0, and
ε is noise perturbation. Generally, for additive white Gaussian noise setting, it is assumed that
c = 0 and ε follows independent normal distribution of mean 0 and variance σ2 for each pixel.
The operator A can either come from the imaging system such as the point spread function
(PSF) or the disturbance related to the object like its own motion. For image denoising, A is
an identity operator; for image deblurring, A is a convolution operator.

Using classical maximum a posterior probability (MAP) P(u|f) estimation, image restora-
tion by variational model is usually composed of the minimization of the sum of two terms,
namely fidelity and regularization:

min
u

F (u) + λG(u) (4)

where λ is a positive number for balancing the fidelity term F (u) and the regularization term
G(u). The fidelity term is related to the noise characteristic and derived by the likehood func-
tion, while the regularization G(u) is designed based on a priori assumption on u. As introduced
previously, it is nowadays standard technique to penalize the `1 norm of representation coef-
ficients in transform domain. Therefore, the following variational model is largely studied for
image restoration from AWGN:

min
u

1

2
‖Au− f‖22 + λ‖Du‖1 (5)

where ‖ · ‖1 denotes the usual `1 vector norm and D is a linear transform, such as discrete
gradient used in total variation [27], Fourier transform, local cosine transforms, wavelet or
framelets [8].

2.2 Split Bregman algorithm

Split Bregman method introduced in [20] is designed to solve the variational model taking the
form as (5). More generally, we consider the minimization problem

min
u

F (u) + λ‖Du‖1 (6)

where F (u) is a convex functional representing fidelity, such as F (u) = 1
2‖Au − f‖22 as in the

case of AWGN. By introducing an auxiliary variable d = Du, the alternating split bregman for
solving (6) is given by the following scheme: for µ > 0,





uk+1 = argminu F (u) +
µ

2
‖Du− dk + bk‖22

dk+1 = argmind λ‖d‖1 +
µ

2
‖Duk+1 − d+ bk‖22

bk+1 = bk +Duk+1 − dk+1

(7)
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The efficiency of this algorithm relies on the close form solution of the second subproblem. In
fact, dk+1 is given by the so-called soft-shrinkage operator

dk+1 = sign(Duk+1 + bk) ·max(|Duk+1 + bk| − λ/µ, 0) (8)

where each operation is performed componentwisely. The nonsmooth optimization problem
(6) is thus decomposed into three simple subproblems when F (u) is in quadratic form. This
method has been demonstrated to be very efficient for `1 type of minimization in a large variant
of applications. In a more general setting, it is shown to be equivalent to classical Douglas-
Racheford and alternating direction multiplier method (ADMM) [14, 28], thus the convergence
was given in this framework. In [8], Cai et al. studied the application of such algorithm for
framelets based image restoration and provide a convergence proof. Further approximation of
the quadratic subproblem was considered in [34] in order to maximally decouple the subprob-
lems. In this paper, we intend to take advantage of the efficiency of split Bregman and Poisson
noise formulation to develop an efficient algorithm for Poisson noise related image restoration
problem. For this reason, we will consider a reweighted `2 fidelity term which is closely related
to the problem (6).

2.3 Poisson noise related fidelities

We assume that the observation vector f is corrupted by Poisson noise (see (2)), i.e.

f ∼ P(Au+ c) (9)

As in [30, 3, 7], the following assumptions are made for the linear operator A and c:

Assumption 1 • The observation data f > 0, and u ≥ 0.

• The linear operator A satisfies the following conditions:

Aij ≥ 0,
∑

i

Aij > 0,∀j,
∑

j

Aij > 0,∀i.

where Aij is the (i, j) element of the imaging matrix A.

• The fixed background image c > 0.

Since both f and u denote photo counts number, thus their elements are nonnegative. For most
of image restoration model, A is the convolution or line integral operator, and these conditions
can be easily fulfilled without loss of generality. The first assumption is used to avoid model
deficiency as in KL-divergence and weighted `2. The second assumption implies that for u ≥ 0,
Au = 0 if and only if u = 0, see Lemma 3.1. In practice, if the background can be ignored, we
can put c = 1 without degrading image quality, where 1 is the vector with each entry being 1.

Given Au and c, we have the likelihood of observing f

P(f |Au+ c) =

M∏

i=1

(Au+ c)fii e
−(Au+c)i

fi!
(10)

where (Au + c)i denotes the ith element of Au + c. By Poisson noise’s property, we have the
expectation (mean) and the variance f are

E(f |Au+ c) = Var(f |Au+ c) = Au+ c (11)

Before presenting the proposed reweighted `2 fidelity, we review two existing fidelities for
Poisson statistics for comparison.
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2.3.1 KL-divergence

The most popular fidelity for Poisson noise is the generalized Kullback-Leibler (KL)-divergence
fidelity [10], which can be derived directly by MAP method. By taking a negative log likehood
(10), we obtain

− logP(f |Au+ c) = 1T (Au+ c− log(f !))− fT log (Au+ c), (12)

where 1 is the vector with each entry being 1.
If we neglect the constant term log (f !) which is unrelated to the unknown u, we obtain

the following fidelity term

F (u) = 1T (Au+ c)− fT log (Au+ c) (13)

Combining with sparse regularization and nonnegativity constraint on photon counts u, we
get the restoration model as

min
u≥0

1T (Au+ c)− fT log(Au+ c) + λ‖Du‖1 (14)

Generally, (14) is a difficult optimization problem because of the nonsmooth regularization
term and KL-divergence term. Optimization of KL-divergence fidelity with nonnegative con-
straint are typically solved by a popular iterative algorithm called Expectation-Maximization
(EM) algorithm [22]. It is known that the convergence of the EM algorithm is slow and it
may introduce so-called ”checkboard effect” [3, 32, 7]. In [7], the authors proposed a two-step
iteration method called EM-TV for solving (14) when D is a discrete differential operator. We
rename it as EM+`1 algorithm for later adoption of framelets regularization. The algorithms
is described as





uk+ 1
2
= ukA

∗(
f

Auk + c
) (EM step)

uk+1 = argminu≥0
1

2

∥∥∥∥
u− uk+ 1

2√
uk

∥∥∥∥
2

2

+ λ‖Du‖1 (`1 step)

(15)

This algorithm and its variants have been proved to be efficient for Poisson noise removal
in PET and nasoscopy image deconvolution [7]. The convergence with a damped parameter
under adequate condition is provided in [6]. However, the conditions are rather hard to verify
since it involves the sequential iterates uk and uk+1. The other kind of method considered in
[29, 16] is to apply directly the split Bregman method (7) by introducing a variable d = Du on
the model (14). Comparing with this kind of method, our proposed algorithm takes a much
simpler form and is more convenient for implementation.

2.3.2 Anscombe transform

Another well-known technique of Poisson denoise is the Anscombe transform [1] proposed for
image denoising, when the linear operator A in (9) is the identity transform. Anscombe trans-
form is defined as followed

A : x 7→ 2

√
x+

3

8
(16)

When x is a random variable that obeys Poisson distribution with mean and variance τ , the
transformed random variable Ax follows an approximated standard normal distributionN (τ, 1).
We now apply the Anscombe transform on the observed data f in the form

f ∼ P(u+ c)
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Let f̃ := Af, ũ := A(u+ c). Since f follows Poisson distribution with mean and variance u+ c,
then f̃ follows approximately a normal distribution N (ũ, 1). Hence, the usual least square
fidelity term can be applied for f̃ and we obtain the following denoising model

ũ∗ = argminũ≥0
1

2
‖ũ− f̃‖22 + λ‖Dũ‖1 (17)

and the final image is given by u∗ = A−1ũ∗−c. The regularization used in the above model (17)
urges sparsity on ũ in the transformed domain. This is roughly equivalent to require sparsity on
u in Framelet domain since the Anscombe transform (16) is monotone increasing and keeps the
order of magnitude of elements in u. We note that this model is generally applied for denoising
model, and the adaption to image deblurring is not easy since it involves inverse of nonlinear
transform.

3 Weighted least square for Poisson noise image restoration

3.1 Framelets regularization

Here, we choose tight frame basis because of its multi-resolution property and redundancy
that is helpful both in algorithm implementation and sparse representation of images [11],[12].
The multi-resolution analysis (MRA) based wavelet can be generated by the unitary extension
principle (UEP) of [26]. By collecting all the refinement masks of wavelet tight frame system,
we can generate the fast tight frame transform or decomposition operator W. The matrix W
is consisted of J + 1 sub-filtering operators W0,W1, ...WJ . Among them, W0 is the low-pass
filtering operator and the rest are high-pass filtering operators. Correspondingly, by unitary
extension principle [26], the operator WT is the fast tight frame reconstruction operator and
we have WTW = I, i.e., WTWu = u for any image u. More details on discrete algorithms of
framelet transforms can be found in [12].

3.2 Model and algorithm

We consider Poisson noise for the observation model (9). Let

ε = f −Au− c. (18)

Then the random variable ε can be interpreted as an additive perturbation noise. Given Au
and c we have the mean of

E(ε|Au+ c) = E(f |Au+ c)−Au− c = 0

and the variance
Var(ε|Au+ c) = Var(f |Au+ c) = Au+ c.

If we approximate the random difference ε by additive Gaussian noise, then ε follows normal
distribution N (0, Au + c), i.e.

P(ε|Au+ c) ' exp{−1

2
(f −Au− c)TΣ−1(f −Au− c)} (19)

where Σ is the covariance matrix. By the independence of noise at each pixel, we have

Σ = diag(Au + c) (20)
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where diag(Au + c) is the diagonal matrix defined by M -dimentional vector Au + c. Using
maximum likelihood, we take the negative log of the normal distribution (19) to get the following
fidelity term as

− logP(ε|Au+ c) ∝ 1

2
(f −Au− c)TΣ−1(f −Au− c) (21)

We denote weighted `2 norm of a vector x ∈ R
N as ‖x‖2Q = xTQx, for Q being a symmetric

positive definite matrix. Then (21) is reformulated as

F (u) = ‖Au+ c− f‖2Σ−1 = ‖Au+ c− f‖2diag(Au+c)−1 =

∥∥∥∥
Au+ c− f√

Au+ c

∥∥∥∥
2

2

(22)

Notice that the division and square root operator in the `2 norm on the right hand side of (22)
are both element wise. Also by the assumption that c > 0 and Au ≥ 0 for u ≥ 0, we have the
positive definitiveness of Σ−1. Note that (22) was used as a discrepancy principle for choosing
the regularization parameter λ in [3]. However, this fidelity term (22) has a weight involving
unknown u, and in practice, we need to either approximate or directly solve the nonlinear square
problem. For example, the unknown weight Au+ c can be approximated by the observed data
f as

min
u≥0

1

2
‖Au+ c− f√

f
‖22 (23)

Under this simplification, efficient least square based method can be applied together with
regularization.

Combining with framelets sparse regularization and nonnegativity constraint, we have the
following restoration model

min
u≥0

1

2

∥∥∥∥
Au+ c− f√

Au+ c

∥∥∥∥
2

2

+ λ‖Wu‖1 (24)

This formulation is considered in [32] and a scale gradient projection method is applied to
directly solve the nonlinear least square term with sparse regularization, for which a smoothed
version of the `1 regularization term was adopted for calculating the gradient.

We are interested in taking advantage of the weighted least square structure and utilizing
recently proposed efficient sparse regularization scheme, such as split Bregman presented in
Section 2.2. In fact, suppose that there exists an iteration solving (24) and uk is the sequence of
solutions derived from it. If uk converges to u∗, then we are more or less solving the following
minimization problem with a fixed u∗

min
u≥0

1

2

∥∥∥∥
Au+ c− f√

Au∗ + c

∥∥∥∥
2

2

+ λ‖Wu‖1 (25)

for k is big enough. As uk becomes stable, we may approximate the weight 1
Au∗+c

by 1
Auk+c

.
With such an idea in mind, we combine with the popular Split Bregman iteration and derives
a new algorithm called the reweighted `2 algorithm with split Bregman for Poisson noise:





uk+1 = argminu≥0
1

2

∥∥∥∥
Au+ c− f√

Auk + c

∥∥∥∥
2

2

+
µ

2
‖Wu− dk + bk‖22

dk+1 = argmind λ‖d‖1 +
µ

2
‖d−Wuk+1 − bk‖22

bk+1 = bk + (Wuk+1 − dk+1)

(26)

With an idea of being close to previous iteration for stableness of solutions, we can add a
proximal term on the update of u and d. For given γ1, γ ≥ 0, the numerical scheme is described

7



as followed:





uk+1 = argminu≥0
1

2

∥∥∥∥
Au+ c− f√

Auk + c

∥∥∥∥
2

2

+
µ

2
‖Wu− dk + bk‖22 +

γ1
2

‖u− uk‖22

dk+1 = argmind λ‖d‖1 +
µ

2
‖Wuk+1 − d+ bk‖22 +

γ2
2
‖d− dk‖22

bk+1 = bk +Wuk+1 − dk+1

(27)

This proximal iteration was largely studied by Rockefeller [25] in the context of augmented
lagrangian. It was used for least square minimization with `0 regularization in [13] to stabilize
the iterations. With γ1 = γ2 = 0, it reduces to the previous algorithm.

We describe the general method (27) in more detail in Algorithm 1. Note that the first
step can be solved by a gradient method with a projection onto the nonnegative orthant. In
practice, often a few iterations are sufficient to get a reasonable result.

Algorithm 1 Reweighted `2 with Spit Bregman for Poisson noise restoration Algorithm

Step0. Set the initial value, u0 = 0; d0 = Wf ; b0 = 0; k = 1 ;Σ0 as the initial covariance
matrix.
Step1.
while ‖uk−2 − uk−1‖2 > δ or k = 1 do

uk = argminu≥0

1

2
‖Au+ c− f‖2

Σ−1
k−1

+
µ

2
‖Wu− dk−1 + bk−1‖22 +

γ1
2

‖u− uk−1‖22
dk = sign(

µ(Wuk+bk−1)+γ2dk−1

µ+γ2
) ·max(|µ(Wuk + bk−1) + γ2dk−1| − λ/(µ + γ2), 0)

bk = bk−1 +Wuk − dk
Σk = diag(Auk + c)
k = k + 1

end while

3.3 Analysis

In this section, we justify the proposed algorithm by presenting some mathematical analysis.
Our main theorem shows that the sequence of solutions uk generated by (27), if converge, it
converges to a minimizer of KL-divergence fidelity model (14). We first present some lemmas
to reveal the relation between the solutions of different models. In the following, we will refer
to the KL-divergence fidelity model (14) replacing D by W.

Lemma 3.1 Under the assumptions 1, we have that for u ≥ 0, Au = 0 if and only if u = 0.

Proof. By the assumption,
∑

j Aij > 0,∀i, we have (Au)i > 0 for any u ≥ 0 but u 6= 0 . Hence
Au = 0 has trivial non-negative solution.

Lemma 3.2 The KL-divergence model (14) exist a unique minimizer.

Proof. See [7] Theorem 4.8, 4.9.

Lemma 3.3 The model (25) for a given u∗ has a unique minimizer.

Proof. We can see that the minimizers of the problem (25) exists due to the usual coercivity of
the objective function. Furthermore, the minimizer is unique due to the assumption Au = 0 if
and only if u = 0 in nonnegative orthant. In fact, since A has trivial null space in nonnegative
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orthant, and Au+ c > 0 for any u ≥ 0, thus the objective functiona is strict convex. Therefore
we obtain the uniqueness of the solution.

In the following, we will denote the unique minimizer of (14) as û and show that the
sequence generated by (27), if converge, converges to û.

Theorem 3.4 Let (uk, dk, bk) be the sequence generated by the algorithm (27). If (uk, dk, bk)
converges to (ũ, d̃, b̃), then ũ = û.

Proof. If (uk, dk, bk) generated by (27) converges to (ũ, d̃, b̃), we immediately get

AT Σ̃−1(Aũ+ c− f) + µW T b̃− q̃ = 0

λp̃− µb̃ = 0 with p̃ ∈ ∂‖d̃‖1
Wũ = d̃

(28)

where q̃ ≥ 0 satisfies 〈q̃, ũ〉 = 0, and Σ̃ = diag(Aũ+ c). Therefore

AT Σ̃−1(Aũ+ c− f) + λW T p̃− q̃ = 0

Comparing it with the first order condition of the model (14)

0 = AT

(
Aû+ c− f

Aû+ c

)
+ λWT p̂− q̂ (29)

where p̂ ∈ ∂|d̂|1 with d̂ = Wû and q̂ ≥ 0 is a lagrangian multiplier such that 〈q̂, û〉 = 0. We can
see that ũ = û.

3.4 Acceleration

As recently proposed in [19], we show that Algorithm 1 can be accelerated using optimal first
order methods, namely Nesterov method [24]. We refer to Algorithm 2 as the accelerated version
of Algorithm 1. Note that the convergence of the accelerated algorithm for alternating direction
multiplier method (ADMM) is demonstrated under some assumptions. In our reweighed case,
it is not hard to see that Algorithm 2, if converges, converges to the same solution as Algorithm
1, based on the similar arguments in Theorem 3.4.

Algorithm 2 Accelerated Weighted `2 Fidelity Denoising-Deblurring Algorithm

Step0. Set the initial value, u0 = 0; d0 = d̃1 = Wf ; b0 = b̃1 = 0;α0 = 1;Σ0

Step1.
while ‖uk−2 − uk−1‖2 > δ or k = 1 do

uk = argminu≥0
1
2‖Au+ c− f‖2

(Σk−1)
−1 +

µ
2‖Wu− d̃k + b̃k‖22 + γ1

2 ‖u− uk−1‖22
dk = sign(µ(Wuk + b̃k) + γ2dk−1)/(µ+ γ2) ·max(|µ(Wuk + b̃k) + γ2dk−1| − λ/(µ+ γ2), 0)
Σk = diag(Auk + c)
bk = b̃k +Wuk − dk

αk+1 =
1+
√

1+4α2
k

2

d̃k+1 = dk +
αk−1
αk+1

(dk − dk−1)

b̃k+1 = bk +
αk−1
αk+1

(bk − bk−1)

k = k + 1
end while
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3.5 Extension to Poisson-Gaussian mixed noise

Previously, we mainly discuss models with Poisson noise only. In real imaging systems, besides
Poisson noise which characterizes the fluctuation in counting number of photons, there is other
system-born noise that can be approximated by AWGN, as considered in [31]. The literature
on Poisson-Gaussian mixed noise are limited despite of its importance. We now explore the
extended application of the reweighted `2 fidelity to mixed Gaussian-Poisson noise case. With
a small modification of the Poisson noise version, weighted `2 fidelity can be adapted to the
mixed noise case.

Let σ2 be the variance of AWGN and the observed image f has distribution

f ∼ P(Au+ c) +N (0, σ2)

Approximating the PDF of f again by normal distribution (19) with covariance matrix Σ =
diag(Au + c) + σ2I, we obtain the new fidelity term as followed for mixed noise:

F (u) =
1

2

∥∥∥∥
Au+ c− f√
Au+ c+ σ2I

∥∥∥∥
2

2

(30)

Combining with tight frame regularization, we have the following restoration model

min
u≥0

1

2

∥∥∥∥
Au+ c− f√
Au+ c+ σ2I

∥∥∥∥
2

2

+ λ‖Wu‖1 (31)

The algorithm solving this model is the same as Algorithm 1 except adding σ2 in estimation
and updating of covariance matrix Σ.

4 Numerical results

In this section, numerical experiments on Poisson-Gaussian mixed noise models (31) will be
shown for synthesized and real digital photos for demonstrating the performance of the proposed
Algorithm (1) and (2). In all implementations, we choose the piecewise linear B-spline wavelets
with 2 to 3 levels of decomposition. The corresponding filter masks in discrete version are

h0 = [14 ,
1
2 ,

1
4 ], h1 = [−1

4 ,
1
2 ,−1

4 ], h2 = [
√
2
4 , 0,−

√
2
4 ].

For the initial guess of the variance matrix Σ0, although the observed data f is an acceptable
estimation, we use a preprocessed data as a closer approximation to Au+ c. In particular, we
apply a bilateral filter [33] to preprocess the noised data f . This processing can be used for the
first few steps of iteration till the sequence of solutions is stabilized. The bilateral filter B of an
2D digital image x is defined as

y[i, j] = B(x) = 1∑
p,q w[i, j, p, q]

∑

p,q

w[i, j, p, q]x[p, q]

where [i, j], [p, q] are indices of pixels,

w[i, j, p, q] = Gσs
(
√

(i− p)2 + (j − q)2)Gσr
(x[i, j] − x[p, q])

and Gσs
, Gσr

are Gaussian functions with variance σs and σr respectively.
Given a M ×N reference image u, the peak signal-to-noise ratios (PSNR) value of image

ũ to u is defined by

PSNR(u, ũ) = 10 log10
MN(umax − umin)

2

‖u− ũ‖22
,

where umax and umin are the maximum and minimum respectively of the reference image u,
and M , N are the size of 2D image. It is a quantitative measure of image quality as ũ being
the denoised result and u the ground truth.
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4.1 Poisson denoise

For image denoising, the linear operator A reduces to the identity operator I. We compare first
the three fidelities through their corresponding denoising method: the reweighted `2 method
(27) with Algorithm 1, the KL-divergence model (14) with the algorithm (15) and the Anscombe
transform model (17). The noisy images in our test are simulated as follows. The clean images
are first rescaled to an intensity range from 0 to 120; then the Poisson noise is added in Matlab
using the function ’poissrnd’. The parameters in each algorithm are tuned to get the best visual
outcome for one simulated noisy image; they are then fixed when applied on the rest images.
For the denoised results, we also add a post procedure of bilateral filter to remove some obvious
artifacts.

The comparisons are performed in Figure 1 on several test images. The denoising results
of the reweighted `2 model and that of the KL-divergence model are more or less the same both
qualitatively and in terms of PSNR. The Anscombe transform model gives a slightly poorer
result than the other two models. There are some artifacts in the high intensity part of the
denoised image which may be caused by the post inverse Anscombe transform.

4.2 Deblurring from Poisson data

The deblurring case is in general more difficult than denoising. We compare our reweighted `2

method and the KL-divergence model (14) since Ancombre transform can not be easily applied
in this case. For this application, we compare both Algorithm 1 and Algorithm 2 as the direct
version and the accelerated version respectively. The EM+`1 algorithm is applied for the KL-
divergence model (14) as the denoising case. Blurred and noisy images are simulated in the
following way. The clean images are first rescaled to an intensity range from 0 to 1200; then
they are corrupted by a disk blurring kernel of radius 3 with symmetric boundary condition;
finally, the Poisson noise is simulated in the same way as in the denoising case.

The main computation cost of deblurring Algorithm 1 is that uk+1 is solved by conjugate
gradient method instead of a direct inversion in the first step of the iteration. As shown in Figure
2, the result of the KL-divergence fidelity algorithm is more blurry in contrast to the result of
weighted `2 fidelity, although they have similar PSNR, see Table 1 for more comparisons.

reweighted `2 KL-divergence

goldhill 26.48 26.29
cameraman 26.28 25.94
boat 25.37 25.16

Table 1: PSNR value of the deblurring result.

In Figure 3, we compare the energy evolution of different algorithm. As we shown pre-
viously, Algorithm 1 and 2, if converge, converge to the solution of the model (14). We thus
compare the KL-divergence model E(u) = 1T (Au+ c)− fT log(Au+ c)+λ‖Wu‖1 of the three
algorithms (Algorithm 1, the accelerated Algorithm 2, and EM-`1). We can see that the energy
for both Algorithm 1 and 2 decrease with the iterations, and Algorithm 2 has faster speed of con-

vergence numerically. The evolution of weighted `2-norm energy E(u) = 1
2

∥∥∥Au+c−f√
Au∗+c

∥∥∥
2

2
+λ‖Wu‖1

is also shown in the right figure of Fig. 3, where u∗ is set as the ground truth image. Both
reweighted based algorithms have decreasing energy, while EM-`1 has a divergence energy for
this fidelity. To reach the same PSNR level of the result given by the direct algorithm after 100
iterations, the accelerated Algorithm 2 needs less iterations (around 30 steps), See Fig. 4.

In terms of computation time, the three denoising algorithms run generally for 20 to 30s.
In the deblurring case, the reweighted algorithms (1) needs around 100s while the EM-`1 around
240s for the same relative error stopping criteria.
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cameraman noisy fruits noisy goldhill noisy

PSNR: 31.23dB PSNR: 31.17dB PSNR: 29.49dB

PSNR: 30.72dB PSNR: 30.83dB PSNR: 29.07dB

PSNR: 31.00dB PSNR: 31.08dB PSNR: 29.35dB

Figure 1: Denoising results of simulated noisy images with peak intensity 120. From up to
down: noisy image, reweighted `2 method by Algorithm 1, Anscombe transform (17) and KL-
divergence model with EM-`1 algorithm (15).
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Figure 2: Deblurring results of simulated noisy-blurred images with peak intensity 1200. from
left to right: noisy-blurred image, direct reweighted `2 algorithm 1 and KL-divergence model
(14). From top to bottom: full images and zoomed out regions.

Figure 3: Left: KL−divergence (E(u) = 1T (Au+ c) − fT log(Au+ c) + λ‖Wu‖1) energy evo-

lution of Algorithm 1, 2 and (15). Right: reweighted `2-norm energy (E(u) = 1
2

∥∥∥Au+c−f√
Au∗+c

∥∥∥
2

2
+

λ‖Wu‖1) evolution of Algorithm 1, 2 and (15).
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Figure 4: PSNR evolution of three algorithms: Algorithm 1, Algorithm 2 and EM-`1 (15).

Finally, the weighted `2 and the KL-divergence denoising model have superior results than
the Anscombe transform model; while in deblurring case, the reweighted `2 outperforms the
KL-divergence one. From these observations, our reweighted `2 fidelity term is a competitive
potential choice when working with complex noisy models.

4.3 Mixed Poisson-Gaussian noise restoration

In this section, we test the extension of reweighted `2 model to mixed Poisson-Gaussian noise
for some synthesized data and real photos. The synthesized mixed noised image is simulated by
adding first Poisson noise to a rescaled image with peak intensity 120 and the Gaussian noise
of σ = 12. Fig. 5 shows the denoising result of model (31) with A being identity operator.

Figure 5: Left: input noisy image with mixed Poisson-Gaussian noise, peak intensity: 120,
PSNR: 18.59dB; right: denoised by model (31), PSNR: 27.42dB.

In addition, we perform the mixed denoising model on a digital photo taken in a low light
environment with high ISO setting. Our denoising result is compared with the embedded noise
reduction algorithm in Sony DSLR-A700 camera in Figure 6, and we can see that our result
has less noise and better quality.

For deblurring case, we generate blurred image with peak intensity 1200 and then corrupt
it with Poisson noise, Gaussian noise of σ = 12 consecutively. See Fig. 7 for the deblurring
result of model (31).
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Figure 6: Top: real photo; middle: output of camera using the noise reduction option. bottom:
denoised by model (31).
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disk,3 ; PSNR:22.61dB PSNR:26.00dB

disk,5; PSNR:20.83dB PSNR:24.51dB

Figure 7: left: input blurred image with mixed Poisson-Gaussian noise, σ = 12, peak intensity:
1200; right: deblurred by model (31).
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5 Conclusion

In this paper, we studied weighted `2 fidelity term derived from Gaussian approximation of Pois-
son statistics. In solving denoising and deblurring models, we proposed a reweighted algorithm
based on Split Bregman iteration and its Nestrov accelerated one. The algorithms have the
same limit solution as the minimizer of KL-divergence fidelity model (14) if they converge. The
proposed algorithms give competitive result with respect to classical fidelity terms in denoising
and deblurring simulations. In addition, the reweighted `2 model can be easily extended to the
mixed Poisson-Gaussian noise case. As shown by numerical results, the reweighted `2 with split
Bregman framework is promising in a wide perspective.
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