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Abstract. The manipulation of surface homeomorphisms is an important aspect in 3D modeling
and surface processing. Every homeomorphic surface map can be considered as a quasiconformal
map, with its local non-conformal distortion given by its Beltrami differential. As a generaliza-
tion of conformal maps, quasiconformal maps are of great interest in mathematical study and real
applications. Efficient and accurate computational construction of desirable quasiconformal maps
between general surfaces is crucial. However, in the literature we have reviewed, all existing compu-
tational works on construction of quasiconformal maps to or from a compact domain require global
parametrization onto the plane, and have difficulty to be directly applied to maps between arbitrary
surfaces. This work fills up the gap by proposing to compute quasiconformal homeomorphisms be-
tween arbitrary Riemann surfaces using discrete Beltrami flow, which is a vector field corresponding
to the adjustment to the intrinsic Beltrami differential of the map. The vector field is defined by a
partial differential equation (PDE) in a local conformal coordinate. Based on this formulation and
a composition formula, we can compute the Beltrami flow of any homeomorphism adjustment as a
vector field on the target domain defined from the source domain, with appropriate boundary con-
ditions and correspondences. Numerical tests show that our method provides a robust and efficient
way of adjusting surface homeomorphisms. It is also insensitive to surface representation and has
no limitation to the classes of surfaces that can be processed. Extensive numerical examples will be
shown.
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1. Introduction. Surface processing is an important task in many problems
such as 3D modeling and medical image processing. One important aspect of surface
processing is how to compute or construct maps between surfaces with some desired
properties and correspondences such as in shape deformation, surface registration,
shape classification, texture mapping, mesh editing, and etc.

One common and important problem is to define and compute a good map be-
tween two surfaces in different applications. One natural choice is to look for a map
which minimizes angular distortions, hence preserving local surface geometry. This
led to the widely studied conformal maps both mathematically and computationally.
While conformal maps preserve local geometry well by minimizing angular distortions,
the conformal factor of the map can vary greatly throughout the surface, likely caus-
ing significant expansions and compression of the map. Also, in image registration,
one needs to enforce the correspondence of landmarks and/or feature curves between
two surfaces. As a result, conformal mapping can rarely be achieved.

In order to consider more general surface maps, a generalization called quasicon-
formal map can be a more useful tool in many applications. Unlike conformal maps,
which aim at eliminating angular distortions, quasiconformal maps take into account
that conformal mapping is not always possible. By describing local non-conformal dis-
tortions using intrinsic Beltrami differential, one can represent any surface map with
bounded non-conformal distortions. Therefore, in principle, any surface homeomor-
phism that occurs in practice can be represented by a quasiconformal map. In another
word, any surface homeomorphism can be characterized by the Beltrami differential.
Moreover, many desired properties for surface maps can be expressed in terms of
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Beltrami differential. Beside the generality of quasiconformal maps, the study of
quasiconformal maps with minimal distortions is of interest in its own right. Given
two arbitrary surfaces, they may not have the same conformal structures. In other
words, any homeomorphism between them must be quasiconformal. The deforma-
tion between different Riemann surfaces has been studied extensively in Teichmüller
quasiconformal geometry.

Computing and constructing quasiconformal maps numerically is an important
issue in practice. In reviewing the literature, which will be summarized in more
details in the next section, we find that earlier works mainly studied the computation
of quasiconformal maps between simply or multiply connected planner domains. The
computation of quasiconformal maps from a parametrized domain onto a surface in
R3 has also been studied. However, no work was found to compute and adjust maps
between arbitrary surfaces in an intrinsic way. This motivates us to create such
intrinsic algorithms.

In this work, we propose an approach that can compute quasiconformal home-
omorphisms between arbitrary Riemann surfaces using discrete Beltrami flow. The
key ingredients in our approach are: (1) Define a vector field that adjust the map-
ping according to the perturbation of the intrinsic Beltrami differential. In another
word, a flow in term of Beltrami differential is translated into a flow in the mapping.
Moreover, the vector field is defined by an intrinsic partial differential equation (PDE)
in a local conformal coordinate. (2) Based on a composition formula, the Beltrami
flow is induced on the target or source domain, with appropriate boundary conditions
and correspondences. The resulting flow is solved on a compact domain. With this
technique, we are able to directly adjust surface maps between arbitrary compact
Riemann surfaces.

The organization of this paper is as follows. In Section 2, we review previous works
on computing quasiconformal maps. In Section 3, we first present the theoretical
background of Beltrami differential. Then we introduce the Beltrami flow and define
the vector field that adjusts the mapping according to the perturbation of the intrinsic
Beltrami differential. In Section 4, we give detailed algorithms for our method surface
map adjustments in this paper. In Section 5, we show computational results of our
algorithms and analyze the accuracy, robustness and efficiency of our approach. We
summarize our work in Section 6 and suggest further work in the future.

2. Previous Work. The study of quasiconformal maps is closely related to
that of conformal maps. Computational conformal geometry quickly developed after
Thurston et al. [15] introduced the notion of circle packing for discretizing smooth
surfaces. Using this approach, Collins et al. [2] developed a fast algorithm for finding
circle packing metrics, which is a method of finding discrete conformal maps. Later,
Yin et al. [18] introduced a method for finding conformal maps called discrete cur-
vature flow, which is a discrete version of the classical Yamabe flow. As numerical
methods developed, different applications emerged. Lui et al. [10] proposed to com-
pute conformal mapping of cortical surfaces preserving landmarks for further medical
analysis. Lévy et al. [8] proposed to generate texture atlas using least square error
of conformality. Besides, since the conformal structure of a surface carries informa-
tion of its geometry, conformal maps are also being used in shape analysis. Kim et
al. [7] proposed to compute intrinsic maps with surface correspondences by combining
different conformal maps.

The computation of quasiconformal maps has also been studied for quite long and
more extensively recently. One of the earliest work is by Mastin et al. [14] using finite
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difference method to compute quasiconformal maps with arbitrary Beltrami coeffi-
cient from a multiply connected planer domain onto a rectangular domain with slits
removed. Later work by He et al. [6] solved the Beltrami equation using a discrete
circle packing approach. The work can be applied on planer domains or any com-
pact Riemann surface whose boundary is a finite union of Jordan curves. However, it
mainly served as a constructive proof for the existence of quasiconformal maps, but
not a practical algorithm. Daripa et al. [3] proposed a fast algorithm to compute
quasiconformal maps by Fourier transform of an integral kernel for efficient integra-
tion. However, their method is also restricted to planer domains. Later, Daripa et
al. [4] proposed a similar approach of evaluating certain singular integrals for comput-
ing quasiconformal mappings of doubly connected domains with unknown conformal
modules. Recently, Zeng et al. [19] proposed solving Beltrami equations using discrete
holomorphic differential forms. The main idea is to deform the conformal structure
of the original surface by the Beltrami coefficient so that the desired map becomes a
conformal map. Then techniques for computing conformal maps using discrete holo-
morphic differential forms can be used. Lately, Zeng et al. [20] used a similar metric
deforming idea on their discrete Yamabe flow method to compute quasiconformal
maps on Riemann surfaces. In the last two works, the final conformal structure of the
target domain cannot be determined at the beginning. Their method can be more
appropriately described as finding a quasiconformal parametrization with a given Bel-
trami coefficient onto a domain with conformal structure to be determined. To the
best of our knowledge, no algorithm has been proposed for the computation of home-
omorphisms between general domains or surfaces with a given Beltrami coefficient.

Besides the need for computing quasiconformal maps, the applications of quasi-
conformal maps is also of great interest in applications such as shape deformation,
surface registration, texture mapping, brain mapping, mesh editing, and etc. The goal
in these applications is to find mappings with desired properties that can be expressed
in terms of Beltrami differential or other quantities. For example, one may want to
find conformal maps between surfaces in surface mapping applications, because they
preserve local geometry well. Lipman et al. [9] used quasiconformal maps to generate
plane deformations with less distortion. Lui et al. [13] proposed to optimize surface
registrations using an integral flow. Wong et al. [17] used the integral flow method for
the inpainting and refinement of diffeomorphisms by computing new diffeomorphisms
with inpainted or interpolated Beltrami coefficients. The inpainted maps are smoothly
reconstructed in the missing regions and the refined maps are smoothly interpolated.
However, for simply connected closed surfaces, the integral flow method has to be
computed on an unbounded domain, which is computationally inefficient. Moreover,
for simply connected closed surfaces, the method requires a global parametrization
through a conformal map onto the plane. As a result, the method is only applicable
for computing quasiconformal maps on open or closed simply connected surfaces. Be-
sides applications in texture mapping, quasiconformal maps are also widely used in
medical imaging. Lui et al. [11] proposed compressing surface registrations by storing
the Fourier coefficients of the Beltrami coefficients. Lui et al. [12] also proposed using
geometric-matching quasiconformal maps for hippocampal surface registration. In
general quasiconformal maps are very useful tools in many applications, but there is
no efficient computational algorithms available that work in general situations. This
is the goal of our work.

3. Theoretical Background. In this section, we introduce all the theoretical
background of our algorithms. First we define what quasiconformal maps are and show
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some related properties describing them, such as Beltrami coefficients and Beltrami
differentials. Next, we define the Beltrami flow and discuss how it is related to the
adjustment of quasiconformal maps. We give an example of the Beltrami flow for
the case of Riemann sphere, where the Beltrami flow can be explicitly written as an
integral formula. After that, we generalize the Beltrami flow through an intrinsically
defined vector field which can be characterized by a PDE in local conformal coordinate.
Then we derive a composition formula for quasiconformal maps which allows one
to compute Beltrami flow of any homeomorphism adjustment as a vector field on
the target domain defined from the source domain. Finally, we introduce the Tutte
embedding, which will be useful for producing an initial map for simply connected
open and closed surfaces.

3.1. Quasiconformal Maps and Beltrami Coefficients. Quasiconformal maps
are generalizations of conformal maps. In conformal maps, the local metric between
two surfaces are scaled by a conformal factor. In quasiconformal maps, a bounded
non-conformal distortion is allowed. As a motivating example, consider a differen-
tiable function f : C → C. Write f(z) = u(x, y) +

√
−1 · v(x, y), where u and v are

the real and imaginary parts of f represented as real-valued functions on R2, and
z = x+

√
−1 · y. f is said to be quasiconformal if it satisfies the Beltrami equation

fz̄ = µfz, (3.1)

where fz̄ and fz are complex derivatives defined by

∂f

∂z̄
=

1

2
(ux − vy) +

√
−1

2
(vx + uy) (3.2)

and

∂f

∂z
=

1

2
(ux + vy) +

√
−1

2
(vx − uy) (3.3)

In (3.1), µ : C → C is called the Beltrami coefficient. When µ ≡ 0, (3.1) becomes
the well-known Cauchy-Riemann equation and f is conformal. In general µ measures
the local non-conformal distortion of f . Locally, f maps a disk onto an ellipse. The
direction of maximal expansion is given by arg(µ)/2, with a factor of |fz| · (1 + |µ|).
The direction of maximal shrinkage is given by arg(µ)/2 + π/2, with a factor of

|fz| · (1 − |µ|). The dilation of the ellipse is given by K = 1+|µ|
1−|µ| . An illustration of

how µ affects the quasiconformal map w(z) = z + µz is shown in Figure 3.1.
On maps between Riemann surfaces, Beltrami coefficients are generalized as Bel-

trami differentials and has the form µ(z)dzdz . Precisely, it means that if f : M → N
is a map between two Riemann surfaces, and w = g(z) is the representation of f in
conformal local coordinates z of M and w of N , then µ(z) is the Beltrami coefficient
of g. If z1 is another conformal local coordinate of M , it can be easily derived by the

chain rule that the Beltrami differential transforms as µ1(z1)dz1dz1
, where

µ1(z1) = µ(z)
(dz/dz1)

(dz/dz1)
. (3.4)

Hence, the Beltrami differential can be defined intrinsically on the surface. From now
on, we may use Beltrami differential and Beltrami coefficient interchangeably when
there is no confusion, because representing the Beltrami differential often requires
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w(z) = z + µz

Dilation: K = 1+|µ|
1−|µ|

w

1 + |µ|1− |µ|
arg µ/2

(arg µ + π)/2

Re(z) Re(w)

Im(z) Im(w)

Fig. 3.1. How the Beltrami coefficient µ affects the quasiconformal map w(z) = z+µz. A disk
from the source domain on the left (z-plane) is mapped onto an ellipse in the target domain on the
right (w-plane) with a dilation given by K.

the specification of a conformal local coordinate. For the ease of understanding, one
may simply assume that all maps are between complex planes, where the definition
of Beltrami coefficient is clear. In fact, in our algorithm, we treat each face of the
triangular mesh we consider as a coordinate patch and store the Beltrami differential
as the Beltrami coefficient with respect to such coordinate system on each face.

In order to compute the proper adjustment needed to obtain a new surface map
corresponding to a perturbed Beltrami coefficient, we introduce the composition for-
mula of Beltrami coefficients. We denote as fµ the function satisfying the Beltrami
equation with Beltrami coefficient µ. Let µ, σ and τ be the Beltrami coefficients of
quasiconformal maps fµ, fσ and fτ , with fτ = fσ ◦(fµ)−1. The composition formula
for τ is given by

τ =

(
σ − µ
1− µσ

1

θ

)
◦ (fµ)−1, (3.5)

where θ = p
p and p = ∂

∂z f
µ(z). A proof of this formula can be found in [1]. With this

formula, we can compute the Beltrami coefficient τ required so that after composing
with fµ, we obtain a map with a Beltrami coefficient σ.

3.2. Finding the Surface Map with a Given Beltrami Differential. In
this subsection, we illustrate how we can find the surface map with a given Beltrami
differential. We first look at how this problem can be solved for a sphere, which can
be parametrized by the extended complex plane C, defined as the complex plane C
plus a point at infinity. Motivated by this example, we define what we called the
Beltrami flow for adjusting maps between arbitrary Riemann surfaces.

Consider solving the Beltrami equation on the extended complex plane C. It is
known as the generalized Riemann mapping theorem that given a Beltrami coefficient
µ : C→ C with ‖µ‖∞ < 1, there exist a unique homeomorphism f of C with f(0) = 0,
f(1) = 1 and f(∞) =∞ satisfying the Beltrami equation. Theoretically, the solution
can be computed using the following perturbation formula.

Theorem 3.1. Let µt be the Beltrami coefficient µt(z) = µ(z)+tν(z) and f = fµ.
Then fµt(w) = f(w) + tḟ(w) +O(t2), where

ḟ(w) = − 1

π

∫∫
ν(z)R(f(z), f(w))(fz(z))

2 dx dy, (3.6)

with

R(z, w) :=
1

z − w
− w

z − 1
+
w − 1

z
. (3.7)
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We refer interested reader to [1] for a proof of the theorem. Using this formula, one
may start from the identity map Id with µ ≡ 0 and perturb its Beltrami coefficient in
a small step at a time until the map with the required Beltrami coefficient is obtained.

Motivated by this theorem, it is observed that a flow ḟ(w) can be defined and
computed to adjust the Beltrami coefficient of a map between two surfaces, in this
case, the Riemann sphere. If f is the identity map, we can define the flow V as the
following function:

V (z) := Pν(z) := − 1

π

∫∫
ν(ζ)

(
1

ζ − z
+
z − 1

ζ
− z

ζ − 1

)
dξ dη. (3.8)

In practice, computing the integral for V over the whole complex plane is infeasible
because it is not a compact domain. However, in [5], it is shown that the key property
of V is that ∂

∂z̄V (z) = ν(z), which is equivalent to saying that the operator P inverts

the ∂-derivative. Therefore, if we can compute the flow properly by solving this
equation on a compact domain, we will be able to adjust the map between arbitrary
compact Riemann surfaces. We justify this claim for the complex plane C using the
following theorem. Similar result follows for arbitrary surface maps. Note that unless
otherwise specified, in all discussions from now on, all Beltrami coefficients µ and
adjustments ν are only required to be measurable, and all PDEs are only required
to be satisfied weakly. In practice, one may assume all Beltrami coefficients µ and
adjustments ν to be piecewise constant on each face of triangular meshes, and all
surface maps to be piecewise linear.

Theorem 3.2. Let id : C → C be the identity map of the complex plane, with
Beltrami coefficient µ ≡ 0. If V is a complex-valued function on C such that

∂

∂z̄
V (z) = ν(z) (3.9)

for a complex-valued function ν. Let ft(z) = id(z) + tV (z) and µt be the Beltrami
coefficient of ft. Then for every z ∈ C and small t > 0, µt satisfies

µt(z) = tν(z) +O(t2). (3.10)

Proof. It suffices to show that for all z ∈ C, the Beltrami coefficient of ft at z
has a derivative equal to ν(z). For our application, it is sufficient to assume that V
is C1-continuous and that ∂

∂zV exists and is finite near z. Then we have

∂ft
∂z

=
∂f

∂z
+ t

∂V

∂z
= tν (3.11)

and

∂ft
∂z

=
∂f

∂z
+ t

∂V

∂z
= 1 + tVz. (3.12)

Then µt, the Beltrami coefficient of ft, is given by

µt = tν/(1 + tVz). (3.13)

Differentiating µt with respect to t and taking its value at t = 0, we have

∂µt
∂t

∣∣∣
t=0

=
(1 + tVz)ν − tνVz

(1 + tVz)2

∣∣∣
t=0

= ν. (3.14)
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Therefore µt satisfies (3.10) as required.
To formulate (3.9) on an arbitrary Riemann surface, we generalize the definition

of V as a vector field on the surface and call it a Beltrami flow.
Definition 3.3. Let ν(z)dzdz be a Beltrami differential on a surface M . We

define a Beltrami flow of M with respect to ν to be the vector field V ∂
∂z on M if

under conformal local coordinates, we have

∂

∂z̄
V (z) = ν(z). (3.15)

With the result of Theorem 3.1, an example of Beltrami flow can be given for the
extended complex plane C, which is homeomorphic to the Riemann sphere. Without
loss of generality, by changing the 3 points fixed by the homeomorphism (0, 1 and ∞
in Theorem 3.1) to 0, 1 and −1, for any Beltrami coefficient µ(z), there is a unique
homeomorphism f : C → C with Beltrami coefficient µ(z) and satisfies f(0) = 0,
f(1) = 1 and f(−1) = −1. As such, the Beltrami flow V (z) with respect to any
Beltrami coefficient adjustment ν(z) satisfies (3.15) and V (0) = V (1) = V (−1) = 0
(since 0, 1 and −1 are fixed). Since V (z) is precisely given by (3.8), we have the
following example of a Beltrami flow:

Example 3.4. Define V (z) as in (3.8). Then V (z) is the unique Beltrami flow

on the unit sphere with respect to the Beltrami differential ν(z)dzdz satisfyig V (0) = 0,
V (1) = 0 and V (−1) = 0, where the whole sphere is parametrized by a single conformal
coordinate patch using the standard stereographic projection.

From this example, it can be seen that the Beltrami flow or the quasiconformal
map with respect to a certain Beltrami differential may not be unique unless one or
more points are fixed. It is because there can be conformal diffeomorphism of the
surface that can be flowed from the identity map, such as the Möbius transformation
for a sphere. In other words, there can be flows from the identity map preserving the
Beltrami differential, therefore causing the non-uniqueness. As we will explain, using
our least square approach, we can easily overcome this problem.

Another key idea in our approach is to define a proper vector field and flow
intrinsically on the source or the target surfaces using a composition formula. In this
way, we avoid the use of any global parametrization and allow us to compute maps
for any compact domains directly. The idea is to compose a surface map f : M →
N between Riemann surfaces M and N with a homeomorphism of N induced by
a Beltrami flow with respect to some Beltrami differential ν, so that the Beltrami
differential of f is adjusted in a specific way with the composition. The appropriate ν
can be easily computed from the composition formula (3.5) to achieve the map with
a desired Beltrami differential. To simplify the discussion, we assume that there is a
global parametrization on every Riemann surface, although derivation of the formula
can be carried out in any local conformal coordinate in the same way. To adjust the
Beltrami coefficient of a surface map f : M → N between two Riemann surfaces, our
approach is to look for a homeomorphism g : N → N such that f ◦ g has the desired
Beltrami coefficient. Suppose that µ(z) is the Beltrami coefficient of f and our target
Beltrami coefficient is σ(z, t) = µ(z) + ν(z)t, where ν(z) is some adjustment to µ.
Using the composition formula (3.5), the required Beltrami coefficient τ(z, t) of g is
given by

τ(z, t) =

(
νt

1− µ(µ+ νt)

1

θ

)
◦ (fµ)−1. (3.16)
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To compute the flow we need to construct g, we differentiate τ(z, t) with respect to t
and obtain

∂τ

∂t
(z, t)|t=0 =

(
ν

1− |µ|2
1

θ

)
◦ (fµ)−1. (3.17)

Define ρ to be the derivative above. The problem of adjusting the Beltrami differential
of f becomes the problem of computing a Beltrami flow of N with respect to ρ. We
concretely express this into the following key theorem:

Theorem 3.5. Suppose f : M → N is a surface map between two Riemann
surfaces (parametrizable with one coordinate patch) with Beltrami coefficient µ(z).
Define ρ to be the derivative in (3.17). Suppose V is a Beltrami flow on N with
respect to ρ, and g : N → N is a homeomorphism induced by V , i.e.,

g(z, t) := z + V (z)t. (3.18)

Then for small t > 0, g(f(z), t) is a surface map with Beltrami coefficient

σ(z, t) = µ(z) + ν(z)t+O(t2). (3.19)

Note that ideally, one wants the O(t2) to be small such that σ(z, 1) is close to
µ(z) + ν(z), the required Beltrami coefficient. In our algorithms, we choose t ∈ (0, 1]
such that it is as close to 1 as possible and makes σ(z, t)− µ(z)− ν(z)t smaller in L2

sense. As we approaches the desired Beltrami coefficient, O(t2) becomes negligible
as ν(z) becomes closer and closer to 0. Therefore, our algorithms converges despite
choosing t = 1 whenever possible.

4. Numerical Algorithms. In this section, we explain our numerical algo-
rithms in detail for the computation of arbitrary surface maps. Our main focus is
on the computation of discrete Beltrami flows on surfaces represented by triangular
meshes, where the vector field corresponding to a Beltrami flow is computed using a
least square approach. We first give a brief review of Tutte embedding, which can be
used to create an initial map for simply connected surfaces with or without bound-
ary. Then we discuss the computation of Beltrami flows for simply connected surface
with boundary, which can be parametrized by a single coordinate patch. Finally, we
generalize to other cases where more than one coordinate patches are required, which
include simply connected surfaces and surfaces of higher genus.

4.1. Initialization by Tutte Embedding for Simply Connected Surfaces.
To compute a surface map f : M → N between arbitrary compact Riemann surfaces
with a desired Beltrami differential, our approach is to first start with an arbitrary
initial map f0 : M → N , and then adjust the Beltrami differential of f0 by composing
it with a map g : N → N , where g is induced by a Beltrami flow with respect to
a correct Beltrami differential given by the composition formula (3.5). For the ease
of discussion, we may assume that f0 is a homeomorphism, or that it is onto and
non-overlapping.1 Our algorithms also converge faster when it is initialized using a
homeomorphism.

For simply connected surfaces with boundary, we use the well-known Tutte em-
bedding [16], which is widely used for mesh embedding and initialization problems.

1Otherwise the Beltrami flow inducing g will be a vector field on N with source domain M , which
can be handled similarly but makes the notation more cumbersome.
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Under Tutte embedding, each point of a graph is mapped onto the plane such that
it is the barycenter of its neighbors. The mapped graph is always planer using this
method and the mapping is easily solved by a simple linear system. For simply con-
nected closed surfaces, one may first remove a triangle on the triangular mesh and
apply Tutte embedding to get a planer graph. Then the graph can be easily mapped
onto a sphere by stereographic projection from a plane, with the triangle put back to
fill the hole. For other types of surfaces, one may first create an arbitrary map. As
our results show, our algorithms work even when the initial map is overlapping.

4.2. Computing Beltrami Flows Using a Least Square Method. The
key step in computing Beltrami flows is to solve the vector field V (z). We use least
square method to solve the first order PDE system (3.9) for planar domains or (3.15)
on general Riemann surfaces rather than solving a second order PDE for the real
or imaginary component separately. Advantages of using this approach include (1)
numerical approximation of lower order differentials, (2) no subtle boundary condi-
tions coupling the real and imaginary part when computing quasiconformal maps for
domains with boundary, which will be discussed in more details later, (3) providing a
good approximation when the exact solution may not exist, e.g. when there are too
many constraints, or difficult to approximate discretely in practice. In this subsection,
we consider the problem of computing a Beltrami flow to adjust a map between plan-
ner domains. Once we establish the problem for planner domains, it can be directly
generalized to arbitrary surface maps.

In order to compute a Beltrami flow for a Riemann surface with respect to
some Beltrami differential ν, consider solving the problem on a Riemann surface
S parametrized by a single conformal coordinate patch D ⊂ C, and ν is the adjust-
ment to the Beltrami coefficient on D. Let ψ : S → D be the parametrization. Then
the Beltrami flow can be defined as a complex-valued function on D that satisfies
∂
∂z̄V (z) = ν(z). Suppose ν(z) = a(z) +

√
−1 · b(z) and V (z) = u(z) +

√
−1 · v(z),

where a, b and u, v are real-valued functions representing the real and imaginary parts
of ν and V respectively, then u, v satisfies the system

ux − vy = 2a,

vx + uy = 2b. (4.1)

Using a least square approach, we minimize a least square integral of ∂
∂z̄V (z)−ν(z)

weighted according to the area of the original patch S. Since the real and imaginary
parts are given by the above system, the energy to minimize becomes∫

S

{[
(ux − vy − 2a)2 + (vx + uy − 2b)2

]
◦ ψ
}
dA. (4.2)

The original problem of finding V becomes a standard least square problem, which
can be solved easily. When V is computed numerically on a triangular mesh, we call
the discrete flow computed using the above method a discrete Beltrami flow.

When the surface S cannot be parametrized using a single patch, we can write the
least square using a number of patches. Suppose M is the union of of N1, N2, . . . , Nk ⊂
M with disjoint interior and each can be parametrized by ψ1, ψ2, . . . , ψk onto closed
simply connected domains D1, D2, . . . , Dk ⊂ C respectively, and ν1, ν2, . . . , νk are the
adjustments to the Beltrami coefficients on D1, D2, . . . , Dk respectively. Suppose for
each i = 1, 2, . . . , k, νi(z) = ai(z) +

√
−1 · bi(z) and Vi(z) = ui(z) +

√
−1 · vi(z), where
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ai’s, bi’s and ui’s, vi’s are real-valued functions representing the real and imaginary
parts of νi’s and Vi’s respectively. The least square energy (4.2) generalizes as

k∑
i=1

∫
Ni

{[
(uix − viy − 2ai)

2 + (vix + uiy − 2bi)
2
]
◦ ψi

}
dA. (4.3)

If ∂Di and ∂Dj intersect, then for all p ∈ ∂Di ∩ ∂Di, Vi and Vj have to satisfy a
compatibility condition given by

Vj(ψj(p)) = Jij(p)Vi(ψi(p)), (4.4)

where Jij(p) is the Jacobian matrix of ψj ◦ ψ−1
i , and Vi, Vj are considered as vectors

in R2. With these compatibility conditions, (4.3) becomes a constrained least square
problem. This is helpful when one already has a parametrization for the surface. In
general, all least square problems above can be formulated as an intrinsic integral on
the surface, as we show in the later subsections.

When the surface considered has boundaries, one restricts the direction of flow to
be along the tangential direction of the boundary. In this case, the above problems
also become constrained least square problems. Sometimes it is also necessary to fix
the flow to be 0 at a few points. For example, as shown in Example 3.4, 3 points have
to be fixed for the case of a sphere. It is also possible to enforce more constraints as
required, making the least square approach more flexible.

4.3. Discretization of Beltrami Differentials. On a general Riemann sur-
face, a Beltrami differential is a (1,−1)-tensor specifying the direction and magnitude
of the distortion. The Beltrami differential can be written as a Beltrami coefficient
only if a local coordinate is given. As our algorithms work on discrete triangular
meshes, in this subsection, we illustrate how we can represent Beltrami differentials
as Beltrami coefficient on each face of a triangular mesh.

On each face of a triangular mesh determined by 3 points p1, p2 and p3, a natural
way to specify a local coordinate system is to identify −−→p1p2 as the positive real direction
and the direction perpendicular to it as the positive imaginary direction. For example,
if p1, p2 and p3 are mapped to q1, q2 and q3 respectively, we may map p1, p2, p3

conformally to (0, 0), (a1, 0), (a2, a3) and q1, q2, q3 conformally to (0, 0), (b1, 0),
(b2, b3). Denote this linear map from R2 to R2 as f(z) = u(x, y) +

√
−1 · v(x, y),

where z = x+
√
−1 · y. Then we have(

ux uy
vx vy

)(
a1 a2

0 a3

)
=

(
b1 b2
0 b3

)
. (4.5)

Therefore, the constants ux, uy, vx and vy can be solved as(
ux uy
vx vy

)
=

(
b1 b2
0 b3

)(
a1 a2

0 a3

)−1

. (4.6)

The Beltrami coefficient of the face can then be computed using the formula

µ =
ux − vy +

√
−1 · (vx + uy)

ux + vy +
√
−1 · (vx − uy)

. (4.7)

In our algorithms, all Beltrami differentials are represented as a Beltrami coeffi-
cient on each face of a triangular mesh in the form described above.
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4.4. Computing Discrete Beltrami Flows on Simply Connected Sur-
faces with Boundary. In the simplest case, the surface M to be considered is a
simply connected open surface, where only a single patch is necessary. We may map
M conformally onto a domain D ⊂ R2. We may also assume that the required Bel-
trami coefficient ν is specified on D, i.e., ν is a complex-valued function on D. Then
the problem reduces to computing the discrete Beltrami flow V on D such that

∂

∂z̄
V (z) = ν(z). (4.8)

As shown in Subsection 4.2, if we write V (z) = u(z) +
√
−1 · v(z), and ν(z) =

a(z) +
√
−1 · b(z), then the above PDE can be solved by minimizing the energy

functional (4.2) ∫
S

{[
(ux − vy − 2a)2 + (vx + uy − 2b)2

]
◦ ψ
}
dA. (4.9)

In the Appendix, a detailed description is given on how to formulate a least square
problem on a triangular mesh for solving for u and v. As discussed in Subsection 4.2,
along the boundary, u and v is restricted by a linear relation to keep the flow along
the tangential direction of the boundary. Once the discrete Beltrami flow V is solved,
the perturbed map

f(z, t) = z + tV (z) (4.10)

has the desired Beltrami coefficient µt(z) = tν(z) for small t > 0. Then we choose
t ∈ (0, 1] such that it is as close to 1 as possible and decreases σ(z, t)−µ(z)− ν(z)t in
L2 sense and adjust f according to the flow V and time step t. After the adjustment,
we project the boundary points back onto the boundary and interpolate the projection
movement to adjust the interior points. This completes one step of adjustment using
discrete Beltrami flow.

4.5. Computing Discrete Beltrami Flow on General Surfaces. For gen-
eral Riemann surfaces, since there may not be a global conformal parametrization
as above, we have to model V as a vector field lying on the tangent plane at each
point of the surface. To compute the discrete Beltrami flow on general surfaces, we
assume that we are given a triangular mesh {P, T} with the desired discrete Beltrami
differential µ of the quasiconformal map φ to be computed onto a surface S. Suppose
P = {p1, . . . , pn} ⊂ R3 and T = {[p11, p12, p13], . . . , [pm1, pm2, pm3]}. Assume that
initially φ maps pi to qi := φ(pi) ∈ S. We need to adjust φ by a vector field V on S
with P as its domain so that φ(pi) can be perturbed to φ(pi) + αV (pi), where α is
the step size. Since there is no standard parametrization of tangent spaces in S, we
compute V discretely by specifying the displacement ui, vi for each i with respect to
a positively oriented basis of the tangent space at qi. Denote the outward normal at
qi by ni for i = 1, 2, . . . , n. For each i, we also compute ui, vi such that {ni,ui,vi}
is a positively oriented orthonormal basis. Then the required vector field V becomes

V (pi) = uiui + vivi, (4.11)

for i = 1, 2, . . . , n.
Note that for each point pi in P , V (pi) lies on the tangent plane at φ(pi). To

generalize the least square energy (4.2), one integrates on each face of the triangular
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mesh {φ(P ), T} instead of on the plane. For each triangle Ti = [pi1, pi2, pi3], we map
the image φ(Ti) = [φ(pi1), φ(pi2), φ(pi3)] of it isometrically onto an (r, s)-coordinate
plane local to the triangle using a conformal map ψi. With this coordinate system, we
immediately have a basis {ri, si} ⊂ R3 spanning the plane of φ(Ti). Then we project
V onto the face φ(Ti) to obtain the corresponding value of V in terms of ri and si,
i.e.,

V (pij) = rijri + sijsi, (4.12)

for i = 1, 2, . . . , n and j = 1, 2, 3. On triangle Ti, by writing a point as an (x, y)-
coordinate and its image point as an (r, s)-coordinate, V may be regarded as a linear
map in R2. Write V (x, y) = r(x, y) +

√
−1 · s(x, y). Then the integrand in (4.2) can

be generalized as

m∑
i=1

∫∫
ψi(Ti)

(rx − sy − 2a)2 + (rx + sy − 2b)2, (4.13)

where the desired Beltrami differential satisfied by V is written as a Beltrami coeffi-
cient on triangle ψi(Ti) as a+

√
−1 · b ∈ C.

It is obvious that on every image ψ(Ti), the derivatives rx, ry, sx and sy are
constant and can be expressed as a linear expression of ui1, ui2, ui3 and vi1, vi2, vi3.
Therefore the energy functional for the least square problem is quadratic in terms
ui’s and vi’s. A detailed description is given in the Appendix for the precise least
square problem to solve. For boundary points pi, we may choose ui to point in the
tangential direction of the boundary and constrain vi to be 0 in the quadratic mini-
mization problem. Then the resulting flow is automatically a valid flow for adjusting
homeomorphisms on S. We choose the time step t in a way similar to that of simply
connected surfaces with boundary discussed in the previous subsection. After adjust-
ing the surface map according to V , we project the resulting points back onto S and
the resulting boundary points back on ∂S. This completes one step of adjustment
using discrete Beltrami flow.

5. Numerical Tests. In this section, we present various numerical tests to
demonstrate efficiency, accuracy and robustness of our proposed method. Our com-
putations are all implemented in MATLAB using vectorized scripts on a quad-core
mobile system with 2.6GHz CPU (boosts up to 3.6GHz) and 8GB of 1600GHz mem-
ory.

5.1. Validation Using Synthetic Examples. In this subsection, we validate
our algorithm by computing the solution of a given Beltrami equation and show
convergence as the mesh size gets refined.

We first test our algorithm by constructing diffeomorphisms with various Beltrami
coefficients on the unit disk D = {x +

√
−1 · y|x2 + y2 <= 1}. It is known that if

we fix 0 and 1, i.e. enforcing the constraint that f(0) = 0 and f(1) = 1, then the
solution of the Beltrami coefficient for an arbitrary µ with ‖µ‖∞ < 1 is unique. To
apply discrete Beltrami flow algorithm for simply connected surfaces with boundary,
we initialize the map with the identity map of the disk. In each step, we compute
the discrete Beltrami flow with the required Beltrami coefficient fixing 0 and 1, where
the flow is constrained in tangential direction along the boundary. The time step t
is chosen in [0, 1] using a method analogous to bisection such that it is as close to
1 as possible without causing overlapping. Then the map is updated by the flow to
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Level Number of Faces Number of Steps Error (sup-norm) Error (L2-norm)
0 4 4 0.2000 0.0800
1 16 12 0.2795 0.0813
2 64 12 0.2251 0.0458
3 256 13 0.1767 0.0176
4 1024 12 0.1060 0.0052
5 4096 10 0.0582 0.0013
6 16384 9 0.0306 0.341× 10−4

7 65536 9 0.0157 0.855× 10−5

Table 5.1
Results for computing a diffeomorphism of the unit disk with µ(z) = 0.6z with tolerance 10−8.
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Fig. 5.1. The sup-norm (red) and L2-norm (blue) error of the discrete Beltrami flow method
on the unit disk.

approximate the map with the target Beltrami coefficient. The convergence criterion
was determined by if the sup-norm of the adjustment of the surface map in R2 is
smaller than 10−8.

We test the accuracy of the algorithm by computing the diffeomorphism on the
unit disk with µ(z) = 0.6z. The complexity of the triangular meshes for the disk varies
from level 0 (4 faces) to level 7 (47+1 = 65536 faces), where each higher complexity
level is obtained by subdividing the triangular mesh of the previous level. The number
of steps used and the error in sup-norm and L2-norm is shown in Table 5.1. We observe
that except at level 0, the number of steps required tends to decrease mildly as the
mesh complexity grows. This could be attributed to the more accurate computed flow
as the mesh becomes more complex, decreasing the number of steps required.

A plot of the logarithm of the sup-norm and L2-norm errors against the logarithm
of the number of faces is shown in Figure 5.1. As can be seen, both errors decrease
as the mesh is refined. Since the map in some regions is highly distorted, the sup-
norm will be larger in those regions. An adaptive mesh will produce better results.
However, the numerical result shows that the convergence in L2-norm is second order.
A plot of the resulting diffeomorphism for 65536 faces is shown in Figure 5.2.

Similar results can be observed for computing diffeomorphisms of the unit sphere.
In this test, we compute a diffeomorphism with µ(z) ≡ 0.3 +

√
−1 · 0.3, where z

is the parametrization by stereographic projection of the sphere onto C. We show
convergence for triangular meshes on a sphere with complexity from level 0 (8 faces)
to level 6 (8 · 46 = 32768 faces), where each higher complexity level is obtained by
mesh refinement of the previous level. The convergence criterion was determined by
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(a) (b)

Fig. 5.2. The result of our algorithm for finding a diffeomorphism of the unit disk with µ(z) =
0.6z and keeping 0 and 1 fixed. (a) shows a unit disk with a checkerboard pattern. (b) shows how
the original checkerboard pattern is mapped onto the unit disk under the computed diffeomorphism.

Level Number of Faces Number of Steps Error (L2-norm)
0 8 9 0.1246
1 32 13 0.3892
2 128 14 0.2692
3 512 14 0.1145
4 2048 12 0.0412
5 8192 11 0.0138
6 32768 10 0.0044

Table 5.2
Results for computing a diffeomorphism of the unit sphere with µ(z) ≡ 0.3 +

√
−1 · 0.3 with

tolerance 10−5.

if the sup-norm of the adjustment of the surface map in R2 is smaller than 10−5. The
number of steps required, and the error in L2-norm is shown in Table 5.2. Again, we
observe that except at level 0, the number of steps required tends to decrease mildly
as the mesh complexity grows. This could also be attributed to the more accurate
computed flow as the mesh becomes more complex, decreasing the number of steps
required.

A plot of the logarithm of the L2-norm error against the logarithm of the number
of faces is shown in Figure 5.3, which also demonstrates a second order convergence
in L2-norm. A plot of the resulting diffeomorphism for 32768 faces is shown in Figure
5.4.

5.2. Simply Connected General Surfaces. Since using Beltrami flow needs
to start from an initial map, we demonstrate that our numerical algorithm is quite
robust with respect to the initial map. In Figure 5.5 and Figure 5.6, we computed the
conformal map of a fandisk and a hippocampus mesh by following the Beltrami flow
that minimizes

∫
|µ|2. To get the initial map, we simply projecting them onto a unit

sphere centered at an interior point. For both cases, the magnitude of initial Beltrami
coefficients are very close to 1 and even bigger than 1 at some places, indicating strong
distortion and even overlapping of the initial maps. Using our algorithm, both of these
meshes converge to the desired conformal maps.

In general, convergence for the Beltrami flow may not be always possible due to
the highly non-convex nature of the least square energy in terms of the map. However,
in our tests, our algorithm always converges if the initial map from the mesh onto the
target domain is not overlapping. Fortunately, Tutte embedding [16] can be used to
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Fig. 5.3. The L2-norm error of the discrete Beltrami flow algorithm on the unit sphere. The
error decreases steadily as complexity increases, justifying the O(h2) error bound of our algorithm.

(a) (b)

Fig. 5.4. The result of our algorithm for finding a diffeomorphism of the unit sphere with
µ(z) = 0.3 +

√
−1 · 0.3 and keeping 0, 1 and ∞ (as in stereographic projection) fixed. (a) shows a

unit sphere with a color disk pattern. (b) shows how the original color disk pattern is mapped onto
the unit sphere under the computed diffeomorphism.

produce a one-to-one map from any triangulated surface to the complex plane, which
can be used as the initial map when necessary. To demonstrate the effectiveness of
this initialization, we show the examples of a fish and a cortical surface in Figure 5.7
and Figure 5.8 respectively, where convergence was not achieved if the initial maps
were simple projections.

5.3. Multiply Connected Domains and High Genus Surfaces. Our algo-
rithms also work on multiply connected surfaces with more than one boundary. Just
like the Beltrami flow needs to lie on the tangent plane of the target surface, when
we compute a Beltrami flow for a multiply connected surface, we restrict the direc-
tion of the flow to the direction of the tangent line at a point of the boundary. As
such, the least square problem becomes a constrained energy minimization problem,
whose linear system is still sparse and easy to solve. In Figure, a homemorphism
of an annulus with inner radius 0.4 and outer radius 1, centered at 0, is computed
with Beltrami coefficient µ(z) = 0.6z3 and keeping the point z = 1 fixed. As can be
observed, our algorithm is able to keep its boundaries fixed and find a homemorphism
with the required distortion.
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(a) (b) (c)

Fig. 5.5. Computing a conformal map from a fandisk onto the unit sphere. (a) shows the
original fandisk mesh. (b) shows the overlapping initial map constructed by projecting vertices of
the mesh onto a unit disk centered at an interior point of the mesh. (c) shows the final map after
the Beltrami flow algorithm is used to minimize the Beltrami coefficient in least square sense. All
meshes are textured consistently with correspondence from a stereographic projection of the unit
sphere in (c).

(a) (b) (c)

Fig. 5.6. Computing a conformal map from a hippocampus onto the unit sphere. (a) shows the
original hippocampal mesh. (b) shows the overlapping initial map constructed by projecting vertices
of the mesh onto a unit disk centered at an interior point of the mesh. (c) shows the final map after
the Beltrami flow algorithm is used to minimize the Beltrami coefficient in the least square sense.
All meshes are textured consistently with correspondence from a stereographic projection of the unit
sphere in (c).

5.4. Efficiency. Our algorithm is also very efficient because of the sparse linear
system from the least square problem can be solved easily. The discrete Beltrami flows
on triangular meshes with 100K faces can be easily computed in less than 3 seconds
per step. It is possible to further improve our algorithm by using better solvers for
least square problems.

6. Conclusion. In this paper, we propose a computational framework for intrin-
sic Beltrami flow that can effectively adjust the Beltrami coefficient of diffeomorphisms
between arbitrary Riemann surfaces without the need of a global parametrization. By
using a least square approach, we developed a straight forward algorithm that can
be implemented easily and efficiently. We demonstrate the accuracy, robustness and
flexibility of our method using extensive tests.

Appendix. We illustrate the detailed computation involved to compute the least
square energy for discrete Beltrami flow on both a plane and in arbitrary Riemann
surfaces with or without boundaries.
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(a) (b) (c)

Fig. 5.7. Computing a conformal map from a fish onto the unit sphere using discrete Beltrami
flow with Tutte embedding. (a) shows the original fish mesh. (b) shows the initialization by Tutte
embedding. (c) shows the final map after the Beltrami flow algorithm is used to minimize the
Beltrami coefficient in least square sense. All meshes are textured consistently with correspondence
from a stereographic projection of the unit sphere in (c).

(a) (b) (c)

Fig. 5.8. Computing a conformal map from a cortical surface onto the unit sphere using discrete
Beltrami flow with Tutte embedding. (a) shows the original cortical surface mesh. (b) shows the
initialization by Tutte embedding. (c) shows the final map after the Beltrami flow algorithm is used
to minimize the Beltrami coefficient in the least square sense. All meshes are textured consistently
with correspondence from a stereographic projection of the unit sphere in (c).

Computing the Least Square Beltrami Flow Energy on a Plane. Given
a triangular mesh on the plane, we compute its Beltrami flow energy function and
express it as a quadratic function of the coordinates. Assuming a single patch, we
want to minimize

E(u,v) =
∑
Ti∈T

ATi
· ((ux − vy − 2ai)

2 + (vx + uy − 2bi)
2), (6.1)

where u and v are vectors representing the real and imaginary parts of the flow at
each vertex, ATi is the area of triangle Ti, and the derivatives ux, uy, vx and vy are
taken on Ti. The first step in the discrete algorithm is to computed ux, uy, vx and vy
on each face from the position and the images of the vertices. Let Ti = [pi1, pi2, pi3],
and uij = u(pij) for j = 1, 2, 3, we may express ux and uy on Ti in terms of ui1, ui2
and ui3 as

(
ux
uy

)
= Ni

ui1ui2
ui3

 , (6.2)
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(a) (b)

Fig. 5.9. The result of our algorithm for finding a diffeomorphism of an annulus with µ(z) =
0.6z3 and keeping the point z = 1 fixed. (a) shows an annulus with inner radius 0.4, outer radius
1, centered at 0 and textured with a checkerboard pattern. (b) shows how the original checkerboard
pattern is mapped onto the annulus under the computed diffeomorphism.

where Ni is a 3 by 1 matrix. Similarly, let vij = v(pij) for j = 1, 2, 3, we have

(
vx
vy

)
= Ni

vi1vi2
vi3

 . (6.3)

Let pi1 = (xi1, yi1), pi2 = (xi2, yi2), pi3 = (xi3, yi3). It is easy to see that ui2 − ui1 =
(xi2 − xi1)ux + (yi2 − yi1)uy and ui3 − ui2 = (xi3 − xi2)ux + (yi3 − yi2)uy. Thus we
have the system

(
xi2 − xi1 yi2 − yi1
xi3 − xi1 yi2 − yi1

)(
ux
uy

)
=

(
−1 1 0
−1 0 1

)ui1ui2
ui3

 . (6.4)

Therefore Ni is given by

Ni =

(
xi2 − xi1 yi2 − yi1
xi3 − xi1 yi2 − yi1

)−1(−1 1 0
−1 0 1

)
. (6.5)

Write Ni as

(
Nix
Niy

)
. Then (6.1) can be written as

E(u,v) =
∑
Ti∈T

ATi
· ((Nixui −Niyvi − 2ai)

2 + (Nixvi +Niyui − 2bi)
2), (6.6)

where ui =

ui1ui2
ui3

 and vi =

vi1vi2
vi3

 . The gradient of the least square energy can

then be taken to get a linear system for solving u and v.

Computing the Least Square Beltrami Flow Energy on Arbitrary Rie-
mann Surfaces. For the least square energy on arbitrary Riemann surfaces, the
situation is similar, except that now u and v represents the direction of the flow as
the coefficients in terms of the basis ui and vi of each tangent plane at vertex pi.
Mathematically, for each point pi mapped to φ(pi) on the target surface S, we can
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compute an orthonormal basis {ni,ui,vi} at φ(pi) such that ni is the positive or
outward normal. Since Vi is written in terms of ui and Vi for each i but the least
square energy is an integral computed on each face φ(Ti), one needs to express V in
terms of the local isometric coordinates (r, s) on each φ(Ti) such that the integral can
be computed. We discuss the detail of this procedure in this section.

Since the least square energy functional is a sum of the integrals on all faces,
we may consider the case for a face Ti. Assume that we have mapped it onto R2

isometrically and let {ri, si} be a positively ordered orthonormal basis on ψi(Ti).
Then it can be seen that

rij = uijui · ri + vijvi · ri (6.7)

and

sij = uijui · si + vijvi · si (6.8)

for j = 1, 2, 3.
Again we can use Ni defined in the previous section to compute rx, ry, sx and

sy. Therefore we have∫∫
ψi(Ti)

(rx − sy − 2ai)
2 + (rx + sy − 2bi)

2

= Aψi(Ti) · ((Nixri −Niysi − 2ai)
2 + (Nixsi +Niyri − 2bi)

2). (6.9)

Summing up the above expression for each face ψi(Ti), we obtain the required least
square energy function quadratic in terms of coordinates of φ(pi1), φ(pi2) and φ(pi3).
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