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A Method for Finding Structured Sparse Solutions to Nonnegative Least Squares
Problems with Applications∗
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Abstract. Unmixing problems in many areas such as hyperspectral imaging and differential optical absorption
spectroscopy (DOAS) often require finding sparse nonnegative linear combinations of dictionary el-
ements that match observed data. We show how aspects of these problems, such as misalignment of
DOAS references and uncertainty in hyperspectral endmembers, can be modeled by expanding the
dictionary with grouped elements and imposing a structured sparsity assumption that the combina-
tions within each group should be sparse or even 1-sparse. If the dictionary is highly coherent, it is
difficult to obtain good solutions using convex or greedy methods, such as nonnegative least squares
(NNLS) or orthogonal matching pursuit. We use penalties related to the Hoyer measure, which is
the ratio of the l1 and l2 norms, as sparsity penalties to be added to the objective in NNLS-type
models. For solving the resulting nonconvex models, we propose a scaled gradient projection algo-
rithm that requires solving a sequence of strongly convex quadratic programs. We discuss its close
connections to convex splitting methods and difference of convex programming. We also present
promising numerical results for DOAS analysis and hyperspectral unmixing problems.
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1. Introduction. A general unmixing problem is to estimate the quantities or concentra-
tions of the individual components of some observed mixture. Often a linear mixture model
is assumed [39]. In this case the observed mixture b is modeled as a linear combination of
references for each component known to possibly be in the mixture. If we put these references
in the columns of a dictionary matrix A, then the mixing model is simply Ax = b. Physical
constraints often mean that x should be nonnegative, and, depending on the application, we
may also be able to make sparsity assumptions about the unknown coefficients x. This can
be posed as a basis pursuit problem where we are interested in finding a sparse and perhaps
also nonnegative linear combination of dictionary elements that match observed data. This
is a very well studied problem. Some standard convex models are nonnegative least squares
(NNLS) [42, 53], i.e.,

(1.1) min
x≥0

1

2
‖Ax− b‖2,

and methods based on l1 minimization [15, 59, 63].
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In this paper we are interested in how to deal with uncertainty in the dictionary. The
case when the dictionary is unknown is dealt with in sparse coding and nonnegative matrix
factorization (NMF) problems [49, 46, 30, 43, 4, 18], which require learning both the dictionary
and a sparse representation of the data. We are, however, interested in the case where we
know the dictionary but are uncertain about each element. One example we will study in
this paper is differential optical absorption spectroscopy (DOAS) analysis [50], for which we
know the reference spectra but are uncertain about how to align them with the data because
of wavelength misalignment. Another example we will consider is hyperspectral unmixing
[8, 27, 29]. Multiple reference spectral signatures, or endmembers, may have been measured
for the same material, and they may all be slightly different if they were measured under
different conditions. We may not know ahead of time how to choose the one that is most
consistent with the measured data. Spectral variability of endmembers has been introduced
in previous works, for example, in [55, 17, 32, 67, 16], and includes considering noise in the
endmembers and representing endmembers as random vectors. However, we may not always
have a good general model for endmember variability. For the DOAS example, we do have a
good model for the unknown misalignment [50], but even so, incorporating it may significantly
complicate the overall model. Therefore, for both examples, instead of attempting to model
the uncertainty, we propose to expand the dictionary to include a representative group of
possible elements for each uncertain element as was done in [44].

The grouped structure of the expanded dictionary is known by construction, and this
allows us to make additional structured sparsity assumptions about the corresponding co-
efficients. In particular, the coefficients should be extremely sparse within each group of
representative elements, and in many cases we would like them to be at most 1-sparse. We
will refer to this as intragroup sparsity. If we expected sparsity of the coefficients for the
unexpanded dictionary, then this will carry over to an intergroup sparsity assumption about
the coefficients for the expanded dictionary. By intergroup sparsity we mean that with the
coefficients split into groups, the number of groups containing nonzero elements should also be
sparse. Examples of existing structured sparsity models include group lasso [23, 64, 47, 51] and
exclusive lasso [68]. More general structured sparsity strategies that include applying sparsity
penalties separately to possibly overlapping subsets of variables can be found in [36, 37, 3, 33].

The expanded dictionary we consider is usually an underdetermined matrix with the prop-
erty of being highly coherent because the added columns tend to be similar to each other.
This makes it very challenging to find good sparse representations of the data using standard
convex minimization and greedy optimization methods. If A satisfies certain properties re-
lated to its columns not being too coherent [11], then sufficiently sparse nonnegative solutions
are unique and can therefore be found by solving the convex NNLS problem. These assump-
tions are usually not satisfied for our expanded dictionaries, and while NNLS may still be
useful as an initialization, it does not by itself produce sufficiently sparse solutions. Similarly,
our expanded dictionaries usually do not satisfy the incoherence assumptions required for l1
minimization or for greedy methods like orthogonal matching pursuit (OMP) to recover the
l0 sparse solution [60, 12]. However, with an unexpanded dictionary having relatively few
columns, these techniques can be effectively used for sparse hyperspectral unmixing [35].

The coherence of our expanded dictionary means that we need to use different tools to
find good solutions that satisfy our sparsity assumptions. We would like to use a variational
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approach as similar as possible to the NNLS model that enforces the additional sparsity while
still allowing all the groups to collaborate. We propose adding nonconvex sparsity penalties to
the NNLS objective function (1.1). We can apply these penalties separately to each group of
coefficients to enforce intragroup sparsity, and we can simultaneously apply them to the vector
of all coefficients to enforce additional intergroup sparsity. From a modeling perspective, the
ideal sparsity penalty is l0. There is a very interesting recent work that deals directly with
l0 constraints and penalties via a quadratic penalty approach [45]. If the variational model is
going to be nonconvex, we prefer to work with a differentiable objective when possible. We
therefore explore the effectiveness of sparsity penalties based on the Hoyer measure [31, 34],
which is essentially the ratio of l1 and l2 norms. In previous works, this has been successfully
used to model sparsity in NMF and blind deconvolution applications [31, 40, 38]. We also

consider the difference of l1 and l2 norms. By the relationship ‖x‖1−‖x‖2 = ‖x‖2(‖x‖1‖x‖2 −1), we
see that while the ratio of norms is constant in radial directions, the difference increases moving
away from the origin except along the axes. Since the Hoyer measure is twice differentiable
on the nonnegative orthant away from the origin, it can be locally expressed as a difference
of convex functions, and convex splitting or difference of convex (DC) methods [57] can be
used to find a local minimum of the nonconvex problem. Some care must be taken, however,
to deal with the Hoyer measure’s poor behavior near the origin. It is even easier to apply DC
methods when using l1 − l2 as a penalty, since this is already a difference of convex functions
and is well defined at the origin.

The paper is organized as follows. In section 2 we define the general model, describe
the dictionary structure, and show how to use both the ratio and the difference of l1 and l2
norms to model our intra- and intergroup sparsity assumptions. Section 3 derives a method for
solving the general model, discusses connections to existing methods, and includes convergence
analysis. In section 4 we discuss specific problem formulations for several examples related to
DOAS analysis and hyperspectral unmixing. Numerical experiments for comparing methods
and applications to example problems are presented in section 5.

2. Problem. For the nonnegative linear mixing model Ax = b, let b ∈ R
W , A ∈ RW×N ,

and x ∈ R
N with x ≥ 0. Let the dictionary A have l2 normalized columns and consist of M

groups, each with mj elements. We can write A =
[
A1 · · · AM

]
and x =

[
x1 · · · xM

]T
,

where each xj ∈ R
mj and N =

∑M
j=1mj . The general NNLS problem with sparsity constraints

that we will consider is

(2.1) min
x≥0

F (x) :=
1

2
‖Ax− b‖2 +R(x),

where

(2.2) R(x) =
M∑
j=1

γjRj(xj) + γ0R0(x).

The functions Rj represent the intrasparsity penalties applied to each group of coefficients xj ,
j = 1, . . . ,M , and R0 is the intersparsity penalty applied to x. If F is differentiable, then a
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Figure 1. l1 and l2 unit balls.

necessary condition for x∗ to be a local minimum is given by

(2.3) (y − x∗)T∇F (x∗) ≥ 0 ∀y ≥ 0.

For the applications we will consider, we want to constrain each vector xj to be at most
1-sparse, which is to say that we want ‖xj‖0 ≤ 1. To accomplish this through the model (2.1),
we will need to choose the parameters γj to be sufficiently large.

The sparsity penalties Rj and R0 will either be the ratios of l1 and l2 norms defined by

(2.4) Hj(xj) = γj
‖xj‖1
‖xj‖2 and H0(x) = γ0

‖x‖1
‖x‖2 ,

or they will be the differences defined by

(2.5) Sj(xj) = γj(‖xj‖1 − ‖xj‖2) and S0(x) = γ0(‖x‖1 − ‖x‖2).
A geometric intuition for why minimizing ‖x‖1

‖x‖2 promotes sparsity of x is that since it is constant

in radial directions, minimizing it tries to reduce ‖x‖1 without changing ‖x‖2. As seen in
Figure 1, sparser vectors have a smaller l1 norm on the l2 sphere.

Neither Hj nor Sj is differentiable at zero, and Hj is not even continuous there. Figure
2 shows a visualization of both penalties in two dimensions. To obtain a differentiable F , we
can smooth the sparsity penalties by replacing the l2 norm with the Huber function, defined
by the infimal convolution

(2.6) φ(x, ε) = inf
y
‖y‖2 + 1

2ε
‖y − x‖2 =

{ ‖x‖22
2ε if ‖x‖2 ≤ ε,

‖x‖2 − ε
2 otherwise.

In this way we can define differentiable versions of sparsity penalties H and S by

H
εj
j (xj) = γj

‖xj‖1
φ(xj , εj) +

εj
2

,(2.7)

Hε
0(x) = γ0

‖x‖1
φ(x, ε0) +

ε0
2

,

Sε
j(xj) = γj(‖xj‖1 − φ(xj , εj)),(2.8)

Sε
0(x) = γ0(‖x‖1 − φ(x, ε0)).



2014 ERNIE ESSER, YIFEI LOU, AND JACK XIN

l1/l2

 

 

0 1 2 3 4 5
0

1

2

3

4

5

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

0 1 2 3 4 5 6 7 8
0

1

2

x
1
=x

2

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

x
1
+x

2
=1

l1−l2

 

 

0 1 2 3 4 5
0

1

2

3

4

5

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8
0

2

4

x
1
=x

2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

x
1
+x

2
=1

Figure 2. Visualization of l1/l2 and l1 − l2 penalties.

Regularized l1/l2
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Figure 3. Visualization of regularized l1/l2 and l1 − l2 penalties.

These smoothed sparsity penalties are shown in Figure 3. The regularized penalties behave
more like l1 near the origin and should tend to shrink xj that have small l2 norms.

An alternate strategy for obtaining a differentiable objective that doesn’t require smooth-
ing the sparsity penalties is to add M additional dummy variables and modify the convex
constraint set. Let d ∈ R

M , d ≥ 0, denote a vector of dummy variables. Consider applying

Rj to vectors
[
xj

dj

]
instead of to xj. Then if we add the constraints ‖xj‖1 + dj ≥ εj, we are

assured that Rj(xj , dj) will be applied only to nonzero vectors, even though xj is still allowed

to be zero. Moreover, by requiring that
∑

j
dj
εj

≤ M − r, we can ensure that at least r of the

vectors xj have one or more nonzero elements. In particular, this prevents x from being zero,
so R0(x) is well defined as well.
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The dummy variable strategy is our preferred approach for using the l1/l2 penalty. The
high variability of the regularized version near the origin creates numerical difficulties. Either
it needs a lot of smoothing, which makes it behave too much like l1, or its steepness near
the origin makes it harder numerically to avoid getting stuck in bad local minima. For the
l1− l2 penalty, the regularized approach is our preferred strategy because it is simpler and not
much regularization is required. Smoothing also makes this penalty behave more like l1 near
the origin, but a small shrinkage effect there may in fact be useful, especially for promoting
intergroup sparsity. These two main problem formulations are summarized below as Problems
1 and 2, respectively.

Problem 1.

min
x,d

FH(x, d) :=
1

2
‖Ax− b‖2 +

M∑
j=1

γjHj(xj , dj) + γ0H0(x)

such that x > 0, d > 0,
M∑
j=1

dj
εj

≤ M − r and ‖xj‖1 + dj ≥ εj, j = 1, . . . ,M.

Problem 2.

min
x≥0

FS(x) :=
1

2
‖Ax− b‖2 +

M∑
j=1

γjS
ε
j(xj) + γ0S

ε
0(x).

3. Algorithm. Both Problems 1 and 2 can be written abstractly as

(3.1) min
x∈X

F (x) :=
1

2
‖Ax− b‖2 +R(x),

where X is a convex set. Problem 2 is already of this form with X = {x ∈ R
N : x ≥ 0}.

Problem 1 is also of this form, with X = {x ∈ R
N , d ∈ R

M : x > 0, d > 0, ‖xj‖1 + dj ≥ εj,∑
j
dj
εj

≤ M − r}. Note that the objective function of Problem 1 can also be written as in

(3.1) if we redefine xj as
[
xj

dj

]
and consider an expanded vector of coefficients x ∈ R

N+M that

includes the M dummy variables, d. The data fidelity term can still be written as 1
2‖Ax− b‖2

if columns of zeros are inserted into A at the indices corresponding to the dummy variables.
In this section, we will describe algorithms and convergence analysis for solving (3.1) under
either of two sets of assumptions.

Assumption 1.
• X is a convex set.
• R(x) ∈ C2(X,R), and the eigenvalues of ∇2R(x) are bounded on X.
• F is coercive on X in the sense that for any x0 ∈ X, {x ∈ X : F (x) ≤ F (x0)} is a

bounded set. In particular, F is bounded below.
Assumption 2.
• R(x) is concave and differentiable on X.
• The same assumptions on X and F as in Assumption 1 hold.
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Problem 1 satisfies Assumption 1, and Problem 2 satisfies Assumption 2. We will first
consider the case of Assumption 1.

Our approach for solving (3.1) was originally motivated by a convex splitting technique
from [20, 61] that is a semi-implicit method for solving dx

dt = −∇F (x), x(0) = x0, when F

can be split into a sum of convex and concave functions FC(x) + FE(x), both in C2(RN ,R).
Let λmax

FE be an upper bound on the eigenvalues of ∇2FE , and let λmin
F be a lower bound on

the eigenvalues of ∇2F . Under the assumption that λmax
FE ≤ 1

2λ
min
F , it can be shown that the

update defined by

(3.2) xn+1 = xn −Δt(∇FC(xn+1) +∇FE(xn))

doesn’t increase F for any time step Δt > 0. This can be seen by using second order Taylor
expansions to derive the estimate

(3.3) F (xn+1)− F (xn) ≤
(
λmax
FE − 1

2
λmin
F − 1

Δt

)
‖xn+1 − xn‖2.

This convex splitting approach has been shown to be an efficient method that is much faster
than gradient descent for solving phase-field models such as the Cahn–Hilliard equation, which
has been used, for example, to simulate coarsening [61] and for image inpainting [5].

By the assumptions on R, we can achieve a convex-concave splitting, F = FC + FE, by
letting FC(x) = 1

2‖Ax − b‖2 + ‖x‖2C and FE(x) = R(x) − ‖x‖2C for an appropriately chosen
positive definite matrix C. We can also use the fact that FC(x) is quadratic to improve upon
the estimate in (3.3) when bounding F (xn+1)−F (xn) by a quadratic function of xn+1. Then
instead of choosing a time step and updating according to (3.2), we can dispense with the
time step interpretation altogether and choose an update that reduces the upper bound on
F (xn+1) − F (xn) as much as possible subject to the constraint. This requires minimizing a
strongly convex quadratic function over X.

Proposition 3.1. Let Assumption 1 hold. Also let λmin
R and λmax

R be lower and upper bounds,
respectively, on the eigenvalues of ∇2R(x) for x ∈ X. Then for x, y ∈ X and for any matrix
C,

F (y)− F (x) ≤ (y − x)T
((

λmax
R − 1

2
λmin
R

)
I− C

)
(y − x)(3.4)

+ (y − x)T
(
1

2
ATA+ C

)
(y − x) + (y − x)T∇F (x).

Proof. The estimate follows from combining several second order Taylor expansions of F
and R with our assumptions. First, expanding F about y and using h = y − x to simplify
notation, we get that

F (x) = F (y)− hT∇F (y) +
1

2
hT∇2F (y − α1h)h

for some α1 ∈ (0, 1). Substituting F as defined by (3.1), we obtain

(3.5) F (y)− F (x) = hT (ATAy −AT b+∇R(y))− 1

2
hTATAh− 1

2
hT∇2R(y − α1h)h.
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Similarly, we can compute Taylor expansions of R about both x and y:

R(x) = R(y)− hT∇R(y) +
1

2
hT∇2R(y − α2h)h.

R(y) = R(x) + hT∇R(x) +
1

2
hT∇2R(x+ α3h)h.

Again, both α2 and α3 are in (0, 1). Adding these expressions implies that

hT (∇R(y)−∇R(x)) =
1

2
hT∇2R(y − α2h)h+

1

2
hT∇2R(x+ α3h)h.

From the assumption that the eigenvalues of ∇2R are bounded above by λmax
R on X,

(3.6) hT (∇R(y)−∇R(x)) ≤ λmax
R ‖h‖2.

Adding and subtracting hT∇R(x) and hTATAx to (3.5) yields

F (y)− F (x) = hTATAh+ hT (ATAx−AT b+∇R(x)) + hT (∇R(y)−∇R(x))

− 1

2
hTATAh− 1

2
hT∇2R(y − α1h)h

=
1

2
hTATAh+ hT∇F (x) + hT (∇R(y)−∇R(x))− 1

2
hT∇2R(y − α1h)h.

Using (3.6),

F (y)− F (x) ≤ 1

2
hTATAh+ hT∇F (x)− 1

2
hT∇2R(y − α1h)h+ λmax

R ‖h‖2.

The assumption that the eigenvalues of ∇2R(x) are bounded below by λmin
R on X means that

F (y)− F (x) ≤
(
λmax
R − 1

2
λmin
R

)
‖h‖2 + 1

2
hTATAh+ hT∇F (x).

Since the estimate is unchanged by adding and subtracting hTCh for any matrix C, the
inequality in (3.4) follows directly.

Corollary 3.2. Let C be symmetric positive definite, and let λmin
C denote the smallest eigen-

value of C. If λmin
C ≥ λmax

R − 1
2λ

min
R , then for x, y ∈ X,

F (y)− F (x) ≤ (y − x)T
(
1

2
ATA+ C

)
(y − x) + (y − x)T∇F (x).

A natural strategy for solving (3.1) is then to iterate

(3.7) xn+1 = argmin
x∈X

(x− xn)T
(
1

2
ATA+ Cn

)
(x− xn) + (x− xn)T∇F (xn)

for Cn chosen to guarantee a sufficient decrease in F . The method obtained by iterating (3.7)
can be viewed as an instance of scaled gradient projection [7, 6, 9], where the orthogonal
projection of xn− (ATA+2Cn)

−1∇F (xn) onto X is computed in the norm ‖ · ‖ATA+2Cn
. The
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approach of decreasing F by minimizing an upper bound coming from an estimate such as
(3.4) can be interpreted as majorization-minimization or an optimization transfer strategy of
defining and minimizing a surrogate function [41], which is done for related applications in
[30, 43]. It can also be interpreted as an example of the concave-convex procedure [54, 65], a
special case of DC programming [57].

Choosing Cn in such a way that guarantees (xn+1−xn)T ((λmax
R −1

2λ
min
R )I−Cn)(x

n+1−xn) ≤
0 may be numerically inefficient, and it also isn’t strictly necessary for the algorithm to
converge. To simplify the description of the algorithm, suppose that Cn = cnC for some
scalar cn > 0 and symmetric positive definite C. Then as cn gets larger, the method becomes
more like explicit gradient projection with small time steps. This can be slow to converge as
well as more prone to converging to bad local minima. However, the method still converges
as long as each cn is chosen so that the xn+1 update decreases F sufficiently. Therefore we
want to dynamically choose cn ≥ 0 to be as small as possible such that the xn+1 update given
by (3.7) decreases F by a sufficient amount, namely,

F (xn+1)− F (xn) ≤ σ

[
(xn+1 − xn)T

(
1

2
ATA+ Cn

)
(xn+1 − xn) + (xn+1 − xn)T∇F (xn)

]

for some σ ∈ (0, 1]. Additionally, we want to ensure that the modulus of strong convexity
of the quadratic objective in (3.7) is large enough by requiring the smallest eigenvalue of
1
2A

TA + Cn to be greater than or equal to some ρ > 0. The following is an algorithm for
solving (3.1) as well as a dynamic update scheme for Cn = cnC that is similar to Armijo line
search but designed to reduce the number of times that the solution to the quadratic problem
has to be rejected for not decreasing F sufficiently.

Algorithm 1. Scaled gradient projection for solving (3.1) under Assumption 1.

Define x0 ∈ X, c0 > 0, σ ∈ (0, 1], ε > 0, ρ > 0, ξ1 > 1, ξ2 > 1 and set n = 0.

while n = 0 or ‖xn − xn−1‖∞ > ε

y = argmin
x∈X

(x− xn)T
(
1

2
ATA+ cnC

)
(x− xn) + (x− xn)T∇F (xn)

if F (y)− F (xn) > σ

[
(y − xn)T

(
1

2
ATA+ cnC

)
(y − xn) + (y − xn)T∇F (xn)

]

cn = ξ2cn

else

xn+1 = y

cn+1 =

{
cn
ξ1

if smallest eigenvalue of cn
ξ1
C + 1

2A
TA is greater than ρ

cn otherwise

n = n+ 1
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end if

end while

It is not necessary to impose an upper bound on cn in Algorithm 1 even though we want
it to be bounded. The reason for this is because once cn ≥ λmax

R − 1
2λ

min
R , F will be sufficiently

decreased for any choice of σ ∈ (0, 1], so cn is effectively bounded by ξ2(λ
max
R − 1

2λ
min
R ).

Under Assumption 2 it is much more straightforward to derive an estimate analogous to
Proposition 3.1. Concavity of R(x) immediately implies

R(y) ≤ R(x) + (y − x)T∇R(x).

Adding to this the expression

1

2
‖Ay − b‖2 = 1

2
‖Ax− b‖2 + (y − x)T (ATAx−AT b) +

1

2
(y − x)TATA(y − x)

yields

(3.8) F (y)− F (x) ≤ (y − x)T
1

2
ATA(y − x) + (y − x)T∇F (x)

for x, y ∈ X. Moreover, the estimate still holds if we add (y − x)TC(y − x) to the right-hand
side for any positive semidefinite matrix C. We are again led to iterate (3.7) to decrease F ,
and in this case Cn need only be included to ensure that ATA+ 2Cn is positive definite. We
can let Cn = C since the dependence on n is no longer necessary. We can choose any C such
that the smallest eigenvalue of C + 1

2A
TA is greater than ρ > 0, but it is still preferable to

choose C as small as is numerically practical.

Algorithm 2. Scaled gradient projection for solving (3.1) under Assumption 2.

Define x0 ∈ X, C symmetric positive definite, and ε > 0.

while n = 0 or ‖xn − xn−1‖∞ > ε

(3.9) xn+1 = argmin
x∈X

(x− xn)T
(
1

2
ATA+ C

)
(x− xn) + (x− xn)T∇F (xn)

n = n+ 1

end while

Since the objective in (3.9) is zero at x = xn, the minimum value is less than or equal to
zero, and so F (xn+1) ≤ F (xn) by (3.8). Algorithm 2 is also equivalent to iterating

xn+1 = argmin
x∈X

1

2
‖Ax− b‖2 + ‖x‖2C + xT (∇R(xn)− 2Cxn),
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which can be seen as an application of the simplified DC algorithm from [57] to F (x) =
(12‖Ax− b‖2 + ‖x‖2C)− (−R(x) + ‖x‖2C). The DC method in [57] is more general and doesn’t
require the convex and concave functions to be differentiable.

With many connections to classical algorithms, existing convergence results can be applied
to argue that limit points of the iterates {xn} of Algorithms 2 and 1 are stationary points of
(3.1). We still choose to include a convergence analysis for clarity because our assumptions
allow us to give a simple and intuitive argument. The following analysis is for Algorithm 1
under Assumption 1. However, if we replace Cn with C and σ with 1, then it applies equally
well to Algorithm 2 under Assumption 2. We proceed by showing that the sequence {xn} is
bounded, ‖xn+1 − xn‖ → 0, and limit points of {xn} are stationary points of (3.1) satisfying
the necessary local optimality condition (2.3).

Lemma 3.3. The sequence of iterates {xn} generated by Algorithm 1 is bounded.
Proof. Since F (xn) is nonincreasing, xn ∈ {x ∈ X : F (x) ≤ F (x0)}, which is a bounded

set by assumption.
Lemma 3.4. Let {xn} be the sequence of iterates generated by Algorithm 1. Then ‖xn+1−

xn‖ → 0.
Proof. Since {F (xn)} is bounded below and nonincreasing, it converges. By construction,

xn+1 satisfies

−
[
(xn+1 − xn)T

(
1

2
ATA+ Cn

)
(xn+1 − xn) + (xn+1 − xn)T∇F (xn)

]
≤ 1

σ
(F (xn)−F (xn+1)).

By the optimality condition for (3.7),

(y − xn+1)T
(
(ATA+ 2Cn)(x

n+1 − xn) +∇F (xn)
) ≥ 0 ∀y ∈ X.

In particular, we can take y = xn, which implies

(xn+1 − xn)T (ATA+ 2Cn)(x
n+1 − xn) ≤ −(xn+1 − xn)T∇F (xn).

Thus

(xn+1 − xn)T
(
1

2
ATA+ Cn

)
(xn+1 − xn) ≤ 1

σ
(F (xn)− F (xn+1)).

Since the eigenvalues of 1
2A

TA+ Cn are bounded below by ρ > 0, we have that

ρ‖xn+1 − xn‖2 ≤ 1

σ
(F (xn)− F (xn+1)).

The result follows from noting that

lim
n→∞ ‖xn+1 − xn‖2 ≤ lim

n→∞
1

σρ
(F (xn)− F (xn+1)),

which equals 0 since {F (xn)} converges.
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Proposition 3.5. Any limit point x∗ of the sequence of iterates {xn} generated by Algo-
rithm 1 satisfies (y − x∗)T∇F (x∗) ≥ 0 for all y ∈ X, which means that x∗ is a stationary
point of (3.1).

Proof. Let x∗ be a limit point of {xn}. Since {xn} is bounded, such a point exists. Let
{xnk} be a subsequence that converges to x∗. Since ‖xn+1 − xn‖ → 0, we also have that
xnk+1 → x∗. Recalling the optimality condition for (3.7),

0 ≤ (y − xnk+1)T
(
(ATA+ 2Cnk

)(xnk+1 − xnk) +∇F (xnk)
)

≤ ‖y − xnk+1‖‖ATA+ 2Cnk
‖‖xnk+1 − xnk‖+ (y − xnk+1)T∇F (xnk) ∀y ∈ X.

Following [7], proceed by taking the limit along the subsequence as nk → ∞. We have that

‖y − xnk+1‖‖xnk+1 − xnk‖‖ATA+ 2Cnk
‖ → 0

since ‖xnk+1 − xnk‖ → 0 and ‖ATA+ 2Cnk
‖ is bounded. By continuity of ∇F we get that

(y − x∗)T∇F (x∗) ≥ 0 ∀y ∈ X.

Each iteration requires minimizing a strongly convex quadratic function over the set X as
defined in (3.7). Many methods can be used to solve this, and we want to choose one that is
as robust as possible to poor conditioning of 1

2A
TA + Cn. For example, gradient projection

works theoretically and even converges at a linear rate, but it can still be impractically slow. A
better choice here is to use the alternating direction method of multipliers (ADMM) [24, 25],
which alternately solves a linear system involving 1

2A
TA+Cn and projects onto the constraint

set. Applied to Problem 2, this is essentially the same as the application of split Bregman
[26] to solve an NNLS model for hyperspectral unmixing in [56]. We consider separately the
application of ADMM to Problems 1 and 2. The application to Problem 2 is simpler.

For Problem 2, (3.7) can be written as

xn+1 = argmin
x≥0

(x− xn)T
(
1

2
ATA+ Cn

)
(x− xn) + (x− xn)T∇FS(x

n).

To apply ADMM, we can first reformulate the problem as

(3.10) min
u,v

g≥0(v)+(u−xn)T
(
1

2
ATA+ Cn

)
(u−xn)+(u−xn)T∇FS(x

n) such that u = v,

where g is an indicator function for the constraint defined by

g≥0(v) =

{
0, v ≥ 0,

∞, otherwise.

Introduce a Lagrange multiplier p, and define a Lagrangian

(3.11) L(u, v, p) = g≥0(v)+(u−xn)T
(
1

2
ATA+ Cn

)
(u−xn)+(u−xn)T∇FS(x

n)+pT (u−v)
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and augmented Lagrangian

Lδ(u, v, p) = L(u, v, p) +
δ

2
‖u− v‖2,

where δ > 0. ADMM finds a saddle point

L(u∗, v∗, p) ≤ L(u∗, v∗, p∗) ≤ L(u, v, p∗) ∀u, v, p

by alternately minimizing Lδ with respect to u, minimizing with respect to v, and updating
the dual variable p. Having found a saddle point of L, (u∗, v∗) will be a solution to (3.10)
and we can take v∗ to be the solution to (3.7). The explicit ADMM iterations are described
in Algorithm 3. Here Π≥0 denotes the orthogonal projection onto the nonnegative orthant.

Algorithm 3. ADMM for solving convex subproblem for Problem 2.

Define δ > 0, v0, and p0 arbitrarily, and let k = 0.

while not converged

uk+1 = xn + (ATA+ 2Cn + δI)−1
(
δ(vk − xn)− pk −∇FS(x

n)
)

vk+1 = Π≥0

(
uk+1 +

pk

δ

)
pk+1 = pk + δ(uk+1 − vk+1)

k = k + 1

end while

For Problem 2, (3.7) can be written as

(xn+1, dn+1) = argmin
x,d

(x− xn)T
(
1

2
ATA+ Cx

n

)
(x− xn) + (d− dn)TCd

n(d− dn)

+ (x− xn)T∇xFH(xn, dn) + (d− dn)T∇dFH(xn, dn).

Here, ∇x and ∇d represent the gradients with respect to x and d, respectively. The matrix
Cn is assumed to be of the form

Cn =

[
Cx
n 0
0 Cd

n

]
,

with Cd
n a diagonal matrix. It is helpful to represent the constraints in terms of convex sets

defined by

Xεj =

{[
xj
dj

]
∈ R

mj+1 : ‖xj‖1 + dj ≥ εj, xj ≥ 0, dj ≥ 0

}
, j = 1, . . . ,M,
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Xβ =

⎧⎨
⎩d ∈ R

M :
M∑
j=1

dj
βj

≤ M − r, dj ≥ 0

⎫⎬
⎭ ,

with indicator functions gXεj
and gXβ

for these sets.
Let u and w represent x and d. Then by adding splitting variables vx = u and vd = w we

can reformulate the problem as

min
u,w,vx,vd

∑
j

gXεj
(vxj , vdj) + gXβ

(w) + (u− xn)T
(
1

2
ATA+ Cx

n

)
(u− xn) + (w − dn)TCd

n(w − dn)

+ (x− xn)T∇xFH(xn, dn) + (w − dn)T∇dFH(xn, dn) such that vx = u, vd = w.

Adding Lagrange multipliers px and pd for the linear constraints, we can define the augmented
Lagrangian

Lδ(u,w, vx, vd, px, pd) =
∑
j

gXεj
(vxj , vdj) + gXβ

(w) + (u− xn)T
(
1

2
ATA+ Cx

n

)
(u− xn)

+ (w − dn)TCd
n(w − dn) + (x− xn)T∇xFH(xn, dn) + (w − dn)T∇dFH(xn, dn)

+ pTx (u− vx) + pTd (w − vd) +
δ

2
‖u− vx‖2 + δ

2
‖w − vd‖2.

Each ADMM iteration alternately minimizes Lδ first with respect to (u,w) and then with
respect to (vx, vd) before updating the dual variables (px, pd). The explicit iterations are
described in Algorithm 4.

Algorithm 4. ADMM for solving convex subproblem for Problem 1.

Define δ > 0, v0x, v
0
d, p

0
x, and p0d arbitrarily, and let k = 0.

Define the weights β in the projection ΠXβ
by βj = (εj

√
(2Cd

n + δI)j,j)
−1, j = 1, . . . ,M .

while not converged

uk+1 = xn + (ATA+ 2Cx
n + δI)−1

(
δ(vkx − xn)− pkx −∇xFH(xn, dn)

)
wk+1 = (2Cd

n + δI)−
1
2ΠXβ

(
(2Cd

n + δI)−
1
2 (δvkd − pkd −∇dFH(xn, dn) + 2Cd

n)
)

[
vxj
vdj

]k+1

= ΠXεj

⎛
⎝
⎡
⎣uk+1

j +
pxk

j

δ

wk+1
j +

pkdj
δ

⎤
⎦
⎞
⎠ , j = 1, . . . ,M

pk+1
x = pkx + δ(uk+1 − vk+1

x )

pk+1
d = pkd + δ(wk+1 − vk+1

d )

k = k + 1

end while
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We stop iterating and let xn+1 = vx and dn+1 = vd once the relative errors of the primal
and dual variables are sufficiently small. The projections ΠXβ

and ΠXεj
can be efficiently

computed by combining projections onto the nonnegative orthant and projections onto the
appropriate simplices. These can in principle be computed in linear time [10], although we
use a method that is simpler to implement and is still only O(n log n) in the dimension of the
vector being projected.

Since (3.7) is a standard quadratic program, a huge variety of other methods besides
ADMM could also be applied. Variants of Newton’s method on a bound-constrained Karush–
Kuhn–Tucker system might work well if we find that we need to solve the convex subproblems
to very high accuracy. For the above applications of ADMM to be practical, the linear system
involving (ATA+ 2Cn + δI) should not be too difficult to solve, and δ should be well chosen.
It may sometimes be helpful to use the Woodbury formula, c(ATA + cI)−1 = I − AT (cI +
AAT )−1A, which means that we can choose to work with ATA or AAT , whichever is smaller.
Additionally, the linear systems could be approximately solved by iterative methods such as
preconditioned conjugate gradient. It may also be worthwhile to consider primal dual methods
that only require matrix multiplications [14, 19]. The simplest alternative might be to apply
gradient projection directly to (3.1). This can be thought of as applying the DC method to a
different convex-concave splitting of F , namely, F (x) = (‖x‖2C)− (‖x‖2C − 1

2‖Ax− b‖2 −R(x))
for sufficiently large C [58], but gradient projection may be too inefficient when A is ill-
conditioned.

4. Applications. In this section we introduce four specific applications related to DOAS
analysis and hyperspectral unmixing. We show how to model these problems in the form of
(3.1) so that the algorithms from section 3 can be applied.

4.1. DOAS analysis. The goal of DOAS is to estimate the concentrations of gases in a
mixture by measuring over a range of wavelengths the reduction in the intensity of light shined
through it. A thorough summary of the procedure and analysis can be found in [50].

Beer’s law can be used to estimate the attenuation of light intensity due to absorption. As-
suming that the average gas concentration c is not too large, Beer’s law relates the transmitted
intensity I(λ) to the initial intensity I0(λ) by

(4.1) I(λ) = I0(λ) exp
−σ(λ)cL,

where λ is wavelength, σ(λ) is the characteristic absorption spectra for the absorbing gas, and
L is the light path length.

If the density of the absorbing gas is not constant, we should instead integrate over the

light path, replacing exp−σ(λ)cL by exp−σ(λ)
∫ L
0 c(l)dl. For simplicity, we will assume that the

concentration is approximately constant. We will also denote the product of concentration
and path length, cL, by a.

When multiple absorbing gases are present, aσ(λ) can be replaced by a linear combination
of the characteristic absorption spectra of the gases, and Beer’s law can be written as

I(λ) = I0(λ) exp
−∑

j ajσj(λ).

Additionally taking into account the reduction of light intensity due to scattering, com-
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bined into a single term ε(λ), Beer’s law becomes

I(λ) = I0(λ) exp
−∑

j ajσj(λ)−ε(λ).

The key idea behind DOAS is that it is not necessary to explicitly model effects such as
scattering, as long as they vary smoothly enough with wavelength to be removed by high pass
filtering that, loosely speaking, removes the broad structures and keeps the narrow structures.
We will assume that ε(λ) is smooth. Additionally, we can assume that I0(λ), if not known,
is also smooth. The absorption spectra σj(λ) can be considered to be a sum of a broad part
(smooth) and a narrow part, σj = σbroad

j + σnarrow
j . Since σnarrow

j represents the only narrow
structure in the entire model, the main idea is to isolate it by taking the log of the intensity and
applying high pass filtering or any other procedure, such as polynomial fitting, that subtracts
a smooth background from the data. The given reference spectra should already have had
their broad parts subtracted, but it may not have been done consistently, so we will combine
σbroad
j and ε(λ) into a single term B(λ). We will also denote the given reference spectra by yj,

which again are already assumed to be approximately high pass filtered versions of the true
absorption spectra σj . With these notational changes, Beer’s law becomes

(4.2) I(λ) = I0(λ) exp
−∑

j ajyj(λ)−B(λ).

In practice, measurement errors must also be modeled. We therefore consider multiplying
the right-hand side of (4.2) by s(λ), representing wavelength-dependent sensitivity. Assuming
that s(λ) ≈ 1 and varies smoothly with λ, we can absorb it into B(λ). Measurements may
also be corrupted by convolution with an instrument function h(λ), but for simplicity we will
assume that this effect is negligible and not include convolution with h in the model. Let
J(λ) = − ln(I(λ)). This is what we will consider to be the given data. By taking the log, the
previous model simplifies to

J(λ) = − ln(I0(λ)) +
∑
j

ajyj(λ) +B(λ) + η(λ),

where η(λ) represents the log of multiplicative noise, which we will model as being approxi-
mately white Gaussian noise.

Since I0(λ) is assumed to be smooth, it can also be absorbed into the B(λ) component,
yielding the data model

(4.3) J(λ) =
∑
j

ajyj(λ) +B(λ) + η(λ).

4.1.1. DOAS analysis with wavelength misalignment. A challenging complication in
practice is wavelength misalignment; i.e., the nominal wavelengths in the measurement J(λ)
may not correspond exactly to those in the basis yj(λ). We must allow for small, often
approximately linear deformations vj(λ) so that yj(λ + vj(λ)) are all aligned with the data
J(λ). Taking into account wavelength misalignment, the data model becomes

(4.4) J(λ) =
∑
j

ajyj(λ+ vj(λ)) +B(λ) + η(λ).
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To first focus on the alignment aspect of this problem, assume that B(λ) is negligible,
having somehow been consistently removed from the data and references by high pass filtering
or polynomial subtraction. Then, given the data J(λ) and reference spectra {yj(λ)}, we want
to estimate the fitting coefficients {aj} and the deformations {vj(λ)} from the linear model,

(4.5) J(λ) =

M∑
j=1

ajyj
(
λ+ vj(λ)

)
+ η(λ),

where M is the total number of gases to be considered.
Inspired by the idea of using a set of modified bases for image deconvolution [44], we

construct a dictionary by deforming each yj with a set of possible deformations. Specifically,
since the deformations can be well approximated by linear functions, i.e., vj(λ) = pjλ + qj,
we enumerate all the possible deformations by choosing pj, qj from two predetermined sets
{P1, . . . , PK}, {Q1, . . . , QL}. Let Aj be a matrix whose columns are deformations of the jth
reference yj(λ), i.e., yj(λ+ Pkλ+Ql) for k = 1, . . . ,K and l = 1, . . . , L. Then we can rewrite
the model (4.5) in terms of a matrix-vector form,

(4.6) J = [A1, . . . , AM ]

⎡
⎢⎣

x1
...

xM

⎤
⎥⎦+ η,

where xj ∈ R
KL and J ∈ R

W .
We propose the following minimization model:

(4.7)
argminxj

1
2

∥∥∥∥∥∥∥J − [A1, . . . , AM ]

⎡
⎢⎣

x1
...

xM

⎤
⎥⎦
∥∥∥∥∥∥∥
2

such that xj � 0, ‖xj‖0 � 1, j = 1, . . . ,M.

The second constraint in (4.7) is to force each xj to have at most one nonzero element.
Having ‖xj‖0 = 1 indicates the existence of the gas with a spectrum yj. Its nonzero index
corresponds to the selected deformation, and its magnitude corresponds to the concentration
of the gas. This l0 constraint makes the problem NP-hard. A direct approach is the penalty
decomposition method proposed in [45], which we will compare to in section 5. Our approach
is to replace the l0 constraint on each group with intrasparsity penalties defined by Hj in
(2.4) or Sε

j in (2.8), putting the problem in the form of Problem 1 or 2. The intrasparsity
parameters γj should be chosen large enough to enforce 1-sparsity within groups, and in the
absence of any intergroup sparsity assumptions we can set γ0 = 0.

4.1.2. DOAS with background model. To incorporate the background term from (4.4),
we will add B ∈ R

W as an additional unknown and also add a quadratic penalty α
2 ‖QB‖2 to

penalize a lack of smoothness of B. This leads to the model

min
x∈X,B

1

2
‖Ax+B − J‖2 + α

2
‖QB‖2 +R(x),
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Figure 4. Functions used to define background penalty.

where R includes our choice of intrasparsity penalties on x. This can be rewritten as

(4.8) min
x∈X,B

1

2

∥∥∥∥
[
A I
0

√
αQ

] [
x
B

]
−
[
J
0

]∥∥∥∥
2

+R(x).

This model has the general form of (3.1) with the two-by-two block matrix interpreted as A

and
[
J
0

]
interpreted as b. Moreover, we can concatenate B and the M groups xj by considering

B to be group xM+1 and setting γM+1 = 0 so that no sparsity penalty acts on the background
component. In this way, we see that the algorithms presented in section 3 can be directly
applied to (4.8).

It remains to define the matrix Q used in the penalty to enforce smoothness of the es-
timated background. A possible strategy is to work with the discrete Fourier transform or
discrete cosine transform of B and penalize high frequency coefficients. Although B should
be smooth, it is unlikely to satisfy Neumann or periodic boundary conditions, so based on an
idea in [52], we will work with B minus the linear function that interpolates its endpoints. Let
L ∈ R

W×W be the matrix representation of the linear operator that takes the difference of B
and its linear interpolant. Since LB satisfies zero boundary conditions and its odd periodic
extension should be smooth, its discrete sine transform (DST) coefficients should rapidly de-
cay. So we can penalize the high frequency DST coefficients of LB to encourage smoothness of
B. Let Γ denote the DST, and let WB be a diagonal matrix of positive weights that are larger
for higher frequencies. An effective choice is diag(WB)i = i2, since the index i = 0, . . . ,W − 1
is proportional to frequency. We then define Q = WBΓL in (4.8) and can adjust the strength
of this smoothing penalty by changing the single parameter α > 0. Figure 4 shows the weights
WB and the result LB of subtracting from B the line interpolating its endpoints.

4.2. Hyperspectral image analysis. Hyperspectral images record high resolution spectral
information at each pixel of an image. This large amount of spectral data makes it possible to
identify materials based on their spectral signatures. A hyperspectral image can be represented
as a matrix Y ∈ R

W×P , where P is the number of pixels and W is the number of spectral
bands.

Due to low spatial resolution or finely mixed materials, each pixel can contain multiple
different materials. The spectral data measured at each pixel, according to a linear mixing
model, is assumed to be a nonnegative linear combination of spectral signatures of pure
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materials, which are called endmembers. The list of known endmembers can be represented
as the columns of a matrix A ∈ R

W×N .
The goal of hyperspectral unmixing is to determine the abundances of different materials

at each pixel. Given Y , and if A is also known, the goal is then to determine an abundance
matrix S ∈ R

N×P with Si,j ≥ 0. Each row of S is interpretable as an image that shows the
abundance of one particular material at every pixel. Mixtures are often assumed to involve
only very few of the possible materials, so the columns of S are often additionally assumed to
be sparse.

4.2.1. Sparse hyperspectral unmixing. A simple but effective approach for hyperspectral
unmixing is NNLS, which solves

min
S≥0

‖Y −AS‖2F ,

where F denotes the Frobenius norm. Many other tools have also been used to encourage
additional sparsity of S, such as l1 minimization and variants of matching pursuit [29, 56, 35,
27]. If no spatial correlations are assumed, the unmixing problem can be solved at each pixel
independently. We can also add one of the nonconvex intersparsity penalties defined by H0

in (2.4) or Sε
0 in (2.8). The resulting problem can be written in the form

(4.9) min
xp≥0

1

2
‖Axp − bp‖2 +R(xp),

where xp is the pth column of S and bp is the pth column of Y . We can define R(xp) to equal
H0(xp) or S

ε
0(xp), putting (4.9) in the general form of (3.1).

4.2.2. Structured sparse hyperspectral unmixing. In hyperspectral unmixing applica-
tions, the dictionary of endmembers is usually not known precisely. There are many methods
for learning endmembers from a hyperspectral image such as N-FINDR [62], vertex compo-
nent analysis (VCA) [48], NMF [49], Bayesian methods [66, 13], and convex optimization
[18]. However, here we are interested in the case where we have a large library of measured
reference endmembers including multiple references for each expected material measured un-
der different conditions. The resulting dictionary A is assumed to have the group structure
[A1, . . . , AM ], where each group Aj contains different references for the same jth material.

There are several reasons that we don’t want to use the sparse unmixing methods of section
4.2.1 when A contains a large library of references defined in this way. Such a matrix A with
many nearly redundant references will likely have high coherence. This creates a challenge
for existing methods. The grouped structure of A also means that we want to enforce a
structured sparsity assumption on the columns of S. The linear combination of endmembers
at any particular pixel is assumed to involve at most one endmember from each group Aj .
Linearly combining multiple references within a group may not be physically meaningful, since
they all represent the same material. Restricting our attention to a single pixel p, we can write
the pth abundance column xp of S as ⎡

⎢⎣
x1,p
...

xM,p

⎤
⎥⎦ .
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The sparsity assumption requires each group of abundance coefficients xj,p to be at most 1-
sparse. We can enforce this by adding sufficiently large intrasparsity penalties to the objective
in (4.9) defined by Hj(xj,p) (2.4) or S

ε
j(xj,p) (2.8).

We think it may be important to use an expanded dictionary to allow different endmem-
bers within groups to be selected at different pixels, thus incorporating endmember variability
into the unmixing process. Existing methods accomplish this in different ways, such as the
piecewise convex endmember detection method in [67], which represents the spectral data
as convex combinations of endmember distributions. It is observed in [67] that real hyper-
spectral data can be better represented using several sets of endmembers. Additionally, their
better performance compared to VCA, which assumes pixel purity, on a dataset which should
satisfy the pixel purity assumption, further justifies the benefit of incorporating endmember
variability when unmixing.

If the same set of endmembers were valid at all pixels, we could attempt to enforce row
sparsity of S using, for example, the l1,∞ penalty used in [18], which would encourage the data
at all pixels to be representable as nonnegative linear combinations of the same small subset of
endmembers. Under some circumstances, this is a reasonable assumption and could be a good
approach. However, due to varying conditions, a particular reference for some material may be
good at some pixels but not at others. Although atmospheric conditions are of course unlikely
to change from pixel to pixel, there could be nonlinear mixing effects that make the same
material appear to have different spectral signatures in different locations [39]. For instance,
a nonuniform layer of dust will change the appearance of materials in different places. If this
mixing with dust is nonlinear, then the resulting hyperspectral data cannot necessarily be
well represented by the linear mixture model with a dust endmember added to the dictionary.
In this case, by considering an expanded dictionary containing reference measurements for
the materials covered by different amounts of dust, we are attempting to take into account
these nonlinear mixing effects without explicitly modeling them. At different pixels, different
references for the same materials can now be used when trying to best represent the data. We
should point out that our approach is effective when only a small number of nonlinear effects
need to be taken into account. The more spectral variability we include for each endmember,
the larger the matrix A becomes. Our method is applicable when there are relatively few
realizations of endmember variability in the data and these realizations are well represented
in the expanded dictionary.

The overall model should contain both intra- and intersparsity penalties. In addition to
the 1-sparsity assumption within groups, it is still assumed that many fewer than M materials
are present at any particular pixel. The full model can again be written as (4.9) except with
the addition of intrasparsity penalties. The overall sparsity penalties can be written as either

R(xp, dp) =

M∑
j=1

γjHj(xj,p, dj,p) + γ0H0(xp)

or

R(xp) =

M∑
j=1

γjS
εj
j (xj,p) + γ0S

ε0
0 (xp).
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5. Numerical experiments. In this section, we evaluate the effectiveness of our imple-
mentations of Problems 1 and 2 on the four applications discussed in section 4. The simplest
DOAS example with wavelength misalignment from section 4.1.1 is used to see how well the
intrasparsity assumption is satisfied compared to other methods. Two convex methods that
we compare to are NNLS (1.1) and a nonnegative constrained l1 basis pursuit model like the
template matching via l1 minimization in [28]. The l1 minimization model we use here is

(5.1) min
x≥0

‖x‖1 such that ‖Ax− b‖ ≤ τ.

We use the MATLAB function lsqnonneg, which is parameter free, to solve the NNLS model.
We use Bregman iteration [63] to solve the l1 minimization model. We also compare to direct
l0 minimization via penalty decomposition (Algorithm 5).

The penalty decomposition method [45] amounts to solving (4.7) by a series of minimiza-
tion problems with an increasing sequence {ρk}. Let x = [x1, . . . ,xM ], y = [y1, . . . ,yM ], and
iterate

(5.2)
(xk+1, yk+1) = argmin 1

2‖Ax− b‖2 + ρk
2 ‖x− y‖2 such that yj � 0, ‖yj‖0 � 1,

ρk+1 = σρk (for σ > 1).

The pseudocode of this method is given in Algorithm 5.

Algorithm 5. A penalty decomposition method for solving (4.7).

Define ρ > 0, σ > 1, εo, εi and initialize y.

while ‖x− y‖∞ > εo
i = 1;
while max{‖xi − xi−1‖∞, ‖yi − yi−1‖∞} > εi

xi = (ATA+ ρId)−1(AT b+ ρyi),
yi = 0
for j = 1, . . . ,M

Find the index of maximal xj , i.e., lj = argmaxl xj(l).
Set yj(lj) = max(xj(lj), 0).

end for

i = i+ 1;
end while

x = xi, y = yi, ρ = σρ
end while

Algorithm 5 may require a good initialization of y or a slowly increasing ρ. If the maxi-
mum magnitude locations within each group are initially incorrect, it can get stuck at a local
minimum. We consider both least squares (LS) and NNLS initializations in numerical experi-
ments. Algorithms 1 and 2 also benefit from a good initialization for the same reason. We use
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Figure 5. For each gas, the reference spectrum is plotted in red, while three deformed spectra are in blue.

a constant initialization, for which the first iteration of those methods is already quite similar
to that of NNLS.

We also test the effectiveness of Problems 1 and 2 on the other three applications discussed
in section 4. For DOAS with the included background model, we compare again to Algorithm
5. We use the sparse hyperspectral unmixing example to demonstrate the sparsifying effect of
the intersparsity penalties acting without any intrasparsity penalties. We compare to the l1
regularized unmixing model in [29] using the implementation in [56]. To illustrate the effect
of the intra- and intersparsity penalties acting together, we also apply Problems 1 and 2 to a
synthetic example of structured sparse hyperspectral unmixing. We compare the recovery of
the ground truth abundance with and without the intrasparsity penalties.

5.1. DOAS with wavelength alignment. We generate the dictionary by taking three
given reference spectra yj(λ) for the gases nitrous acid (HONO), nitrogen dioxide (NO2), and
ozone (O3) and deforming each by a set of linear functions. The resulting dictionary contains
yj(λ+Pkλ+Ql) for Pk = −1.01+0.01k (k = 1, . . . , 21), Ql = −1.1+0.1l (l = 1, . . . , 21), and
j = 1, 2, 3. Each yj ∈ R

W with W = 1024. The represented wavelengths in nanometers are
λ = 340+0.04038w, w = 0, . . . , 1023. We use odd reflections to extrapolate shifted references
at the boundary. The choice of boundary condition should have only a small effect if the
wavelength displacements are small. However, if the displacements are large, it may be a
good idea to modify the data fidelity term to select only the middle wavelengths to prevent
boundary artifacts from influencing the results.

There are a total of 441 linearly deformed references for each of the three groups. In
Figure 5, we plot the reference spectra of HONO, NO2, and O3 together with several deformed
examples.

In our experiments, we randomly select one element for each group with randommagnitude
plus additive zero mean Gaussian noise to synthesize the data term J(λ) ∈ R

W for W = 1024.
Mimicking the relative magnitudes of a real DOAS dataset [22] after normalization of the
dictionary, the random magnitudes are chosen to be at different orders with mean values of 1,
0.1, and 1.5 for HONO, NO2, and O3, respectively. We perform three experiments for which
the standard deviations of the noise are 0, .005, and .05, respectively. This synthetic data is
shown in Figure 6.

The parameters used in the numerical experiments are as follows. NNLS is parameter
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Figure 6. Synthetic DOAS data.

free. For the l1 minimization method in (5.1), τ√
W

= .001, .005, and .05 for the experiments

with noise standard deviations of 0, .005, and .05, respectively. For the direct l0 method
(Algorithm 5), the penalty parameter ρ is initially equal to .05 and increases by a factor of
σ = 1.2 every iteration. The inner and outer tolerances are set at 10−4 and 10−5, respectively.
The initialization is chosen to be either an LS solution or the result of NNLS. For Problems
1 and 2 we define εj = .05 for all three groups. In general this could be chosen roughly on
the order of the smallest nonzero coefficient expected in the jth group. Recall that these εj
are used both in the definitions of the regularized l1 − l2 penalties Sε

j in Problem 2 and in
the definitions of the dummy variable constraints in Problem 1. We set γj = .1 and γj = .05
for Problems 1 and 2, respectively, and for j = 1, 2, 3. Since there is no intersparsity penalty,
γ0 = 0. For both Algorithms 1 and 2 we set C = 10−9I. For Algorithm 1, which dynamically
updates C, we set several additional parameters σ = .1, ξ1 = 2, and ξ2 = 10. These choices
are not crucial and have more to do with the rate of convergence than the quality of the
result. For both algorithms, the outer iterations are stopped when the difference in energy is
less than 10−8, and the inner ADMM iterations are stopped when the relative errors of the
primal and dual variables are both less than 10−4.

We plot results of the different methods in blue along with the ground truth solution in
red. The experiments are shown in Figures 7–9.

5.2. DOAS with wavelength alignment and background estimation. We solve the model
(4.8) using l1/l2 and regularized l1− l2 intrasparsity penalties. These are special cases of Prob-
lems 1 and 2, respectively. Depending on which, the convex set X is either the nonnegative
orthant or a subset of it. We compare the performance to the direct l0 method (Algorithm
5) and LS. The dictionary consists of the same set of linearly deformed reference spectra for
HONO, NO2, and O3 as in section 5.1. The data J is synthetically generated by

J(λ) = .0121y1(λ) + .0011y2(λ) + .0159y3(λ) +
2

(λ− 334)4
+ η(λ),

where the references yj are drawn from columns 180, 682, and 1103 of the dictionary and
the last two terms represent a smooth background component and zero mean Gaussian noise
having standard deviation 5.5810−5. The parameter α in (4.8) is set at 10−5 for all the
experiments.
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Figure 7. Method comparisons on synthetic DOAS data without noise. Computed coefficients (blue) are
plotted on top of the ground truth (red).

The LS method for (4.8) directly solves

min
x,B

1

2

∥∥∥∥
[
A3 I
0

√
αQ

] [
x
B

]
−
[
J
0

]∥∥∥∥
2

,

where A3 has only three columns randomly chosen from the expanded dictionary A, with one
chosen from each group. Results are averaged over 1000 random selections.
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Figure 8. Method comparisons on synthetic DOAS data: σ = .005. Computed coefficients (blue) are plotted
on top of the ground truth (red).

In Algorithm 5, the penalty parameter ρ starts at 10−6 and increases by a factor of σ = 1.1
every iteration. The inner and outer tolerances are set at 10−4 and 10−6, respectively. The
coefficients are initialized to zero.

In Algorithms 1 and 2, we treat the background as a fourth group of coefficients, after the
three for each set of reference spectra. For all groups εj is set to .001. We set γj = .001 for
j = 1, 2, 3, and γ4 = 0, so no sparsity penalty is acting on the background component. We set
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Figure 9. Method comparisons on synthetic DOAS data: σ = .05. Computed coefficients (blue) are plotted
on top of the ground truth (red).

C = 10−7I for Algorithm 2 and C = 10−4I for Algorithm 1, where again we use σ = .1, ξ1 = 2,
and ξ2 = 10. We use a constant but nonzero initialization for the coefficients x. The inner
and outer iteration tolerances are the same as in section 5.1 with the inner decreased to 10−5.

Figure 10 compares how closely the results of the four methods fit the data. Plotted are
the synthetic data, the estimated background, each of the selected three linearly deformed
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Figure 10. Comparisons of how well the results of least squares, direct l0, l1/l2, and regularized l1 − l2 fit
the data.

Table 1
Comparison of estimated fitting coefficients and displacements for DOAS with background estimation.

Ground truth LS l0 l1/l2 l1 − l2
a1 (HONO coefficient) 0.01206 0.00566 0.01197 0.01203 0.01202
a2 (NO2 coefficient) 0.00112 0.00020 0.00081 0.00173 0.00173
a3 (O3 coefficient) 0.01589 0.00812 0.01884 0.01967 0.01947

v1 (HONO displacement) 0.01λ − 0.2 N/A 0.01λ − 0.2 0.01λ − 0.2 0.01λ − 0.2
v2 (NO2 displacement) −0.01λ + 0.1 N/A −0.09λ − 0.9 0λ− 0.2 0λ− 0.2
v3 (O3 displacement) 0λ + 0 N/A 0λ + 0 0λ + 0 0λ + 0

reference spectra multiplied by their estimated fitting coefficients, and, finally, the sum of the
references and background.

The computed coefficient magnitudes and displacements are compared to the ground truth
in Table 1.

The dictionary perhaps included some unrealistically large deformations of the references.
Nonetheless, the LS result shows that the coefficient magnitudes are underestimated when the
alignment is incorrect. The methods for the l0, l1/l2 and regularized l1−l2 models all produced
good and nearly equivalent results. All estimated the correct displacements of HONO and O3,
but not NO2. The estimated amounts of HONO and NO2 were correct. The amount of O3

was overestimated by all methods. This is because there was a large background component
in the O3 reference. Even with background estimation included in the model, working with
references that have been high pass filtered ahead of time should still improve accuracy.
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Figure 11. Color visualization of urban hyperspectral image and hand selected endmembers.

Although the methods for the l0, l1/l2, and regularized l1 − l2 models all yielded similar
solutions, they have different pros and cons regarding parameter selection and runtime. It is
important that ρ not increase too quickly in the direct l0 method. Otherwise it can get stuck at
a poor solution. For this DOAS example, the resulting method required about 200 iterations
and a little over 10 minutes to converge. Algorithm 1 for the l1/l2 model can sometimes waste
effort finding splitting coefficients that yield a sufficient decrease in energy. Here it required
20 outer iterations and ran in a few minutes. Algorithm 2 required 8 outer iterations and
took about a minute. Choosing γj too large can also cause the l1/l2 and l1 − l2 methods to
get stuck at bad local minima. On the other hand, choosing γj too small may result in the
group 1-sparsity condition not being satisfied, whereas it is satisfied by construction in the
direct l0 approach. Empirically, gradually increasing γj works well, but we have simply used
fixed parameters for all of our experiments.

5.3. Hyperspectral unmixing with intersparsity penalty. We use the urban hyperspectral
dataset from [2]. Each column of the data matrix Y ∈ R

187×94249 represents the spectral
signature measured at a pixel in the 307-by-307 urban image shown in Figure 11.

The data was processed to remove some wavelengths for which the data was corrupted,
resulting in a spectral resolution reduced from 210 to 187. The six endmembers forming the
columns of the dictionary A were selected by hand from pixels that appeared to be pure
materials. These are also shown in Figure 11. The columns of both A and Y were normalized
to have unit l2 norm.

It is common in hyperspectral unmixing to enforce a sum to one constraint on each column
of the abundance matrix S, whose entries can then be directly interpreted as proportions of
materials present at each pixel. For our experiments we don’t enforce this constraint, nor do
we expect it to be satisfied having assumed that the data is l2 normalized. With l2 normalized
data and endmembers, we are unmixing based on the shapes of the spectral signatures, not
their magnitudes. Another reason for this assumption is that we want to compare to l1
unmixing, which is not meaningful under a sum to one constraint but can promote sparsity
otherwise. In practice, normalizing the data is like using a weighted Frobenius norm for the
data fidelity penalty and may introduce bias if it’s not consistent with the error model, but
our focus here is on the sparsity penalties and not on the error model.
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Table 2
Fraction of nonzero abundances and sum of squares error for four unmixing models.

NNLS l1 l1/l2 l1 − l2
Fraction nonzero 0.4752 0.2683 0.2645 0.2677
Sum of squares error 1111.2 19107 1395.3 1335.6

Algorithms 1 and 2 were used to solve (4.9) with l1/l2 and regularized l1− l2 intersparsity
penalties, respectively. These algorithms were compared to NNLS and l1 minimization [56],
which solve

(5.3) min
xp≥0

1

2
‖Axp − bp‖2 + γ‖xp‖1

for each pixel p. The parameters were chosen so that the l1, l1/l2, and l1 − l2 approaches all
achieved roughly the same level of sparsity, measured as the fraction of nonzero abundances.
In particular, for l1 minimization, we set γ = .08. The NNLS case corresponds to γ = 0. For
Algorithms 1 and 2 we use a constant but nonzero initialization and set ε = .001, γ0 = .025,
and C = 10−9I. No intrasparsity penalties are used. For Algorithm 1, σ = .1, ξ1 = 2, and
ξ2 = 10, and we stop iterating when the difference in the objective is less than .1. The sparsity
and sum of squares errors achieved by the four models are tabulated in Table 2.

The l1 penalty promotes sparse solutions by trying to move coefficient vectors perpendic-
ular to the positive face of the l1 ball, shrinking the magnitudes of all elements. The l1/l2
penalty and, to some extent, l1− l2 promote sparsity by trying to move in a different direction,
tangent to the l2 ball. They do a better job of preserving the magnitudes of the abundances
while enforcing a similarly sparse solution. This is reflected in their lower sum of squares
errors.

Since the large sum of squares error for l1 minimization is mostly due to the abundances
being too small in magnitude, it doesn’t directly indicate which method is better at identifying
the support. We therefore recompute the errors after correcting the abundance magnitudes
with a debiasing step [21]. We compute the debiased pth column of the abundance matrix by
solving an NNLS problem restricted to the estimated support,

(5.4) min
xp≥0

1

2
‖Axp − bp‖2 such that supp(xp) ⊂ supp(x∗p),

where x∗p denotes the previously estimated vector of abundances. For this experiment, we
identify an index i as being in supp(x∗p) if x∗p(i) > .001, so xp(i) = 0 whenever x∗p(i) ≤ .001.
The sparsity and sum of squares errors after debiasing are shown in Table 3. The sum
of squares error for l1 minimization is significantly reduced after correcting the abundance
magnitudes, but it remains higher than for l1/l2 or l1 − l2 minimization. This indicates that
the support of the abundance matrix is better estimated by l1/l2 and l1 − l2 minimization.

The results of these unmixing algorithms (without debiasing) are also represented in Figure
12 as fraction planes, which are the rows of the abundance matrix visualized as images. They
show the spatial abundance of each endmember.

5.4. Hyperspectral unmixing with intra- and intersparsity penalties. In this section we
consider a hyperspectral unmixing example with an expanded dictionary consisting of groups



A METHOD FOR FINDING STRUCTURED SPARSE SOLUTIONS 2039

Table 3
Fraction of nonzero abundances and sum of squares error for four unmixing models after debiasing.

NNLS l1 l1/l2 l1 − l2
Fraction nonzero 0.4732 0.2657 0.2639 0.2669
Sum of squares error 1111.2 1369.0 1269.5 1257.4

NNLS l1
endmember 1

 

 

0

0.2

0.4

0.6

0.8

1
endmember 2

 

 

0

0.2

0.4

0.6

0.8

1
endmember 3

 

 

0

0.2

0.4

0.6

0.8

1

endmember 4

 

 

0

0.2

0.4

0.6

0.8

1
endmember 5

 

 

0

0.2

0.4

0.6

0.8

1
endmember 6

 

 

0

0.2

0.4

0.6

0.8

1

endmember 1

 

 

0

0.2

0.4

0.6

0.8

1
endmember 2

 

 

0

0.2

0.4

0.6

0.8

1
endmember 3

 

 

0

0.2

0.4

0.6

0.8

1

endmember 4

 

 

0

0.2

0.4

0.6

0.8

1
endmember 5

 

 

0

0.2

0.4

0.6

0.8

1
endmember 6

 

 

0

0.2

0.4

0.6

0.8

1

l1/l2 l1 − l2
endmember 1

 

 

0

0.2

0.4

0.6

0.8

1
endmember 2

 

 

0

0.2

0.4

0.6

0.8

1
endmember 3

 

 

0

0.2

0.4

0.6

0.8

1

endmember 4

 

 

0

0.2

0.4

0.6

0.8

1
endmember 5

 

 

0

0.2

0.4

0.6

0.8

1
endmember 6

 

 

0

0.2

0.4

0.6

0.8

1

endmember 1

 

 

0

0.2

0.4

0.6

0.8

1
endmember 2

 

 

0

0.2

0.4

0.6

0.8

1
endmember 3

 

 

0

0.2

0.4

0.6

0.8

1

endmember 4

 

 

0

0.2

0.4

0.6

0.8

1
endmember 5

 

 

0

0.2

0.4

0.6

0.8

1
endmember 6

 

 

0

0.2

0.4

0.6

0.8

1

Figure 12. Estimated fraction planes for urban data using hand selected endmembers.

of references, each group consisting of candidate endmembers for a particular material. The
data we use for this example is from [1] and consists of a 204-band hyperspectral image of
crops, soils, and vineyards in Salinas Valley, California. Using a given ground truth labeling,
we extract just the data corresponding to romaine lettuce at 4, 5, 6, and 7 weeks, respectively.
For each of these four groups, we remove outliers and then randomly extract 100 representative
signatures. These and their normalized averages are plotted in Figure 13 and give a sense of
the variability of the signatures corresponding to a particular label.

By concatenating the four groups of 100 signatures we construct a dictionary Agroup ∈
R
204×400. We also construct two smaller dictionaries Amean and Abad ∈ R

204×4. The columns
of Amean are the average spectral signatures shown in red in Figure 13, and the columns of
Abad are the candidate signatures farthest from the average shown in green in Figure 13.

Synthetic data b ∈ R
204×1560 was constructed by randomly constructing a ground truth

abundance matrix S̄group ∈ R
400×1560 with 1000 1-sparse columns, 500 2-sparse columns, 50

3-sparse columns, and 10 4-sparse columns, with each group of 100 coefficients being at most
1-sparse. Zero mean Gaussian noise η was also added so that

b = AgroupS̄group + η.
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Figure 13. Candidate endmembers (blue) for romaine lettuce at 4, 5, 6, and 7 weeks from Salinas dataset,
normalized averages (red), and candidate endmembers farthest from the average (green).

Each k-sparse abundance column was constructed by first randomly choosing k groups, then
randomly choosing one element within each of the selected groups and assigning a random
magnitude in [0, 1]. The generated columns were then rescaled so that the columns of the
noise-free data matrix would have unit l2 norm.

Define T ∈ R
4×400 to be a block diagonal matrix with 1-by-100 row vectors of 1’s as the

blocks:

T =

⎡
⎢⎢⎣
1 · · · 1

1 · · · 1
1 · · · 1

1 · · · 1

⎤
⎥⎥⎦ .

Applying T to S̄group lets us construct a ground truth group abundance matrix S̄ ∈ R
4×1560

by summing the abundances within groups. For comparison purposes, this will allow us to
apply different unmixing methods using the different sized dictionaries Amean, Agroup, and
Abad to compute Smean, TSgroup, and Sbad, respectively, which can then be compared to S̄.

We compare six different unmixing methods using the three dictionaries:
1. NNLS (1.1) using Amean, Agroup, and Abad;
2. l1 (5.3) using Amean, Agroup, and Abad;
3. l1/l2 (Problem 1) intersparsity only, using Amean and Abad;
4. l1 − l2 (Problem 2) intersparsity only, using Amean and Abad;
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5. l1/l2 intra- and intersparsity, using Agroup;
6. l1 − l2 intra- and intersparsity, using Agroup.

For l1 unmixing, we set γ = .1 for Amean and Abad and γ = .001 for Agroup. In all applications
of Algorithms 1 and 2, we use a constant but nonzero initialization and set εj = .01, γ0 = .01,
and C = 10−9I. For the applications with intrasparsity penalties, γj = .0001 for j = 1, 2, 3, 4.
Otherwise γj = 0. For Algorithm 1, we again use σ = .1, ξ1 = 2, and ξ2 = 10. We stop iterating
when the difference in the objective is less than .001. We repeat these experiments for three
different noise levels with standard deviations of .0025, .005, and .01. The corresponding
signal-to-noise ratios are 28.94, 22.93, and 16.91, respectively.

We compare the computed group abundances to the ground truth S̄ in two ways in Table
4. Measuring the l0 norm of the difference of abundance matrices indicates how accurately
the sparsity pattern was estimated. For each material, we also compute the absolute value of
each group abundance error averaged over all measurements. For visualization, we plot the
computed number of nonzero entries versus the ground truth for each column of the group
abundances in Figure 14.

We see in Table 4 and Figure 14 that NNLS did a poor job of finding sparse solutions
although average coefficient errors were low. On the other hand, l1 minimization did a good
job of finding a sparse solution, but coefficient errors were higher because the abundance
magnitudes were underestimated. The l1/l2 and l1 − l2 minimization approaches were bet-
ter at encouraging sparse solutions while maintaining small average errors in the abundance
coefficients.

For this example, the average signatures used in Amean turned out to be good choices
for the endmembers, and we didn’t see any improvement in the estimated group abundances
by considering the expanded dictionary Agroup. However, compared to using the four poorly
selected endmember candidates in Abad, we got better results with the expanded dictionary.
In the expanded dictionary case, which resulted in an underdetermined dictionary matrix,
the abundances Sgroup directly computed by l1 minimization were much less sparse than those
computed by l1/l2 and l1− l2 minimization. This is because l1/l2 and l1− l2 minimization were
able to enforce 1-sparsity within coefficient groups, but l1 was not. If the group 1-sparsity
requirement is important for the model to be accurate, then this is an advantage of using the
l1/l2 and l1 − l2 penalties. Here, this difference in sparsity turned out to not have much effect
on the group abundances TSgroup, which were computed by summing the abundances within
each group. This may not hold in situations where the endmember variability is more non-
linear. For example, if the endmember variability had to do with misalignment, as with the
earlier DOAS example, then linear combinations of misaligned signatures would not produce
a good reference signature.

6. Conclusions and future work. We proposed a method for linear unmixing problems
where the dictionary contains multiple references for each material and we want to collabo-
ratively choose the best one for each material present. More generally, we showed how to use
l1/l2 and l1 − l2 penalties to obtain structured sparse solutions to nonnegative least squares
problems. These were reformulated as constrained minimization problems with differentiable
but nonconvex objectives. A scaled gradient projection method based on difference of convex
programming was proposed. This approach requires solving a sequence of strongly quadratic
programs, and we showed how these can be efficiently solved using the alternating direction
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Table 4
Errors between computed group abundance and ground truth S̄, where Emean

j = 1
P

∑P
p=1 |Smean(j, p) −

S̄(j, p)|, Egroup
j = 1

P

∑P
p=1 |(TSgroup)(j, p)− S̄(j, p)|, and Ebad

j = 1
P

∑P
p=1 |Sbad(j, p)− S̄(j, p)|.

SNR = 28.94

NNLS l1 l1/l2 l1 − l2

‖Smean − S̄‖0 1488 934 694 776
Emean

1 0.0667 0.1475 0.0468 0.0440
Emean

2 0.0858 0.1580 0.0580 0.0666
Emean

3 0.0607 0.1485 0.0704 0.0930
Emean

4 0.0365 0.1235 0.0418 0.0506

‖TSgroup − S̄‖0 1763 819 693 791
Egroup

1 0.0391 0.1360 0.0530 0.0463
Egroup

2 0.0604 0.1401 0.0620 0.0720
Egroup

3 0.0642 0.1496 0.0773 0.1046
Egroup

4 0.0385 0.1197 0.0469 0.0545

‖Sbad − S̄‖0 2182 1078 957 1048

Ebad
1 0.0722 0.1458 0.0490 0.0488

Ebad
2 0.1301 0.1432 0.0658 0.0675

Ebad
3 0.1143 0.1580 0.0776 0.1077

Ebad
4 0.0636 0.1476 0.0551 0.0740

SNR = 22.93

NNLS l1 l1/l2 l1 − l2

‖Smean − S̄‖0 1569 907 770 799
Emean

1 0.0858 0.1526 0.0714 0.0748
Emean

2 0.1044 0.1563 0.0851 0.0884
Emean

3 0.0838 0.1404 0.0764 0.0801
Emean

4 0.0484 0.1169 0.0421 0.0423

‖TSgroup − S̄‖0 1764 822 878 831
Egroup

1 0.0666 0.1427 0.0814 0.0676
Egroup

2 0.0943 0.1389 0.0937 0.0813
Egroup

3 0.0988 0.1413 0.1059 0.0997
Egroup

4 0.0589 0.1118 0.0610 0.0526

‖Sbad − S̄‖0 2126 1078 1072 1029

Ebad
1 0.0889 0.1531 0.0707 0.0671

Ebad
2 0.1415 0.1431 0.0899 0.0774

Ebad
3 0.1305 0.1523 0.0871 0.0922

Ebad
4 0.0721 0.1416 0.0568 0.0648

SNR = 16.91

NNLS l1 l1/l2 l1 − l2

‖Smean − S̄‖0 1656 1016 1140 1041
Emean

1 0.1133 0.1583 0.1124 0.1146
Emean

2 0.1339 0.1633 0.1281 0.1229
Emean

3 0.1175 0.1444 0.1197 0.0996
Emean

4 0.0709 0.1248 0.0670 0.0547

‖TSgroup − S̄‖0 1839 974 1140 1092
Egroup

1 0.1038 0.1529 0.1122 0.1018
Egroup

2 0.1353 0.1529 0.1352 0.1144
Egroup

3 0.1314 0.1442 0.1320 0.1112
Egroup

4 0.0819 0.1197 0.0766 0.0640

‖Sbad − S̄‖0 2064 1148 1342 1209
Ebad

1 0.1144 0.1557 0.1005 0.0997

Ebad
2 0.1589 0.1529 0.1323 0.1137

Ebad
3 0.1479 0.1587 0.1221 0.1060

Ebad
4 0.0886 0.1512 0.0758 0.0711
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Figure 14. Estimated number of nonzero entries in each abundance column (blue) and ground truth (red)
for the medium noise case, SNR = 22.93. Row 1: Smean. Row 2: TSgroup. Row 3: Sbad.

method of multipliers. Moreover, few iterations were required in practice, between 4 and 20
for all of the numerical examples presented in this paper. Some convergence analysis was also
presented to show that limit points of the iterates are stationary points. Numerical results
for unmixing problems in differential optical absorption spectroscopy and hyperspectral im-
age analysis show that our difference of convex approach using l1/l2 and l1 − l2 penalties is
capable of promoting different levels of sparsity on possibly overlapping subsets of the fitting
or abundance coefficients.

In future work we would like to test this method on more general multiple choice quadratic
knapsack problems, which are related to the applications presented here that focused on find-
ing solutions that were at most 1-sparse within specified groups. It would be interesting to
see how this variational approach performs relative to combinatorial optimization strategies
for similar problems. We are also interested in exploring alternative sparsity penalties that
can be adapted to the dataset. When promoting 1-sparse solutions, the experiments in this
paper used fixed sparsity parameters that were simply chosen to be sufficiently large. We are
interested in justifying the technique of gradually increasing this parameter while iterating,
which empirically seems better able to avoid bad local minima. The applications presented
here all involved uncertainty in the dictionary, which was expanded to include multiple can-
didate references for each material. If a priori assumptions are available about the relative
likelihood of these candidates, we would like to incorporate this into the model.
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