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ABSTRACT
In this paper, we present a unifying framework for retinex that is able to reproduce many of the existing retinex imple-
mentations within a single model. The fundamental assumption, as shared with many retinex models, is that the observed
image is a multiplication between the illumination and the true underlying reflectance of the object. Starting from Morel’s
2010 PDE model for retinex, where illumination is supposed to vary smoothly and where the reflectance is thus recovered
from a hard-thresholded Laplacian of the observed image in a Poisson equation, we define our retinex model in similar but
more general two steps.

First, look for a filtered gradient that is the solution of an optimization problem consisting of two terms: The first term
is a sparsity prior of the reflectance, such as the TV or H1 norm, while the second term is a quadratic fidelity prior of
the reflectance gradient with respect to the observed image gradients. In a second step, since this filtered gradient almost
certainly is not a consistent image gradient, we then look for a reflectance whose actual gradient comes close.

Beyond unifying existing models, we are able to derive entirely novel retinex formulations by using more interesting
non-local versions for the sparsity and fidelity prior. Hence we define within a single framework new retinex instances
particularly suited for texture-preserving shadow removal, cartoon-texture decomposition, color and hyperspectral image
enhancement.

Keywords: Retinex, non-local operators, reflectance, illumination normalization, contrast enhancement, dynamic range
compression, shadow detection, shadow removal, cartoon-texture decomposition

1. INTRODUCTION
The relative robustness of the human visual system with respect to challenging illumination is remarkable. In many
modern imaging and vision applications a comparable invariance to the conditions of illumination would be very desirable.
Popular examples are the white balance correction in consumer photo cameras or contrast enhancement in high dynamic
range imaging. More challenging examples involve illumination invariance in recognition and remote sensing tasks.

Retinex is a theory on the human visual perception, introduced and pioneered mainly by Edwin Land.1–3 It was an
attempt to explain how the human visual system, as a combination of processes supposedly taking place both in the retina
and the cortex, is capable of adaptively coping with illumination that varies spatially both in intensity and color.

The fundamental observation is the insensitivity of human visual perception with respect to a slowly varying illumina-
tion on a Mondrian-like scene. Indeed, the underlying true reflectance ratio can be recovered by multiplying all intensity
ratios at the sharp patch transitions along a path connecting these two patches. Land and McCann have built electronic
circuits that reproduce this behavior.2

Today, in image processing, the retinex theory has been implemented in various different flavors, each particularly
adapted to specific tasks, including color balancing, contrast enhancement, dynamic range compression and shadow re-
moval in consumer electronics and imaging, bias field correction in medical imaging or even illumination normalization,
e.g. for face detection. Depending on the application, the various retinex assumptions are given different importance and
resulting implementations vary significantly.
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Here, we start by providing a short review of some of the many retinex flavors that currently exist, in section 2. We
will then in section 3 recall some definitions and notions from non-local differential operators, and introduce a few new
concepts. Based on these non-local differential operators both kernel-based and center-surround retinex can be expressed
as variational models. From there, we will propose a unifying, non-local framework for retinex in section 4. Our proposed
model takes the shape of a generalized fidelity to thresholded-gradient problem, and we will show how this can reproduce
results of other state-of-the-art retinex models in section 5. Beyond simply reproducing existing results, we will explore
some of the new degrees of freedom of the proposed unifying framework, as shown in section 6. We will discuss and
conclude our framework in section 7.

2. A SHORT REVIEW OF RETINEX IMPLEMENTATIONS
2.1 Original Retinex algorithm
Land formalized the reflectance ratios, by summing thresholded log-ratios over continuous paths between two pixels.4 He
defines the relative reflectance of pixel i to j as:

R(i, j) = ∑
k

δτ log
Ik+1

Ik
(1)

where δτ denotes hard thresholding. The average relative reflectance at i is then estimated as

R̄(i) = E j [R(i, j)] =
1
N

N

∑
j=1

R(i, j) (2)

However, “the ultimate purpose is to describe any area by relating its reflectance to a single, standard, high reflectance
somewhere in the Mondrian or to several equally high reflectances”.2 Instead of localizing the highest reflectance in a
preprocessing step, which seemed biologically unplausible, it was proposed to estimate the maximum reflectance directly
while performing the sequential sum along each path. Indeed, whenever the intermediate sequential sum from j up to Ik+1,
i.e. the relative reflectance of Ik+1 to j, becomes positive—equivalent to a sequential product bigger than 1—, one has
reached a new maximum reflectance, and the sequential sum is reset as of there, with Ik+1 as new reference. Due to the
presence of the thresholding operator, the final reference pixel does not necessarily coincide with the brightest pixel along
the path. For a mathematical definition and analysis of this reset mechanism, see Ref. 5.

There has been quite some debate in literature about the respective role and importance of both threshold and reset
in the Retinex, including McCann himself.6 The only consensus seems to be that there is no consensus, and we do not
wish to enter this debate here. The criterion will nonetheless serve us dividing the many retinex implementations in two
broad classes: threshold-based versus reset-based. A third class of implementations is based on an alternative technique
proposed by Land as well, which determines lightness as ratio of the local intensity compared to the average intensity of its
immediate (circular) surroundings, without neither thresholding, nor reset.7 A forth class, finally, extracts the reflectance
and illumination information variationally, by optimizing different energy functionals.

2.2 Threshold-based Retinex implementations (PDE)
In 1974, Horn proposed a mathematical alternative to the Retinex algorithm that differs substantially in form.8 He essen-
tially stripped the Retinex algorithm down to a smoothness prior on the illumination field, and thus to a thresholding on
intensity derivatives. He poses the problem of recovering the underlying reflectance R, which multiplied by the illumination
B resulted in the observed intensity I:

I(x,y) = B(x,y)R(x,y) (3)
i(x,y) = b(x,y)+ r(x,y) (4)

where i = log(I) etc. Since the illumination b is supposed to be varying smoothly, the spatial derivatives of the observed
intensity are mostly due to edges in the reflectance r. However, he realized that first order derivatives are directional in the
two-dimensional case of images, and that the lowest order isotropic derivatives are found in the scalar Laplacian operator:



∆b will be finite everywhere, while ∆r will be zero except at each edge separating regions.8 Therefore, discarding the finite
parts of the observed intensity Laplacian is supposed to yield the Laplacian of the reflectance (Poisson equation):

∆r = δτ∆i (5)

A tight mathematical connection between Land’s and Horn’s computations, on the basis of Green’s formula, has been
shown in work by Hurlbert.9 A fully discrete alternative to Horn’s convolution and inversion scheme was proposed by
Marr.10 Very recently, Horn’s model has been strongly backed up by a much more recent paper by Morel,11 where
the authors show a very tight connection between Horn’s Laplacian thresholding and Land’s original, resetless Retinex
algorithm. Indeed, “if the Retinex paths are interpreted as symmetric random walks, then Retinex is equivalent to a
Neumann problem for a linear Poisson equation”.11 The main difference between Horn and Morel concerns the argument
of the hard thresholding operator: while Horn thresholds the scalar Laplacian, Morel thresholds the components of the
gradient prior to computing their divergence. De facto, Morel thus effectively solves an L2-gradient fitting problem:

r̂ = argmin
r

{
‖∇r−δτ∇i‖2

2
}

(6)

We refer to this model as L2-retinex. Note that reconstruction from thresholded gradient has earlier been proposed by
Blake.12–14 More recently, the L1-equivalent thresholded gradient-fidelity Retinex has been proposed: The L1-retinex
minimizes the isotropic L1-distance.15

2.3 Reset-based Retinex implementations (Random walk)
Moving away from thresholding and relying purely on the reset mechanism, Frankle and McCann have patented their
Retinex algorithm.16 The Frankle-McCann algorithm replaces sequential products along paths by pairwise pixel ratios
sampled along discrete spirals. Long-distance interactions are computed first, then the sampling progressively approaches
the center pixel while decreasing the spacing. At each step, the lightness estimate is updated with a ratio-product-reset-
average operation.17 More recent variants of the algorithm mainly involve multiresolution image pyramids,17, 18 different
sampling patterns,19, 20 or ratio modifiers.21 Provenzi et al. replace the path-based sampling pattern by a repeated sampling
through random sprays.22 Indeed, if the threshold is removed from the Retinex formulation, then the reset reduces the
relative reflectance, computed using a specific path, to the ratio of central pixel and brightest pixel along that same path.5

Therefore, many paths become redundant, and the maxima can be sampled more efficiently.

Beyond, the (white-patch) random spray retinex was combined with a (gray-world) model used for automatic color
equalization (ACE).23, 24 Eventually, the random spray sampling was replaced by a kernel, representing the sampling
density of the random spray in the limit case:25, 26

R(i) = ∑
j:I( j)≥I(i)

w(i, j) f
(

I(i)
I( j)

)
+ ∑

j:I( j)<I(i)
w(i, j) (7)

where w(i, j) is the kernel, representing the probability density of picking a pixel j in the neighborhood of i.25 Note that,
here again, we find the ratio modifier f previously introduced by Sobol.21

2.4 Center-surround Retinex implementations
A simple alternative to threshold/reset based Retinex algorithms was proposed by Land based on findings of lateral inhi-
bition.7 The alternative consists in determining the local lightness (reflectance) as the ratio between local intensity and an
average of its close surroundings. The fundamental idea is again that the low-frequency components are due to illumination,
while the high-frequency details are features in the reflectance.

Only 10 years later, the idea was picked up and formulated as single- and multi-scale center-surround Retinex.27–29

The single-scale retinex is given by
R(i) = log I(i)− log [F ∗ I] (i) (8)

where F is a Gaussian kernel, and multi-scale retinex is simply the combination of different single-scale Retineces. Chang-
ing the order of log and Gaussian convolution in the single scale retinex amounts to homomorphic filtering

R(i) = i(i)− [F ∗ i] (i) (9)



which in turn can be identified as a special case of (resetless) kernel-Retinex, with the kernel w(i, j)≡ F and ratio modifier
f ≡ log:

R(i) = ∑
j

w(i, j) log
(

I(i)
I( j)

)
= i(i)−∑

j
w(i, j)i( j) (10)

2.5 Variational Retinex
A whole family of variational Retinex models handles the regularity priors on the reflectance and illumination parts of the
Retinex decomposition in a more explicit way. First, the variational framework by Kimmel introduces competing Gaussian
smoothness priors on both the illumination and reflectance fields, as well as a quadratic fidelity prior between illumination
and observed intensity:30

min
b

{∫
Ω

|∇b|2 +α(b− i)2 +β|∇b−∇i|2dxdy
}

s.t. b≥ i, 〈∇b,~n〉= 0 on ∂Ω. (11)

Here, we rewrite the problem slightly, optimizing for the reflectance rather than the illumination, by substituting according
to the coherence condition i = b+ r:

min
r

{
‖∇r−∇i‖2

2 +α‖r‖2
2 +β‖∇r‖2

2
}

s.t. r ≤ 0, 〈∇r,~n〉= 0 on ∂Ω. (12)

This form makes clear that variational Retinex is an optimization between reflectance gradient fidelity and some sparsity
penalties.

Subsequently, variations of this variational Retinex model have been proposed, mainly involving different norms for the
fidelity and sparsity terms, and dropping the asymmetry constraint r ≤ 0. First, Ma and Osher have dropped a few terms
and replace Gaussian smoothness of the reflectance by a TV-prior.31 As a complication, instead of the local TV prior,
they also make use of non-local total variation. Further, Ng and Wang introduce an L2-fidelity prior between reflectance
and intensity.32 Chen et al. have used a TV-L1-based variational Retinex approach, which they call logarithmic total
variation (LTV), for illumination normalized face detection.33 At this point it is worthwile noting, that both the L2- and
L1-Retinex11, 15 have a threshold-free variational equivalent. Indeed, the hard threshold on the intensity gradient can be
seen as a contraction of an L0-sparsity prior on the gradients of the reflectance:

min
r

{
‖∇r−δτ∇i‖2

2
}
= min

r


∥∥∥∥∥∇r− argmin

~q

{
‖~q−∇i‖2

2 + τ
2‖~q‖0

}∥∥∥∥∥
2

2

 (13)

which is a relaxed version of the more complicated problem

min
r

{
‖~q−∇i‖2

2 + τ
2‖~q‖0

}
s.t. ∇r =~q (14)

We will make use of this relaxation to retro-fit other variational models into a threshold based Poisson-problem.

3. NON-LOCAL DIFFERENTIAL OPERATORS (BASIC DEFINITIONS)
In this section, we recall and give a few definitions of non-local differential operators,34 which we need in order to cast
existing kernel-based Retinex methods into a variational framework, and based on which we will propose our unifying
Retinex framework.

3.1 Products and norms
DEFINITION 3.1. To begin with, we require appropriate inner products. For scalars i : Ω→ R, we choose:

〈i, j〉 :=
∫

Ω

i(x) j(x)dx, (15)

which is the common L2 inner product. Accordingly, we introduce the following inner product for vectors~v : Ω→Ω×Ω:

〈~u,~v〉 :=
∫

Ω×Ω

u(x,y)v(x,y)dxdy. (16)



DEFINITION 3.2. The associated L2 norms are respectively for scalars i : Ω→ R:

‖i‖2 :=
√
〈i, i〉=

√∫
Ω

i(x)2dx, (17)

and for vectors~v : Ω→Ω×Ω:

‖~v‖2 :=
√
〈~v,~v〉=

√∫
Ω×Ω

v(x,y)2dxdy. (18)

DEFINITION 3.3. Similarly, the L1-norm of the vector~v, ‖~v‖1 : Ω×Ω→ R, is defined as

‖~v‖1 :=
∫

Ω×Ω

|v(x,y)|dxdy. (19)

DEFINITION 3.4. Let w be a non-negative weighting function and ~v a vector. The weighted L0-“norm” of the vector ~v,
‖~v‖0,w : Ω×Ω→ R, is defined as

‖~v‖0,w := 〈w,1−δ(~v)〉=
∫

Ω×Ω

w(x,y)(1−δ(v(x,y)))dxdy (20)

where δ is the dirac distribution.

DEFINITION 3.5. Finally, pointwise multiplication is written for scalars i and j as

(i · j)(x) := i(x) j(x), x ∈Ω (21)

and for vectors~u and~v as:
(~u ·~v)(x,y) := u(x,y)v(x,y), x,y ∈Ω (22)

3.2 Differential operators
DEFINITION 3.6. Let Ω ∈ Rn, x ∈ Ω, i(x) be a real function i : Ω→ R. We define the non-local gradient of this function
as the vector of all partial derivatives, ∇wi : Ω→Ω×Ω:

(∇wi)(x,y) :=
√

w(x,y)(i(y)− i(x)), x,y ∈Ω (23)

for some non-negative weights w(x,y).

DEFINITION 3.7. The associated divergence of a vector ~v ∈ Ω×Ω, namely divw~v : Ω×Ω→ Ω, is then defined as the
negative adjoint under the above inner products:

〈∇wi,~v〉= 〈i,−divw~v〉 , (24)

The expression for the divergence is easily found as

(divw~v)(x) :=
∫

Ω

√
w(x,y)v(x,y)−

√
w(y,x)v(y,x)dy. (25)

DEFINITION 3.8. The non-local Laplacian, ∆wi : Ω→ Ω is defined as the composition of non-local divergence and non-
local gradient:

(∆wi)(x) := (divw(∇wi))(x) =
∫

Ω

(w(x,y)+w(y,x))(i(y)− i(x))dy. (26)



LEMMA 3.9. Let ws(x,y) be a symmetric weighting function, i.e. ∀x,y ∈Ω : ws(x,y) = ws(y,x). This restriction simplifies
the expressions of both the divergence and associated Laplacian:

(divws~v)(x) =
∫

Ω

√
ws(x,y)(v(x,y)− v(y,x))dy, (27)

and
(∆ws i)(x) = (divws(∇ws i))(x) = 2

∫
Ω

ws(x,y)(i(y)− i(x))dy, (28)

where the Laplacian now differs from the regular graph Laplacian by a factor 2.

3.3 Filtered gradients
DEFINITION 3.10. Be f : R→ R a real-valued distortion function applied to the finite differences. We define filtered
non-local gradients, ∇w, f i : Ω→Ω×Ω, as the quasi-gradients obtained as follows:

(∇w, f i)(x,y) :=
√

w(x,y) f (i(y)− i(x)), x,y ∈Ω (29)

DEFINITION 3.11. We call ∆w, f the filtered non-local Laplacian obtained by applying the (regular) divergence to filtered
gradients

(∆w, f )(x) := (divw(∇w, f i))(x) =
∫

Ω

w(x,y) f (i(y)− i(x))−w(y,x) f (i(x)− i(y))dy. (30)

LEMMA 3.12. Let fa be an anti-symmetric real-valued function, i.e. fa(z) =− fa(−z) and choose the weights ws(x,y) =
ws(y,x) symmetrically. The associated filtered non-local Laplacian ∆ws, fa is given by:

(∆ws, fa)(x) = 2
∫

Ω

ws(x,y) fa(i(y)− i(x))dy. (31)

3.4 Filtered gradients as minimizers
Let w be a non-negative weighting function. We look for a vector ~qL0 which is L0 sparse as weighted by w, while the
quasi-gradient

√
w ·~qL0 remains close to the observed gradients ∇wi. This is the solution of the following optimization

problem:
~qL0 = argmin

~q

{
λ

2‖~q‖0,w +‖
√

w ·~q−∇wi‖2
2
}

(32)

and it is found as component-wise hard-thresholding applied to the non-local finite differences:

~qL0(x,y) = Sh
λ
(i(y)− i(x)), where Sh

τ(z) =

{
0 |z| ≤ τ

z otherwise
(33)

The quasi-gradient
√

w ·~qL0 is an instance of filtered non-local gradient with fa = Sh
λ
:(√

w ·~qL0
)
(x,y) = (∇w, fa i)(x,y) =

√
w(x,y) fa(i(y)− i(x)) (34)

Similarly, we find the following equivalences:

~qTV = argmin
~q

{
2λ‖
√

w ·~q‖1 +‖
√

w ·~q−∇wi‖2
2
}

(35)

(√
w ·~qTV

)
(x,y) =

√
w(x,y)Ss

λ
(i(y)− i(x)), where Ss

τ(z) =


z+ τ z <−τ

0 |z| ≤ τ

z− τ z > τ

(36)



and

~qH1 = argmin
~q

{
λ‖
√

w ·~q‖2
2 +‖
√

w ·~q−∇wi‖2
2
}

(37)

(√
w ·~qH1

)
(x,y) =

√
w(x,y)Su

λ
(i(y)− i(x)), where Su

τ(z) =
z

1+ τ
(38)

Finally, TV-enhanced quasi-gradients can be found as follows:

~qTV = argmin
~q

{
−2λ‖

√
w ·~q‖1 +‖

√
w ·~q−∇wi‖2

2
}

(39)

(√
w ·~qTV )(x,y) =√w(x,y)Ss

−λ
(i(y)− i(x)), where Ss

−τ(z) =


z+ τ z > 0
0 z = 0
z− τ z < 0

(40)

4. NON-LOCAL RETINEX
4.1 Closing the gap between kernel and variational retinex
We have already mentioned that the homomorphic filtering retinex can be rewritten as a Gaussian-kernel wg(x,y) based
computation of the following form:

r(x) = i(x)−∑
y

wg(x,y)i(y) =−∑
y

wg(x,y)(i(y)− i(x)) (41)

provided that the Gaussian kernel is normalized, i.e. ∑y wg(x,y) = 1. The second sum now clearly identifies with our
definition of non-local Laplacian, and we may thus also write:

r(x)+
1
2

∆wg i(x) = 0 (42)

This is the Euler-Lagrange equation corresponding to the following variational model:

min
r

{∥∥∇wgr−∇wg i
∥∥2

2−
∥∥∇wgr

∥∥2
2 +2‖r‖2

2

}
(43)

Similarly, in their award-winning model, Bertalmìo and colleagues have used their kernel-based lightness estimate
together with a gray-world prior and a fidelity constraint to build a “perceptually inspired variational framework” for
image enhancement.25, 26 Their anti-symmetrized kernel-based Retinex has a variational formulation, which is very close
to the ACE model,35 namely:

min
R

{∫
Ω

[
α(R(x)− 1/2)2 +β(R(x)− I(x))2

]
dx+2C

min
max√

w (R)
}

(44)

where C
min
max√

w (R) is a contrast function. For particular, but reasonable choices of contrast function, the contrast term can be
shown to be equivalent to

C
min
max√

w (R)≡−
∫

Ω×Ω

√
w(x,y) | fa (r(y)− r(x))|dxdy =−

∥∥∇w, far
∥∥

1 (45)

In particular, fa may be the identity. Thus, we rewrite the perceptual contrast enhancement in terms of non-local derivatives
as follows:

min
r=log(R)

{
α‖R− 1/2‖2

2 +β‖R− I‖2
2−2‖∇wr‖1

}
(46)

where the first term represents the gray-world prior, the second is a fidelity term with respect to the observed intensity, and
the contrast term increases non-local TV of the reflectance.



Table 1. Filtered non-local gradient-fidelity based approximations to existing Retinex models. Both Poisson PDE11 and L1-Retinex15

employ gradient filtering natively. For the other methods, the filtered gradient reproduces a gradient sparsity term actually present in the
original model (L0→ Sh

λ
, TV → Ss

λ
, H1→ Su

λ
).

Model Norm p Weights w Filter fa Additional terms

Poisson PDE11 L2 local Sh
λ

—

L1-Retinex15 L1 local Sh
λ

—

TV-Retinex31 L2 local Ss
λ

—

Variational Retinex30 L2 local Su
λ

α‖r‖2
2 (r ≤ 0)

TV-Retinex32 L2 local Ss
λ

β‖r− i‖2
2

TV-L1
33 L1 local — α‖r‖2

2 (α‖r‖1)

Random walk/Kernel based26 L2 Gaussian Ss
−λ

α‖r‖2
2 +β‖r− i‖2

2

4.2 Proposed model
So far we have seen that all Retinex models have a variational equivalent, potentially through the use of non-local differen-
tial operators. Even more, these variational counterparts all share a very similar structure: the energy typically comprises
one or two fidelity terms (image and/or its gradient), as well as sparsity priors or alternatively, through negation, enhance-
ment terms.

Also, we have shown that this type of variational problem can be retrofitted into a Horn/Morel-style gradient-fidelity
problem, potentially adding further terms. In particular, we have shown in the previous section, how different gradient
sparsity and fidelity terms translate into differing thresholding functions.

In general, we want to tackle the retinex problem in a two step approach:

1) We realize that the reflectance obeys both to some gradient sparsity priors and some gradient fidelity priors. In a first
step, we thus look for an optimal quasi-gradient that best satisfies those two constraints. This quasi-gradient is obtained
as filtered gradient of the observed image ∇w, f i. The sparsity and gradient fidelity terms will determine the exact filter
function f to be used.

2) We fit the gradient of a reflectance to the quasi-gradient determined in the first step, while possibly minimizing some
additional terms:

r̂ = argmin
r

{
‖∇wr−∇w, f i‖p

p +α‖r‖2
2 +β‖r− i‖2

2

}
(47)

5. RESULTS I: RELATIONS TO EXISTING MODELS
The first results section is dedicated to demonstrate the unifying power of the proposed non-local two-step Retinex model.

5.1 Model correspondences
In the following paragraphs, we want to show how the existing Retinex implementations can be reproduced in our proposed
non-local Retinex model. The different correspondences are summarized in table 1. In all these instances, we transform
the gradient sparsity term into a corresponding gradient filter.

5.1.1 Poisson
The PDE version of Retinex11 can be derived exactly from the L2-version p = 2 of the proposed Retinex model, under
local weights wl and gradient thresholding fa = Sh

λ
. Indeed:

r̂ = argmin
r

{
‖∇wl r−∇wl , fa i‖2

2
}

(L2-retinex) (48)

implies the Euler-Lagrange equations

(∆r̂)(x,y) = (∆wl , fa i)(x,y) x,y ∈Ω. (Poisson PDE Retinex) (49)



5.1.2 L1-retinex
The next close relative of the proposed non-local retinex model is its local L1 predecessor, L1-retinex.15 The closest match
to L1-retinex in the proposed framework is obtained if we choose the weights wl(x,y) such as to reproduce the well-known
local finite differences differential operators, gradient filtering fa = Sh

λ
, and with p = 1:

r̂ = argmin
r

{
‖∇wl r−∇wl , fa i‖1

}
= argmin

r

{∫
Ω

d

∑
k=1

∣∣∣∇kr(x)−Sh
λ
(∇ki(x))

∣∣∣dx

}
(50)

which is the anisotropic L1-distance for local gradient fidelity.

5.1.3 TV regularized Retinex
In Ref. 31, the authors propose to solve directly for an image, whose gradient is close to the observed gradient in L2, while
minimizing isotropic TV∗:

r̂ = argmin
r

{
‖∇r−∇i‖2

2 +2λ‖|∇r|2‖1
}
, (TV retinex) (51)

A similar model can be obtained through the proposed general Retinex model by employing soft-shrinkage gradient filter-
ing, fa = Ss

λ
, to which the according potential is recovered:

r̂ = argmin
r

{
‖∇wr−∇w, fa i‖2

2
}

(52)

Again, the main difference is the use of anisotropic TV through gradient filtering in the proposed framework.

5.1.4 H1+L2 regularized
The variational Retinex model by Kimmel et al.30 can be rewritten exactly as

r̂ = argmin
r

{
‖∇r−∇i‖2

2 +α‖r‖2
2 +λ‖∇r‖2

2

}
s.t. r ≤ 0 (H1/L2 Retinex) (53)

There, the authors motivate the L2 term mainly as “a regularization of the problem that makes it better conditioned”, and
they state that “in practice this penalty term should be weak [. . .] and α should therefore be very small.” The constraint
r < 0 corresponds to the reset in the original Retinex theory. The constraint and L2 norm together push the reflectance close
to white.

We may find a similar problem within the proposed framework, where we choose uniform gradient scaling fa = Su
λ

and
omit the clipping constraint:

r̂ = argmin
r

{∥∥∇wl r−∇wl , fa i
∥∥2

2 +α‖r‖2
2

}
(54)

5.1.5 TV+L2 regularized
Recently, a mixture of TV regularized and Kimmel’s variational approach was proposed.32 This model essentially boils
down to:

r̂ = argmin
r

{
‖∇r−∇i‖2

2 +β‖r− i‖2
2 +2λ‖∇r‖1

}
(TV/L2 Retinex) (55)

Again, we may approximate this model with a similar energy based on similarity to filtered gradients, with fa = Ss
λ
:

r̂ = argmin
r

{∥∥∇wl r−∇wl , fa i
∥∥2

2 +β‖r− i‖2
2

}
(56)

5.1.6 TV-L1

The “logarithmic total variation” (LTV) model was suggested for extraction of illumination invariant features for face
recognition.33 It is defined as an TV-L1 based on the logarithmic input image and its logarithmic illumination:

r̂ = argmin
r
{‖∇r−∇i‖1 +α‖r‖1} (TV-L1) (57)

Its equivalent in the proposed framework is found by relaxing the second term to an L2-norm, i.e. TV-L2 retinex.
∗In an extension, they use non-local TV as sparsity constraint as well.



5.1.7 Bertalmío

To approximate the perceptually inspired Retinex model through our proposed general framework, we complete the TV-
enhancing variational model by a gradient fidelity:

r̂ = argmin
r

{
α‖r‖2

2 +β‖r− i‖2
2 +‖∇wr−∇wi‖2

2−2λ‖∇wr‖1

}
(-TV+L2 Retinex) (58)

This is essentially homomorphic filtering with TV in place of H1. Again, we may now substitute by incorporating the
TV-enhancement term as an input-gradient filter fa = Ss

−λ
:

r̂ = argmin
r

{∥∥∇wr−∇w, fa i
∥∥2

2 +α‖r‖2
2 +β‖r− i‖2

2

}
(59)

5.2 The Logvinenko illusion
We have applied the whole range of retinex “modes” retrofitted above to existing retinex implementations to a single
common test image extracted from the Logvinenko illusion pattern.36 The test image is shown in Fig. 1a). The illusion
consists of the following: due to the suggested smoothly varying lighting, the oblique grey diamonds of the upper row
appear darker than the diamonds of the lower row. However, as shown in the adjacent Fig. 1b), their actual intensity is
exactly equal. In this example, the retinex model is expected to separate the smooth shading from the rough checkerboard-
like reflectance, thereby truly rendering the two rows of diamonds at different reflectances.

The first model, L2-retinex,11 produces the standard result in Fig. 1c). It can be clearly seen that in particular the
lower row of diamonds is not recovered completely flat, since the illumination is not smooth everywhere. The related
L1-retinex15 in Fig. 1d) suffers from very similar artifacts. In Fig. 1e) we show the results of our model with parameters
set to correspond to TV-regularized retinex,31 resulting in less artifacts. Adding an L2 fidelity-constraint (β > 0), as in
Ref. 32, injects more of the initial shading into the estimated reflectance, see Fig. 1f).

The TV-L1-inspired model33 is in our case a TV-L2 model for illumination recovery, where the TV-sparsity of the
extracted illumination is tuned by the parameter α. It is clearly appreciated in Fig. 1g–j) that the impact of the parameter
is quite severe, with higher values corresponding to the output desired for illumination invariant feature extraction. The
choice of parameters inspired by Kimmel’s retinex formulation yields the output shown in Fig. 1k–m), which corresponds
well to the behavior expected from.30 The parameter α controls the degree of dynamic range compression applied, i.e.
the dominance of local contrast enhancement. Finally, in Fig. 1n–p) we provide the output produced by model parameters
mimicking Bertalmío’s perceptually inspired retinex.25 Here, the unshrinking of the gradients has the unpleasant effect of
amplifying pixel noise.

6. RESULTS II: NEW PERSPECTIVES
Beyond reproducing existing retinex models, our proposed framework also has the potential to yield new results thanks to
its generalizing power. In the next sections, we explore a few new possibilities offered by choosing new sets of parameters,
in particular based on p = 0 gradient fidelity, with applications to shadow detection and removal, and cartoon-texture
decomposition.

6.1 L0 gradient fidelity
In Fig. 1 we have shown a series of decomposition results obtained with different model configurations. The best results
in terms of piecewise constant reflectance versus illumination have been achieved with the basic hard thresholding models
(L2- and L1-retinex), as well as the soft-thresholding based TV-retinex. However, all these models suffer from artifacts
of illumination estimation at the edges and corners of the flat diamonds, where illumination smoothness is not a stringent
enough prior. Therefore, we propose seeking for further illumination gradient penalty by choosing p = 0, corresponding to
L0 gradient fidelity (as opposed to TV- or H1-sparsity of the illumination). In Fig. 2 we show a few results where we make
use of TV-regularization of the reflectance (soft thresholding). In particular in combination with Gaussian kernel weights,
the decomposition exhibits less artifacts than previous results, see Fig. 2b).
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a) b) c) d)

e) f) g) α = 0.05

h) α = 0.1 i) α = 0.5 j) α = 5

k) α = 0.05 l) α = 0.1 m) α = 0.5

n) α = 0.05 o) α = 0.15 p) α = 0.5

Figure 1. Logvinenko illusion and different retinex decompositions. a) Input image. b) Demonstration of the illusion: despite the
appearances, the “horizontal squares” actually have equal intensity. Retinex is supposed to reproduce this illusion of intensity difference.
c) Reflectance and illumination recovered using the L2-retinex (hard thresholding, p = 2, , α = β = 0). d) L1-retinex (hard thresholding,
p = 1, α = β = 0). e) TV-regularized retinex (soft thresholding, p = 2, α = β = 0). f) Ng-Wang-like retinex (soft thresholding, p = 2,
α = 0, β = 0.0015). g–j) TV-L2 retinex (no thresholding, p = 1, α > 0, β = 0). k–m) Kimmel-like retinex (gradient scaling, p = 2,
α > 0, β = 0). n–p) Bertalmio-like retinex (Gaussian kernel weights, gradient unshrinkage, p = 2, α > 0, β = 0.002). g–p) Where
applicable, α drastically tunes the amount of dynamic range compression.



Reflectance Illumination

a) b) c)

Figure 2. Logvinenko illusion and new L0-based retinex decompositions. Soft thresholding, p = 0, α = β = 0. a) Local weights. b)
Narrow Gaussian kernel weights, λ = 0.33. c) Wider Gaussian kernel weights, λ = 0.8.

Input Demonstration Reflectance Illumination
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e) λ = 0.05 f) λ = 0.1 g) λ = 0.5

Figure 3. Adelson checker illusion. a) Input image. b) Demonstration of the illusion: despite the appearances, the squares A and
B actually have equal intensity. Retinex is supposed to reproduce this illusion of intensity difference by removing the shadows. c)
Reflectance and illumination recovered using the novel L0-based retinex. Hard thresholding λ = 0.15, p = 0, α = 0.04. d) L2-retinex
with dynamic range compression has too smooth illumination (hard thresholding λ = 0.025, p = 2, α = 0.01). e–g) L2-retinex without
dynamic range compression. The drop shadow is removed nicely, but the cylinder shading is not.

6.2 Shadows in artificial images: the Adelson checker illusion
Another instance, where H1 smoothness (p = 2) or TV-regularity (p = 1) constraints are not sparse enough priors for
the illumination field, is the Adelson checker illusion. We show a grayscale image of the illusion image in Fig. 3a): the
squares A and B appear to be of different intensity, for the human visual system corrects actual intensity by perceived
shading. However, as shown in the adjacent demonstration, the diamonds truly have identical intensity. Here again, the
role of retinex is to separate the shading from the underlying reflectance. However, while the reflectance is expected to be
piecewise constant, the illumination has both smooth parts and sharp transitions. The sharp transitions are not sufficiently
accounted for under simple L2 hard-thresholding, as shown in Fig. 3e–g); the estimated illumination always turns out too
smooth. Even additional dynamic range compression cannot entirely fix the issues, as now parts of the checkerboard’s
reflectance also appear in the illumination, see Fig. 3d). Thanks to the new possibilities of the proposed framework,
however, the problem is rather nicely solved using a combination of L0 gradient fidelity, hard thresholding, and slight
dynamic range compression, as shown in Fig. 3c).

6.3 Shadow detection in natural images
Shadow removal from a single (natural) image plays an important role in many computer vision algorithms. Most methods
are based on a two-step procedure: first detect shadows, and then reconstruct shadow-free images. Shadow detection can
be based on features such as intensity, gradients or texture, and even make use of supervision or training data.37–40 Once



Input Guo et al. Proposed model

Figure 4. Shadow detection results. We compare the shadow detection results (illumination output) of our proposed model against
the recently published results (blue mask) from Guo et al.38, 39 The results of the first row are very comparable, while we believe the
examples of the second row are in favor of the proposed model. Indeed, our illumination output may be “multilevel” rather than just
binary, and therefore better reflect the different nuances of shade in natural images (pole). On the other hand, our approach is less subject
to local artifacts and produces more coherent shadow estimates.

the shadow regions have been reliably detected, several techniques aim at reconstructing shadow-free images, through
matting, inpainting, or Poisson editing.40, 41

Here, we explore the applications of the proposed unified retinex model for single step shadow detection and removal
from a single image. We propose to use the L0 gradient fidelity criterion combined with dynamic range compression,
without any gradient thresholding. The unfiltered L0 gradient fidelity is a strong prior on illumination gradient sparsity,
while the dynamic range compression tends to take large intensity modulations out of the reflectance, and balance the mean
intensities of inside- and outside-shadow regions. Our model can detect shadows in monochromatic and color images. We
show a few example results in Fig. 4. We believe that the proposed model can largely compete with the recent state-of-the-
art shadow detection scheme proposed Guo et al.38, 39

Moreover, our model also provides a shadow-free reflectance estimate at the same time. However, in most natural
scenes, the actual border between shaded and unshaded regions is rather smooth, called the penumbra, which is due to the
spatial extent of the light source. Hence, the estimated shadow boundary in the proposed model is consistently overly sharp,
and the estimated shadow-free reflectance image includes artifacts, see Fig. 5c). This problem can partially be tackled by
smoothing the estimated illumination field in post-processing, as shown in Fig. 5d). A noticeable difference in texture is
still visible, however, due to the missing specular highlights in the shadowed region, exclusively lit by ambient light.

If the images are treated as color images, however, a few shortcomings of the simple shadow-removal model become
obvious, beyond the penumbra-issue. In Fig. 5e) we show the output of retinex being applied to the lightness channel in
HSV-space only. Since the shadowed region was lit by (sky-blueish) ambient light only, compared to warmer direct sun
light, the colorcast after intensity correction becomes really striking. If, in contrast, we perform retinex on all three RGB
channels independently, the colorcast can be successfully avoided, see Fig. 5f). However, since the three channels are not
coupled, the respective shadow-boundaries differ slightly, creating local color-artifacts.

6.4 Cartoon-texture decomposition
The separation of an image into a piecewise regular component (cartoon) and its high-frequency parts (texture) is generally
referred to as cartoon-texture decomposition.42–44 Now, if we give even more importance to dynamic range compression,
then our proposed L0 gradient-fidelity based retinex model can be used to this very same end. Indeed, the “reflectance”
will now only contain the texture of the image, whereas all larger scale intensity patches will be attributed to illumination
(cartoon part). In Fig. 6 we show results of cartoon-texture decompositions of two natural images.

7. DISCUSSION AND CONCLUSIONS
In this paper, we have contributed a unifying framework for retinex, based on non-local differential operators. Our frame-
work deals with the reflectance-illumination decomposition problem in two steps. The interest of such a two step procedure
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Figure 5. Shadow removal results. a) Input image. b) Recently published results from Guo et al.38, 39 c) Reflectance of input image
reduced to grayscale. The sharp boundary of the detected shadow region creates artifacts in the penumbra. d) The artifacts are removed
by smoothing the estimated illumination in post-processing. e) If the retinex model is applied only to the V-channel of the color image
in HSV-space, then strong colorcast becomes apparent, due to different lighting color for direct and ambient light. f) The colorcast
is avoided by correcting all three RGB channels (colorbalancing). However, local artifacts appear due to inconsistent shadow region
boundaries in the three individual channels.

Input Cartoon Texture

Figure 6. Cartoon-texture decomposition. For important α, the L0 model separates texture (reflectance) from cartoon (illumination).

is manifold: First, each step, i.e. thresholding the input gradient, followed by a gradient fitting is relatively simple to com-
pute, compared to the non-compacted variational model. Further, the computational tools required to solve the gradient
reconstruction step become independent of the gradient sparsity imposed. Finally, it can be shown that this two step proce-
dure is fully compatible with Marr’s theory of lightness computation in the (primate) retina.10 Also, it particularly neatly
fits into Wilson-Cowan equations, modeling large-scale activity in cortical neural populations.45, 46

The proposed framework is able to reproduce some fundamental retinex models exactly,11, 15 provides relaxed approx-
imations to most others,30–32 and matches a few by substituting some of their terms.25, 33 Beyond, yet other retinex models
have already been shown to be equivalent to the models we refer to in this manuscript.9

Beyond reproducing the existing retinex models in a single variational framework, our proposition also opens the way
to new retinex flavors by choosing different sets of parameters and filters. In particular, in this manuscript, we introduce
L0 gradient fidelity based retinex, which provides interesting results for shadow detection and removal, as well as cartoon-
texture decomposition.

Future work will focus on the exploration of different weighting functions. In particular, we may use different weighting
functions for the gradient sparsity and fidelity terms of the first step, allowing us to have non-stationary (spatially varying)
thresholds. This could have immediate benefits regarding color-retinex, where such conditional thresholding has already
been proposed,47–49 or hyperspectral illumination suppression.50
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