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Abstract. It is a challenging task to reconstruct images from their noisy, blurry, and/or incomplete measurements,
especially those with important details and features such as medical MR and CT images. We propose a novel regularization
model that integrates two recently-developed regularization tools: total generalized variation (TGV) by Bredies, Kunisch, and
Pock; and shearlet transform by Labate, Lim, Kutyniok, and Weiss. The proposed model recovers both edges and fine details
of images much better than the existing regularization models based on the total variation (TV) and wavelets. Specifically,
while TV preserves sharp edges but suffers from oil-painting artifacts, TGV “selectively regularizes” different image regions at
different levels and thus largely avoids oil-painting artifacts. Unlike the wavelet transform, which represents isotropic image
features much more sparsely than anisotropic ones, the shearlet transform can efficiently represent anisotropic features such as
edges, curves, and so on. The proposed model based on TGV and the shearlet transform has been tested in the compressive
sensing context and produced high-quality images using fewer measurements than the state-of-the-art methods. The proposed
model is solved by splitting variables and applying the alternating direction method of multiplier (ADMM). For certain sensing
operators, including the partial Fourier transform, all the ADMM subproblems have closed-form solutions. Convergence of the
algorithm is briefly mentioned.

The numerical simulations presented in this paper use the incomplete Fourier, discrete cosine, and discrete wavelet mea-
surements of magnetic resonance (MR) images and natural images. The experimental results demonstrate that the proposed
regularizer preserves various image features (including edges and textures), much better than the TV/wavelet based methods.
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1. Introduction. Regularity plays an important role in various inverse problems arising in areas such
as medical imaging, hyperspectral imaging, computer vision, etc. Regularity is usually used to avoid non-
uniqueness of solutions, and to smooth solutions. An appropriate choice of the regularization is of vital
importance to the quality of the solution. The majority of existing regularizers favor simple signals, such
as images with piece-wise constant intensities. Details and fine features in images are not necessarily more
complicated, but existing tools, such as TV and wavelet, cannot recover them well. Trained dictionaries work
much better, but are computationally more demanding than analytic tools. We aim to utilize the theories
that have recently emerged from harmonic analysis and partial differential equations to better solve inverse
problems. More specifically, we combine TGV and the shearlet transform.

The wavelet transform and TV have been widely used in various inverse problems. Examples are
compressive sensing reconstruction [1, 2], denoising [3], inpainting [4, 5, 6], TV based wavelet coefficient
reconstruction [7]. The wavelet transform has an advantage in approximating signals containing point-wise
singularities with relatively small errors. Despite this advantage, it is well known that the traditional wavelet
transform is not so effective at dealing with singularities in higher dimensions, such as edges in 2D images.
In comparison, the shearlet transform [8, 9, 10] is more effective in approximating piecewise smooth images
containing rich geometric information such as edges, corners, spikes, etc. It combines the power of multiscale
methods with the ability of extracting geometry of images.

As for TV, it is well known that it preserves sharp edges but it will sometimes cause undesired oil
painting artifacts. By incorporating smoothness from the partial derivatives of various orders, the TGV
regularization generalizes TV and leads to piecewise polynomial intensities. The TGV regularizer is more
precise in describing intensity variations in smooth regions, and thus reduces oil painting artifacts while still
being able to preserve sharp edges like TV does. More recently, the connection between TV (or even TGV)
and wavelet frames has been analyzed in [11]. In this paper, we combine TGV and shearlet frames for one
regularizer.

The rest of the paper is organized as follows. We start with a brief review on TGV and the shearlet
transform in Section 2. The proposed model and algorithm are presented in Section 3. An extension of the
reconstruction algorithm is presented in Section 4. In section 5, numerical results are illustrated to show the
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consistent performance of the proposed method. Finally, conclusions and discussions are given in Section 6.

2. Preliminaries. To make the paper self-contained, we provide a brief review of the shearlet transform
and TGV in this section.

2.1. Shearlet transform. Based on isotropic dilations, the traditional wavelet transform is able to
identify singular points of signals. However, it has limited ability to describe the geometry of multidimen-
sional functions, e.g., the edge orientation. The shearlet transform is a directional representation system
that provides more geometrical information.

Let ψ ∈ L2(R2) and

Mas =

[
a
√
as

0
√
a

]
=

[
1 s
0 1

] [
a 0
0
√
a

]
:= BsAa, a ∈ R+, s ∈ R,

where Bs is a shear operator and Aa is an anisotropic dilation operator. The shearlet system {ψast | a ∈
R+, s ∈ R, t ∈ R2} is generated by applying the operations of dilation, shear transformation and translation
on ψ:

ψast = |detMas|−
1
2ψ(M−1

as (x− t)).

However, this version of shearlet suffers from bias towards certain axis. More precisely, the frequency supports
of shearlets ψast above become more elongated along the vertical/horizontal axis as |s| increases [12]. To
circumvent this problem, the cone-adapted shearlet system [13] is adopted in the discrete shearlet transform.
In this system, the frequency plane is partitioned into horizontal and vertical cones. The continuous shearlet
transform of a function f ∈ L2(R2) is defined as

SHψ(f)(a, s, t) = 〈f, ψast〉.

The shearlet transform is invertible if ψ satisfies the admissibility property:∫
R2

|ψ̂(ω1, ω2)|2

|ω1|2
dω1dω2 <∞,

where ψ̂ is the Fourier transform of ψ.
Natural images usually contain a lot of edges and other anisotropic features. In [14], Donoho uses the

class of so-called cartoon-like images to approximately model natural images. The class of cartoon-like
images is a set of functions of the form u = u1 +u2χB where B ⊂ [0, 1]2, ui ∈ C2(R2) with supp(ui) ⊂ [0, 1]2

(i = 1, 2) and ‖ui‖2 ≤ const [8]. Let f be a function of this kind, and fL be the shearlet approximation of f
obtained by taking the L largest absolute shearlet coefficients. The optimal decay rate up to a log-factor is
achieved:

‖f − fL‖2 ≤ CL−2(logL)3

as L→∞ [8], while the asymptotic error is CL−1 for wavelets [15].
Other directional representation systems, such as ridgelets [16], contourlets [17], curvelets [18], have

connections with shearlets. For instance, both shearlets and curvelets are effective in representing images
with edges, while the spatial-frequency tilings of the two are completely different. Both shearlets and
curvelets are related to contourlets, but contourlets are presented in a purely discrete format. We select
shearlets in this paper due to their directional sensitivity, availability of efficient implementation (e.g., http:
//www.mathematik.uni-kl.de/imagepro/members/haeuser/ffst/ [19], http://shearlab.org/ [20]) and
theoretical relation to the multiresolution analysis. Note that the shearlets we use in numerical experiments
are band-limited (with compact supports in the Fourier domain) [19], from which it is straightforward to
derive the inversion as a tight frame. We refer to [10] for details regarding the comparison between shearlets
and other directional multiscale transforms.

From the computational complexity perspective, the discrete shearlet and the curvelet transforms both
need n2 log n FLOPS for an n× n image. Meanwhile, the computation cost is n2 for the discrete contourlet
transform and the wavelet transform.
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noisy input TV TGV

Fig. 2.1. Image smoothing results of TV and TGV. TGV result has sharper edges and less oil painting artifacts. Figure
is extracted from [25].

2.2. TGV. Total variation (TV) is a widely used regularizer in mathematical image processing. It
preserves sharp edges but also causes oil painting artifacts. Many efforts have been made to improve the
performance of TV [21, 22, 23, 24]. In particular, TGV, a generalization of TV, has been proposed. Unlike
TV, which only considers first-order derivatives, TGV, with order greater than or equal to two, involves
high-order derivatives. Reconstruction with TGV regularization results in images with piecewise polynomial
intensities as well as sharp edges. It efficiently avoids oil painting artifacts. In Fig. 2.1, we show a comparison
between TV and TGV that is extracted from [25]. One can see that the TGV regularizer preserves the high-
order smoothness better.

TGV of order k and positive weights α = (α0, · · · , αk−1) is defined as follows:

TGVk
α(u) = sup

{∫
Ω

udivkv dx

∣∣∣∣ v ∈ Ckc (Ω,Symk(Rd)), ‖divjv‖∞ ≤ αj , j = 0, · · · , k − 1

}
, (2.1)

where Ckc (Ω,Symk(Rd)) is the space of compactly supported symmetric tensor fields, Symk(Rd) is the space
of symmetric tensors on Rd, i.e.,

Symk(Rd) = {ξ : Rd × · · · × Rd︸ ︷︷ ︸
k

→ R | ξ is multilinear and symmetric}.

When k = 1, α = 1, Sym1(Rd) = Rd, then TGV1
1 is identical to TV. When k = 2, Sym2(Rd) is the set

of symmetric bilinear forms and is equivalent to the space Sd×d of all symmetric d × d matrices. In case
of k = 3, Sym3(Rd) corresponds to the space Sd×d×d of all symmetric d × d × d tensors. All high-order
divergence operators divk (k ≥ 2) are defined on the symmetric k-tensor fields. We use k = 2 in the proposed
model. More precisely, the second-order TGV can be written as:

TGV2
α(u) = sup

{∫
Ω

udiv2w dx

∣∣∣∣w ∈ C2
c (Ω, Sd×d), ‖w‖∞ ≤ α0, ‖divw‖∞ ≤ α1

}
, (2.2)

where the divergences are defined as (divw)h =
∑d
j=1

∂whj

∂xj
, 1 ≤ h ≤ d, div2w =

∑d
h,j=1

∂2whj

∂xh∂xj
, and the

infinity norm of w and divw are given by:

‖w‖∞ = sup
l∈Ω

( d∑
h,j=1

|whj(l)|2
)1/2

, ‖divw‖∞ = sup
l∈Ω

( d∑
j=1

|(divw)j(l)|2
)1/2

.

The space of bounded generalized variation is defined as

BGVk(Ω) =
{
u ∈ L1(Ω)

∣∣TGVk
α(u) <∞

}
, ‖u‖BGVk = ‖u‖1 + TGVk

α(u).

BGVk(Ω) is a Banach space independent of the weight vector α. Note that TGVk
α is a semi-norm that is

zero for all polynomials of degree up to k− 1. Image reconstruction with the TGV regularization thus leads
to piecewise polynomial intensities. The convexity property of TGV makes it computationally feasible. We
refer to [25] for further details and comparisons.
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Ground truth weighted TV+wavelet

Shearlet TGV

TV+shearlet Proposed

Fig. 3.1. Recovered piecewise smooth texture image (overall sampling rate 28.15%). Relative errors: weighted TV +
wavelet 5.24%, shearlet 4.29%, and TGV 3.00%, TV + shearlet 2.61% and the proposed 2.10%.

3. Proposed model and algorithm. In this section, we present our new regularization scheme that
integrates both the TGV regularizer and the shearlet transform in order to reconstruct images with a lot
of directional features and high-order smoothness. In Fig. 3.1 we give an example to show the advantage
of combing TGV and shearlets by comparing it with those models based on TV, weighted TV+wavelet,
TV+shearlet, shearlet transform alone, and TGV alone. The test image contains high order smooth regions
and textures. One can see that the proposed regularizer is able to reconstruct both image textures and
smoothly varying regions better than the others. It preserves edges as well as fine features, and produces more
“natural-looking” images. More numerical experiments comparing it with other closely related algorithms
will be presented in Section 5.

For simplicity, we assume that the images to be reconstructed are defined on square grids. Let ũ ∈ Cn2

be the vectorized image of interest, and b = Kũ + ε be the observed data, with K ∈ Cq×n2

being some
linear projector, and ε being the error. Examples of K include an identity operator in image denoising, an
incomplete linear projector in compressive sensing, a convolution operator in image deconvolution problems,
and a 0-1 mask in image inpainting.

3.1. Model. We propose the following general model to reconstruct ũ:

min
u

β

2
‖Ku− b‖22 + λ

N∑
j=1

‖SHj(u)‖1 + TGV2
α(u) (3.1)
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where SHj(u) is the j-th subband of the shearlet transform of u. For numerical computation, we adopt
the fast finite shearlet transform (FFST) [19], in which the construction is based on the Meyer scaling and
wavelet functions. Let N be the total number of subbands, which is related to the number of scales, j0, by
N = 2j0+3− 3. The parameter, β > 0, is related to the noise level ε while λ > 0 is a balancing factor relying
on the gradients and the sparsity of the underlying image under the shearlet transform. We only use the
second order TGV because our numerical experiments show that the third order TGV does not improve the
image quality enough to be worth the extra computing cost.

Furthermore, all the bandwise discrete shearlet transforms can be computed efficiently using the discrete
Fourier transform (e.g., fast fourier transform or FFT) and the discrete inverse Fourier transform. For
notational simplicity, we use SHj(mat(u)) to interchangeably represent the continuous and the discrete
shearlet transform of continuous and discrete u respectively. Let H1 be the FFT of the discrete 2D scaling
function, and Hj (j ≥ 2) be those of the discrete shearlets. Let vec : Cn×n → Cn2

and mat : Cn2 → Cn×n
be the vectorizing and the matricizing operators, respectively. Then we have:

SHj(mat(u)) = F−1(Hj .∗F(mat(u))) = F−1(Hj) ∗mat(u),

where .∗ is componentwise multiplication and ∗ is convolution. By using the Kronecker product, we rewrite
the above matrix equation in vector form as:

SHj(u) = vec(SHj(u)) = F ∗diag(vec(Hj))Fu = MHj
u,

where MHj = F ∗diag(vec(Hj))F , and diag is defined as

diag : CN → CN×N , diag(u)hj = uhδhj ,

where δhj = 0 if h 6= j and δhh = 1.

3.2. Reformulation of TGV. We derive another form of TGV2 in terms of `1 minimization so that
the proposed model can be solved efficiently by ADMM. Part of the reformulation development can be found
in [25]. TGV of other orders can be reformulated similarly. For notational convenience, we define U, V,W as

U = C2
c (Ω,R), V = C2

c (Ω,R2), W = C2
c (Ω, S2×2).

By changing the variable divw = v in (2.2), the discretized TGV2
α of u ∈ U can be written as

TGV2
α(u) = max

v∈V,w∈W
{〈u,divv〉 |divw = v, ‖w‖∞ ≤ α0, ‖v‖∞ ≤ α1}.

Note that the divergence of w ∈W is given by:

divw =

[
∂xw11 + ∂yw12

∂xw21 + ∂yw22

]
.

By introducing the indicator functional of a closed set B

IB =

{
0, x ∈ B,
∞, else,

and using the fact I{0}(·) = −miny〈y, ·〉, the discrete TGV2 can be further represented as

TGV2
α(u) = min

p∈V
max

‖w‖∞≤α0,w∈W
‖v‖∞≤α1,v∈V

〈u,divv〉+ 〈p, v − divw〉

= min
p∈V

max
‖w‖∞≤α0,w∈W
‖v‖∞≤α1,v∈V

〈−∇u, v〉+ 〈p, v〉+ 〈Ē(p), w〉

= min
p∈V

max
‖w‖∞≤α0,w∈W
‖v‖∞≤α1,v∈V

〈∇u− p, v〉+ 〈Ē(p), w〉

= min
p∈V

α1 ‖∇u− p‖1 + α0

∥∥Ē(p)
∥∥

1

= min
p∈V

α1

∫
Ω

α1

√√√√ 2∑
j=1

(∇ju(l)− pj(l))2 dl + α0

∫
Ω

√√√√ 2∑
j,k=1

(Ē(p)(l))2
j,k dl.
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Here we assume that u and p are absolutely continuous. Note that one can prove the interchangeability of
maximum and minimum in the first equation by applying the sufficient conditions for the max-min equality
in [26]. In the third equation, we use the symmetry property of constraint {‖v‖∞ ≤ α1} about zero and
replace v by −v. The operators ∇ and Ē are given by:

∇ : U → V, ∇u =

[
∂xu
∂yu

]
;

Ē : V →W, Ē(v) =

[
∂xv1

1
2 (∂yv1 + ∂xv2)

1
2 (∂yv1 + ∂xv2) ∂yv2

]
.

With the new formulation of TGV2, the proposed model (3.1) turns out to be

min
u,p

β

2
‖Ku− b‖22 + λ

N∑
j=1

‖SHj(u)‖1 + α1 ‖∇u− p‖1 + α0

∥∥Ē(p)
∥∥

1
. (3.2)

After discretization, (3.2) can be efficiently solved by ADMM. We approximate directional derivatives
∇1u and ∇2u by D1u and D2u, where D1 and D2 are the circulant matrices corresponding to the forward
finite difference operators with periodic boundary conditions along the x-axis and y-axis respectively. Then
∇u is approximated by Du and Ē(p) is approximated by

E(p) =

[
D1p1

1
2 (D2p1 +D1p2)

1
2 (D2p1 +D1p2) D2p2

]
.

The discretized version of (3.2) is:

min
u,p

β

2
‖Ku− b‖22 + λ

N∑
j=1

‖SHj(u)‖1 + α1 ‖Du− p‖1 + α0 ‖E(p)‖1 . (3.3)

3.3. ADMM implementation. We begin with a short review of ADMM, which solves the model in
the form of

min
r,s

f(r) + g(s) subject to Ar +Bs = b. (3.4)

The Lagrangian is L(r, s; t) = f(r) + g(s) + µ
2 ‖Ar +Bs− b− t‖22, where t is the scaled Lagrange multiplier

and µ is a positive parameter. The ADMM algorithm [27, 28] starts from s0 = 0 and t0 = 0 and iterates
1. rn+1 = argminr L(r, sn; tn);
2. sn+1 = argmins L(rn+1, s; tn);
3. tn+1 = tn + µ(b− (Arn+1 +Bsn+1)).

The convergence proofs for the ADMM and its variants can be found in [29, 30, 31]. The recent work [32]
describes a few generalizations, in which the r-subproblem and s-subproblem are not exactly solved, and
provides their convergence and rates of convergence.

There are N + 2 non-differentiable `1 terms in the reformulated model (3.3). We discuss here how to
apply ADMM to solve the optimization problem. We introduce one auxiliary variable and one quadratic
penalty term for each `1 term. More specifically, we introduce auxiliary variables xj (j = 1, . . . , N),

y =

[
y1

y2

]
∈ V, z =

[
z1 z3

z3 z2

]
∈W,

such that (3.3) is equivalent to

min
u,p,xj ,y,z

β

2
‖Ku− b‖22 + λ

N∑
j=1

‖xj‖1 + α1 ‖y‖1 + α0 ‖z‖1

subject to xj = SHj(u), y = Du− p, z = E(p).

(3.5)

6



Note that ‖xj‖1 is the sum of absolute values of all components in xj while ‖y‖1 (‖z‖1) is the sum of the
`2-norms (the Frobenius norms) of all 2× 1 vectors (2× 2 matrices).

After applying the ADMM, we achieve at the following algorithm:

xn+1
j = argmin

xj

‖xj‖1 +
µ1

2

∥∥xj − SHj(un)− x̃nj
∥∥2

2
, j = 1, . . . , N,

yn+1 = argmin
y
‖y‖1 +

µ2

2
‖y − (Dun − pn)− ỹn‖22 ,

zn+1 = argmin
z
‖z‖1 +

µ3

2
‖z − E(pn)− z̃n‖22 ,

(un+1, pn+1) = argmin
u,p

λµ1

2

N∑
j=1

∥∥xn+1
j − SHj(u)− x̃nj

∥∥2

2
+
α1µ2

2

∥∥yn+1 − (Du− p)− ỹn
∥∥2

2

+
α0µ3

2

∥∥zn+1 − E(p)− z̃n
∥∥2

2
+
β

2
‖Ku− b‖22 ,

x̃n+1
j = x̃nj + µ(SHj(un+1)− xn+1

j ), j = 1, . . . , N,

ỹn+1 = ỹn + µ(Dun+1 − pn+1 − yn+1),

z̃n+1 = z̃n + µ(E(pn+1)− zn+1).

(3.6)

3.4. Convergence analysis. The convergence follows directly from that of the classic ADMM because
the problem is convex and the variables x, y, z, u, p can be grouped into two blocks {x, y, z} and {u, p}. For
fixed values of {u, p}, the updates of x, y, z are independent of one another. Because of this, the above

iteration is a direct application of ADMM. By letting r = (x, y, z), s = (u, p), t = (
√

λµ1

µ x̃,
√

α1µ2

µ ỹ,
√

α1µ2

µ z̃)

in (3.4) and the Lagrangian function be of the following form

L(x, y, z, u, p, x̃, ỹ, z̃) = λ

N∑
j=1

‖xj‖1 + α1 ‖y‖1 + α0 ‖z‖1 +
β

2
‖Ku− b‖22

+
µ

2

[ ∥∥∥∥∥
√
λµ1

µ
(xj − SHj(un))−

√
λµ1

µ
x̃j

∥∥∥∥∥
2

2

+

∥∥∥∥√α1µ2

µ
(y −Du+ p)−

√
α1µ2

µ
ỹ

∥∥∥∥2

2

+

∥∥∥∥√α0µ3

µ
(z − E(p))−

√
α1µ2

µ
z̃

∥∥∥∥2

2

]
,

the convergence analysis of the original ADMM [27, 28] yields the following result:

Theorem 3.1. For fixed µ1, µ2, µ3 > 0 and 0 < µ <
√

5+1
2 , the ADMM iteration (3.6) converges.

Regarding the convergence rate, even though we can observe linear convergence in numerical simulations,
we are not able to prove this. Note that the conditions in the recent work [32], which establish global linear
convergence, are not fully satisfied.

3.5. Subproblems. The first three subproblems are similar and the solutions are given explicitly by
shrinkage. Specifically, the solution to the x-subproblem is

xn+1
j = shrink(SHj(un) + x̃nj , 1/µ1), j = 1, . . . , N, (3.7)

where shrink(v, σ) = sgn(v) .∗ max(|v| − σ, 0).
Since the y-subproblem is componentwise separable, the solution to the y-subproblem reads as

yn+1(l) = shrink2(Dun(l)− pn(l) + ỹn(l), 1/µ2), l ∈ Ω, (3.8)

where yn+1(l) ∈ R2 represents the component of yn+1 located at l ∈ Ω, and the isotropic shrinkage operator,
shrink2, is defined as

shrink2(a, µ) =


0, a = 0,

(‖a‖2 − µ)
a

‖a‖2
, a 6= 0.
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Likewise, we have the solution to the z-subproblem as

zn+1(l) = shrinkF (E(pn)(l) + z̃n(l), 1/µ3), l ∈ Ω, (3.9)

where zn+1(l) ∈ S2×2 is the component of zn+1 corresponding to the pixel l ∈ Ω and

shrinkF (b, µ) =


0, b = 0,

(‖b‖F − µ)
b

‖b‖F
, b 6= 0.

Note that 0 here is a 2× 2 zero matrix and ‖ · ‖F is the Frobenius norm of a matrix.
To solve the (u, p)-subproblem, we obtain the first-order necessary conditions for optimality as follows

λµ1

N∑
j=1

M∗Hj
(MHj

u− xn+1
j + x̃nj ) + α1µ2

2∑
j=1

DT
j (Dju− pj − yn+1

j + ỹnj ) + βK∗(Ku− b) = 0

α1µ2(p1 −D1u+ yn+1
1 − ỹn1 ) + α0µ3

(
DT

1 (D1p1 − zn+1
1 + z̃n1 ) +

1

2
DT

2 (D2p1 +D1p2 − 2zn+1
3 + 2z̃n3 )

)
= 0

α1µ2(p2 −D2u+ yn+1
2 − ỹn2 ) + α0µ3

(
DT

2 (D2p2 − zn+1
2 + z̃n2 ) +

1

2
DT

1 (D1p2 +D2p1 − 2zn+1
3 + 2z̃n3 )

)
= 0

.

(3.10)
Depending on the formulation of K, various methods can be used to efficiently solve the above linear
system. In this paper, we demonstrate the idea by solving the compressive sensing reconstruction problem,
i.e., K ∈ Cq×n2

with q � n2. We look at challenging scenarios when the sample size q is extremely
small compared to the image size n2, and/or, the noise r is excessive. Also, in this section, we focus on
incomplete Fourier measurements because they are popular and have broad applications in medical imaging.
Let K = Fp = PF with P a selection matrix, and F a 2D matrix representing the 2D discrete Fourier

transform F . The selection matrix P ∈ Rq×n2

keeps the (n(j − 1) + h)-th row of the n2 × n2 identity
matrix if the data at frequency (h, j) is sampled. Extensions to K = PW , with W a unitary transform
(such as in cosine transform or wavelet transform), are left in Section 4. For a more general K, a distributed
optimization based ADMM can be explored [31].

By the fact that circulant matrices can be diagonalized under the Fourier transform, FDjF
∗ and

FDT
j DkF

∗ with j, k = 1, 2 are diagonal matrix. Thus the coefficient matrix associated to (u, p1, p2) can
be diagonalized blockwise under the Fourier transform, implying that the closed-form solutions to (3.10) can
be obtained by multiplying a preconditioner matrix.

Now we show how to get the closed-form solutions to (3.10). After grouping the like terms in (3.10), we
obtain the following linear system d1 dT4 dT5

d4 d2 dT6
d5 d6 d3

 up1

p2

 =

B1

B2

B3

 ,
where the block matrices are defined as

d1 = λµ1

N∑
j=1

M∗Hj
MHj

+ α1µ2

2∑
j=1

DT
j Dj + βK∗K

d2 = α1µ2 + α0µ3D
T
1 D1 +

1

2
DT

2 D2

d3 = α1µ2 + α0µ3D
T
2 D2 +

1

2
DT

1 D1

d4 = −α1µ2D1

d5 = −α1µ2D2

d6 =
1

2
DT

1 D2
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and 

B1 = λµ1

N∑
j=1

M∗Hj
(xn+1
j − x̃nj ) + α1µ2

2∑
j=1

DT
j (yn+1

j − ỹnj ) + βK∗b

B2 = α1µ2(ỹn1 − yn+1
1 ) + α0µ3D

T
1 (zn+1

1 − z̃n1 ) +
1

2
DT

2 (2zn+1
3 − 2z̃n3 )

B3 = α1µ2(ỹn2 − yn+1
2 ) + α0µ3D

T
2 (zn+1

2 − z̃n2 ) +
1

2
DT

1 (2zn+1
3 − 2z̃n3 )

.

Next we multiply a preconditioner matrix from the left to the linear system such that the coefficient matrix
is blockwise diagonal:F 0 0

0 F 0
0 0 F

d1 dT4 dT5
d4 d2 dT6
d5 d6 d3

F 0 0
0 F 0
0 0 F

∗ FuFp1

Fp2

 =

F 0 0
0 F 0
0 0 F

B1

B2

B3

 .
This operation can also be equivalently performed by multiplying each equation in (3.10) from the left with

F . By denoting d̃j = diag(FdjF
∗) and d̃Tj = diag(FdTj F

∗) = conj(diag(FdjF
∗)), we have

d̃1. ∗ (Fu) + d̃T4 . ∗ (Fp1) + d̃T5 . ∗ (Fp2) = FB1

d̃4. ∗ (Fu) + d̃2. ∗ (Fp1) + d̃T6 . ∗ (Fp2) = FB2

d̃5. ∗ (Fu) + d̃6. ∗ (Fp1) + d̃3. ∗ (Fp2) = FB3

.

Similar to the scalar case, Fu, Fp1 and Fp2 can be obtained by applying the Cramer’s rule. Hence u, p1

and p2 have the following closed forms

u = F ∗


∣∣∣∣∣∣∣
FB1 d̃T4 d̃T5
FB2 d̃2 d̃T6
FB3 d̃6 d̃3

∣∣∣∣∣∣∣
∗

.

/
denom



p1 = F ∗


∣∣∣∣∣∣∣
d̃1 FB1 d̃T5
d̃4 FB2 d̃T6
d̃5 FB3 d̃3

∣∣∣∣∣∣∣
∗

.

/
denom


p2 = F ∗


∣∣∣∣∣∣∣
d̃1 d̃T4 FB1

d̃4 d̃2 FB2

d̃5 d̃6 FB3

∣∣∣∣∣∣∣
∗

.

/
denom



, (3.11)

where the division is componentwise and

denom =

∣∣∣∣∣∣∣
d̃1 d̃T4 d̃T5
d̃4 d̃2 d̃T6
d̃5 d̃6 d̃3

∣∣∣∣∣∣∣
∗

.

Here | · |∗ is defined to be∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
∗

= a11.∗a22.∗a33+a12.∗a23.∗a31+a13.∗a21.∗a32−a13.∗a22.∗a31−a12.∗a21.∗a33−a11.∗a32.∗a23,

where .∗ is componentwise multiplication and aij ∈ Rn.
We keep iterating until both the primal and the dual residuals are small enough [31]. The resulting

algorithm is summarized in Algorithm 1. A related algorithm without the shearlet regularizer derived by the
split Bregman method can be found in [11]. The performance also depends on the selection of parameters,
which is explained in Section 5.

9



4. Extension. In the above section, we elaborate how to numerically solve the model (3.3) using
ADMM when the sampling matrix K = PF with F being a Fourier transform matrix. In this section, we
extend the proposed algorithm to more general cases: K = PT with T being any unitary matrix. Examples
of unitary T include the discrete cosine transform (DCT) matrix and the discrete wavelet transform (DWT)
matrix. Reconstruction from incomplete DCT and DWT measurements may be used for image inpainting.
Let T represent the 2D DCT operator and T be its matrix representation, then T is the Kronecker product
of two n × n identical orthogonal matrices Q representing the one-dimensional DCT. For DWT, T is the
Kronecker product of two W ’s with W resembles 1D discrete wavelet transform. In both cases, T is unitary
and K∗K may not be diagonalizable under the Fourier transform, so the normal equation in u-subproblem
cannot take advantage of the Fourier transform. Following [33], we introduce another auxiliary variable
f := Tu and solve the following problem for u:

min
u,f,p

β

2
‖Pf − b‖22 + λ

N∑
j=1

‖xj‖1 + α1 ‖y‖1 + α0 ‖z‖1

subject to f = Tu, xj = SHj(u), y = Du− p, z = E(p).

(4.1)

Similar to the above section, we apply ADMM and decompose the optimization problem into five sets
of subproblems as follows:



xn+1
j = argmin

xj

‖xj‖1 +
µ1

2

∥∥xj − SHj(un)− x̃nj
∥∥2

2
, j = 1, . . . , N,

yn+1 = argmin
y
‖y‖1 +

µ2

2
‖y − (Dun − pn)− ỹn‖22 ,

zn+1 = argmin
z
‖z‖1 +

µ3

2
‖z − E(pn)− z̃n‖22 ,

fn+1 = argmin
f

1

2
‖Pf − b‖22 +

ν

2

∥∥∥f − Tun − f̃n∥∥∥2

2
,

(un+1, pn+1) = argmin
u,p

λµ1

2

N∑
j=1

∥∥xn+1
j − SHj(u)− x̃nj

∥∥2

2
+
α1µ2

2

∥∥yn+1 − (Du− p)− ỹn
∥∥2

2

+
µ3

2
‖z − E(pn)− z̃n‖22 +

βν

2

∥∥∥fn+1 − Tu− f̃n
∥∥∥2

2
,

x̃n+1
j = x̃nj + µ(SHj(un+1)− xn+1

j ), j = 1, . . . , N,

ỹn+1 = ỹn + µ(Dun+1 − pn+1 − yn+1),

z̃n+1 = z̃n + µ(E(pn+1)− zn+1).

f̃n+1 = f̃n + µ(Tun+1 − fn+1)

where the fourth subproblem has the following closed-form solution

f = (PT b+ ν(Tu+ f̃))./(P̃ + ν),

where P̃ = Diag(PTP ) ∈ Rn2

. The others can be solved similarly as discussed in the previous section.
Note that we change the variable f = Tu to circumvent the simultaneous diagonalization of TTPTPT and
DT
j Dj (j = 1, 2) under the Fourier transform (TTPTPT may not be circulant). By letting r = (x, y, z, f)

and s = (u, p) in (3.4), the convergence of the proposed algorithm is guaranteed for µ1, µ2, µ3, ν > 0 and

0 < µ <
√

5+1
2 .

5. Numerical results. We validate the method by reconstructing high quality images from incomplete
CS measurements. Besides CS, the new regularization scheme can be easily adapted to solve other inverse
problems arising in areas, e.g., medical imaging, computer vision, and hyperspetral imaging.

In this section, we demonstrate the performance of the proposed reconstruction algorithm on three
types of incomplete measurements: spectral Fourier (k-space), DCT and DWT measurements. We com-
pare the proposed algorithm with five closely related methods: TV+wavelet based method [34], weighted
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Algorithm 1 TGV2 and shearlet based image reconstruction by ADMM

1. Choose α0, α1, β, λ, µj , γj , j = 1, 2, 3.
2. Initialize u0, p0

1, p
0
2, x

0
j , x̃

0
j , (j = 1, . . . , N), y0

j , ỹ
0
j , (j = 1, 2), z0

j , z̃
0
j , (j = 1, 2, 3).

3. For n = 0, 1, 2, . . ., run the following computations

xn+1 is given by (3.7)

yn+1 is given by (3.8)

zn+1 is given by (3.9)

un+1, pn+1
1 , pn+1

2 are given by (3.11)

x̃n+1
j = x̃nj + γ(SHj(un+1)− xn+1

j ), j = 1, . . . , N

ỹn+1
j = ỹnj + γ(Dju

n+1 − pn+1
j − yn+1

j ), j = 1, 2

z̃n+1
j = z̃nj + γ((E(pn+1))j − zn+1

j ), j = 1, 2, 3.

If the stopping criteria are satisfied, it returns un+1 and stops.

TV(wTV)+wavelet (EdgeCS [35]), and TGV based MRI reconstruction (TGV only) [36], TV+framelet,
and TV+shearlet model. Here we use the framelet transform proposed in [37, 38]. In the wavelet involved
experiments, we use the Daubechies wavelet D4. We also turn the TGV and shearlet terms off, one at a
time, to further demonstrate that it is necessary to combine TGV and the shearlet transform for the best
performance. All experiments were performed in MATLAB R2012a running on a Dell desktop with Intel
Core i5 CPU at 3.10 GHz and 8 GB of memory.

We briefly review the other five methods used for comparison. The model based on TV+wavelet is:

min
u
βTV(u) + λ‖Φu‖1 +

1

2
‖Fp(u)− b‖22, (5.1)

where TV(u) can be either isotropic or anisotropic and Φ is the wavelet transform. EdgeCS alternately
performs image reconstruction and edge detection in a mutually beneficial manner. It detects edges from
the intermediate reconstruction and uses edge information to reweight the TV term. Therefore, it is a
wTV+wavelet model. The third approach TGV minimizes the sum of the TGV and data fidelity terms, not
using a shearlet sparsifying term. The TV+framelet and TV+shearlet models are defined in the same way
as TV+wavelet, except that the wavelet is replaced by the framelet and the shearlet respectively.

We test on both simulated data and real in vivo data. Several sets of incomplete spectral data (DFT) are
simulated from the 512× 512 foot and brain MR images with inhomogeneous image contrasts, the 512× 512
Barbara image and the 350× 350 knee MRI image with different levels of noise. Incomplete DCT and DWT
data are simulated from the 256 × 256 pepper image. To simulate the incomplete measurements, we start
with a clean image, scale its intensity values to [0, 1], and then apply the discrete Fourier transform, the
discrete cosine transform or the discrete wavelet transform. The incomplete measurements b is obtained by
keeping the transformed data only at selected locations, and zeroing out the rest. We keep samples along
certain radial lines passing through the center of the Fourier and DCT data. But for DWT, we use only
the low frequency components. Noise is added in the transform domain to test reconstruction robustness to
noise.

The comparison is done in terms of the relative error defined as

‖u− utrue‖22
‖utrue‖22

.

Note that it is related to the signal-to-noise ratio (SNR) defined as

SNR = 10 log10

‖utrue‖22
‖u− utrue‖22

,

and a low relative error corresponds to a high SNR.
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Parameter selection. By the convergence analysis in Section 3.4, the Algorithm 1 converges for any

µ1, µ2, µ3 > 0 and 0 < µ <
√

5+1
2 . We set µ1 = 300, µ2 = 10−3, µ3 = 10−5 for all the numerical results

because these parameters make the two terms in each of the three shrinkage functions comparable. We also
fix µ = 0.01 for i = 1, 2, 3. The other four parameters λ, β, α0, α1 are related to the noise level as well as the
sparsity of the underlying image of interest under shearlet transform and TGV regularity. We fix β to be
103, and raise λ, α0, α1 accordingly as the noise level increases. λ is set to be 0.01 for all the noise-free data
and 0.1 for the noisy knee data. α0 is raised from 10−3 to 10−2 and α1 is fixed as 10−3. We understand that
more fine tuning of the parameters may lead to better results, but the results under the current parameter
settings are consistently promising already. For shearlet involved experiments, we use the fast finite shearlet
transform (FFST) toolbox [19] with three scales, which contains 29 subbands (28 for high frequency and one
for low frequency). Note that appropriate parameters significantly reduce the number of iterations to meet
the stopping criteria.

5.1. Experiments on incomplete Fourier data. In the first example, we choose one slice of sagittal
T1-weighted foot MR image of size 512× 512 as the ground truth (http://www.mr-tip.com) and simulate
noise-free incomplete Fourier measurements with various sampling rates. The ground truth image consists
of soft-tissue structures such as bright muscles, dark tendons and ligaments. It also has a high contrast
resolution and clear edges. In Fig. 5.1, we show the results of TV+wavelet, wTV+wavelet, TV+framelet,
TV+shearlet and the proposed method, all using measurements from 70 radial sampling lines (sampling rate
14.74%). For better visual comparison, we zoom in on one joint area where the bones have fine textured
features. One can see that the proposed method is able to reconstruct oblique textures lying on the bones
while the other two methods blur the details. Our result preserves the gradual transition between the dark
soft tissue and bright bones better as well. We also test the methods with different sampling rates and
plotted the relative error versus the sampling rate in Fig. 5.2, which shows the consistent superiority of the
proposed method.

Next we test on incomplete Fourier data of a human brain MR image. The underlying image has
inhomogeneous contrasts in different areas, especially in the gray matter and the white matter. We tested
TV+wavelet, wTV+wavelet, TV+framelet, TV+shearlet, and the proposed algorithm, with measurements
from 40 radial sampling lines (8.79% samples). We show the results in Fig. 5.3 and zoom in one small patch
for better visual comparison. The image produced by our proposed method is of better quality than the
others. TV+wavelet over-smoothes the whole image, while wTV+wavelet is able to detect the edges but loses
some gradual transitions between smooth areas and boundaries. To further compare the results, we take the
difference between the ground truth and the reconstructed image for each method and display the inverted
residue images in Fig. 5.4. One can see that the residual of the proposed algorithm is most homogeneous
and contains the least amount of structured information. In Fig. 5.5, we observe that the proposed method
consistently outperforms the other methods under various sampling rates.

In the following example, in addition to comparing our method with TV+wavelet, wTV+wavelet,
TV+framelet and TV+shearlet, we also emphasize the necessity to use both TGV and shearlet simulta-
neously. We show that turning off one of them leads to worse results. The test image is Barbara with
various textured patterns and many details, which require a high sampling rate to get an ideal reconstruc-
tion. In Fig. 5.6 we show the results obtained by TV+wavelet, wTV+wavelet, TGV, shearlet, TV+framelet,
TV+shearlet, and the proposed method, using measurements from 70 radial sampling lines (sampling rate
14.74%). One patch of table cloth is zoomed in for better visual comparison. Our proposed method is able
to recover most of the directional textures while the other four methods result in blurry or missing textures.
The consistency of performance is illustrated in Fig. 5.7 by using different sampling rates. This shows that
the proposed algorithm significantly outperforms with respect to the relative error.

Furthermore, our proposed method is robust to noise. Our next test image is the T1 weighted MR image
of the knee showing femur, patella, tibia and menisci from http://www.mr-tip.com/. We added zero-mean
complex Gaussian noise σ = 10 to the k-space data sampled on 40 radial lines (sampling rate 12.71%). The
reconstructed images and their associated enlarged patches from TV+wavelet, wTV+wavelet, TV+framelet,
TV+shearlet, and the proposed, are shown in Fig. 5.8. One can see that our result is more natural in the
bones and junctions and is closer to the ground truth than the others. By fixing the sampling rate as 12.71%,
we also tested the Fourier data with different noise levels σ = 5, 10, 15, 20. As the noise level σ increases, the
regularization parameters λ, β need to be adjusted slightly. This is also true in the other algorithms. We
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Ground truth TV+wavelet

wTV+wavelet TV+framelet

TV+shearlet Proposed

Fig. 5.1. Reconstructed foot MR image from 14.74% spectral data. First row from left to right: ground truth, close-up
of the ground truth, TV+wavelet, close-up of TV+wavelet. Second row from left to right: wTV+wavelet, close-up of weighted
result, TV+framelet, close-up of TV+framelet. Third row from left to right: TV+shearlet, close-up of TV+shearlet, our result,
close-up of our result.

σ 5 10 15 20
TV+wavelet 0.1066 0.1173 0.1311 0.1390
wTV+wavelet 0.0988 0.1042 0.1117 0.1197
TV+framelet 0.1010 0.1095 0.1226 0.1364
TV+shearlet 0.0971 0.0991 0.1026 0.1074
proposed 0.0873 0.0907 0.0977 0.1053

Table 5.1
Relative error comparison for knee MRI with 40 radial sampling lines. Sampling rate is fixed as 12.71%.

compare here the optimal results of each method. From Table 5.1, we observe that our proposed algorithm
is robust to noise and produces more accurate images than the other methods.

To show the practical applicability of our approach, we test our proposed algorithm on a 256 × 256 in
vivo medical image provided by the medical school of CWRU. Here we collected the k-space measurements
by fixing a 40×40 box at the center of the low frequency area and sampling randomly elsewhere. In Fig. 5.9,
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Fig. 5.2. Plots of relative error versus sampling rate for reconstruction of foot MRI

Ground truth Cropped ground truth TV+wavelet Cropped TV+wavelet

wTV+wavelet Cropped wTV+wavelet TV+framelet Cropped TV+framelet

TV+shearlet Cropped TV+shearlet Proposed Cropped proposed

Fig. 5.3. Reconstructed brain MR image from 8.79% spectral samples. First row from left to right: ground truth, close-
up of the ground truth, TV+wavelet, close-up of TV+wavelet. Second row from left to right: wTV+wavelet, close-up of
wTV+wavelet, TV+framelet, close-up of TV+framelet. Third row from left to right: TV+shearlet, close-up of TV+shearlet,
our result, close-up of our result.
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Fig. 5.4. For better visualization, we inverted the grayscale. Darker regions have high errors. From left to right:
TV+wavelet, wTV+wavelet, TV+framelet, TV+shearlet and the proposed, the relative errors are: 14.66%, 15.16%, 15.94%,
12.81%, 11.91% respectively.

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

Sampling rate

R
el

at
iv

e 
er

ro
r

 

 

Proposed
TV+wavelet
wTV+wavelet
TV+framelet
TV+shearlet

Fig. 5.5. Plots of relative error versus sampling rate for reconstruction of brain MRI

we set the random sampling rate as 20% and compare our method with the TV+wavelet, wTV+wavelet,
the shearlet transform and the TGV regularizers based approaches. In Fig. 5.10, we show the relative error
for different methods by varying the random sampling rate while fixing the low frequency box. One can see
that the fewer samples available, the larger contributions both TGV and shearlet sparsity will make to the
improvement of reconstruction.

5.2. Experiments on incomplete DCT and DWT data. Finally, we show some examples on
incomplete DCT and DWT data. The underlying image is a 256× 256 piecewise smooth image of peppers.
We simulate the data by taking its DCT, followed by sampling 100 radial lines (39.16% sampling rate).
Fig. 5.11 compares our result obtained by the proposed algorithm in Section 4 and the backprojection result,
which simply takes the inverse DCT of the incomplete data.

We further explore the performance of our proposed algorithm in DWT related image reconstruction.
To simulate the data, we start with applying DWT (Daubechies wavelet filters with length 2) to the pepper
image, and then keep only 25% of the measurements. Fig. 5.12 shows the proposed result and the back
projection result obtained by operating the inverse DWT on the given data. In both DCT and DWT
experiments, the proposed algorithm outperforms the back projection approaches significantly.

6. Conclusions. We proposed to combine TGV and the `1-norm of discrete shearlet transform to form
a new regularization approach. Because it is equipped with options to accommodate the high degrees of
smoothness by involving higher order derivatives, TGV is more appropriate to represent the regularities
of piecewise smooth images. It also reduces the oil painting artifacts commonly seen in the results of TV
regularization. Considering the presence of varying directional features in images, we employ the shearlet
transform instead of the wavelet transform to preserve the abundant geometric information of images. To
deal with the non-differentiable terms in our model, we apply ADMM to solve the optimization problem.
All subproblems have closed form solutions thanks to the Fourier transform. We also extend our framework
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Ground truth TV+wavelet

wTV+wavelet TGV

Shearlet TV+framelet

TV+shearlet Proposed

Fig. 5.6. Reconstructed barbara image from 14.74% spectral measurements.

to handle more general measurements including those obtained from the DCT and DWT. Numerical results
show the improvement of the reconstruction quality over the compared models in terms of preserving both
edges and diverse texture patterns.
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Fig. 5.7. Plots of relative error versus sampling rate for Barbara image reconstruction.

Ground truth TV+wavelet

wTV+wavelet TV+framelet

TV+shearlet Proposed

Fig. 5.8. Recovered knee image from noisy data (sampling rate 12.71%).
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Ground truth TV+wavelet

wTV+wavelet Shearlet

TGV Proposed

Fig. 5.9. Recovered in vivo medical image (overall sampling rate 21.82%).
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Fig. 5.10. Plots of relative error and SNR versus sampling rate for in vivo medical image reconstruction.
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Fig. 5.11. Reconstruction of peppers from 39.16% DCT data. From left to right: underlying image, backprojection result
with relative error 9.44%, our proposed result with relative error 5.85%.

Fig. 5.12. Reconstruction of peppers from 25% DWT data. From left to right: underlying image, backprojection result
with relative error 9.98%, our proposed result with relative error 8.55%.
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