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Abstract. We present a new box spline wavelet frame and apply it for image edge analysis. The wavelet frame is tight and
constructed based on a box spline of eight directions which is seldom used for applications before. Due to the eight different
directions, it can find edges of various types in detail quite well. In addition to step edges (local discontinuities in intensity), it
is able to locate Dirac edges (momentary changes of intensity) and hidden edges (local discontinuity in intensity derivatives).
The method is simple and robust to noise. Many numerical examples are presented to demonstrate the effectiveness of this
method. Quantitative and qualitative comparison with other edge detection techniques are given to show the advantage of
this wavelet frame. Our test images include synthetic ones with known ground truth and natural, medical images with rich
geometric information.
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1. Introduction. Edge detection, consistent with human perception is the first step for image inter-
pretation and understanding. People are interested in identifying the constituent parts of an image when
viewing it. Edges provide the topology and structure information of essential objects in an image. That is,
edges present a skeleton of an image. These edge information can be used directly for feature extraction,
object identification, region segmentation etc. It can also be used as a prior information to help improve
other tasks such as image denoising, image restoration, image reconstruction, pattern recognition etc. In
pattern recognition analysis for instance, it saves tremendous computational time to work on a 1-bit 0-1 edge
map than on a 8-bit gray scale image. General edge detection task recovers step edges (local discontinuities
in intensity), Dirac edges (momentary changes of intensity), fractal edges (which are caused by noise present
in the image), as well as other edges such as hidden edges (discontinuous locations of some directional deriva-
tives of images). Certainly, edge detectors produce edges with compromise among accuracy, completeness,
and in some cases, smoothness. The goal of the research is to find the details of an image as accurate as
possible.

In this paper, we present an edge detector based on box spline wavelet frames. We shall show that it is
able to detect the features of an image excellently. Box splines are compactly supported piecewise polynomial
functions. See [12] and [26] for detail in theory and see [22] for explicit representations of bivariate box splines
on three and four direction meshes. Box splines are smooth refinable functions and hence are often used
to construct various wavelet functions such as bi-orthogonal wavelets, pre-wavelets, tight wavelet frames in
multivariate setting (cf. see [18, 23, 27] for explicit formulas of them with any regularity). Although it is
known for several years that wavelet functions can be used for image edge detection, the performance and
effectiveness of box spline wavelet frames for such application are not well understood. In particular, it is not
known which box spline wavelet frame works best for edge extraction. Following the construction method
in [27] and based on the work in [33], we have obtained box spline wavelet framelets based on various box
splines B111, B221, B222, B1111, B2111, B2211 on three or four direction mesh (cf. [12] or [26]) and B8 which
is a box spline based on 8 different directions to be explained in section 3. Mainly we have experimented
these wavelet frames as well as those based on the tensor product of univariate linear, quadratic, cubic and
quadratic B-splines for edge detection. It turns out that B8, the one based on eight different directions, is
most effective in catching all details of images. Qualitative and quantitative comparison with some other
types of edge detectors shows that the proposed box spline edge detector produces more accurate edges
under similar completeness and smoothness. For the sake of fair comparison, we start with a synthetic image
with ground truth edges, and apply four edge detectors under various parameter settings to this image. We
then compare the best results of the four methods using measure Pratt’s Figure of Merit (Figure 4.1) and
compare results under all parameter settings using measure probability of detection (Figure 4.2). The results
show that the proposed edge detector leads to higher Figure of Merit and consistently higher probability of
detection. Visual qualitative comparison (Figures 4.3 - 4.11) implies that the proposed edge detector is able
to catch fine details and is robust to noise. We explain the detail in section 3 and demonstrate results in
section 4 with various applications.
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The paper is organized as follows. We start with a review on existing edge detectors in section 2, and
explain the construction of box spline wavelet frames, and image noise removal and edge detection based on
the box spline frames in section 3. In particular, we explain a new box spline function based on a 8 direction
mesh and use it to construct wavelet frames. In section 4, we compare the proposed box spline edge detector
with several others, and demonstrate that the box spline wavelet frame always performs the best in capturing
the details of images. In addition we present examples to find the hidden edges (the discontinuity of second
order derivatives) of images in section 4.5. Finally, conclusion is drawn in section 5.

2. Review on edge detectors. In this section we review some existing edge detectors, some of which
will be compared with the proposed edge detector.

2.1. Partial derivative based edge detectors. An important class of existing edge detectors is based
on partial derivatives of the input image. Locations with maximal gradient or zero Laplacian are classified as
edges [3, 13, 19, 28, 31, 20]. Those gradient based edge detectors typically include three steps. First, to remove
noise if the input image is not clean enough; usually Gaussian convolution is applied. Second, to compute
approximated partial derivatives which can be done by convolving with some kernels. Various kernels have
been developed for this purpose with different accuracy along different directions [48, 46]. Prewit and Canny
edge detectors for instance differ in specific forms of the kernels used to approximate partial derivatives.
Third, to locate edges through thresholding the norm of gradients. The standard thresholding treats pixels
with gradient magnitude greater than one threshold as edges. Hysteresis thresholding uses two threshold
values. Any pixel above the upper threshold is characterized as edge, so are those pixels that are in the
neighborhood of an edge pixel and with gradients higher than the lower threshold. Hysteresis thresholding
leads to connected edges and is sometimes referred to as linking. Non-maximum suppression is sometimes
used to thin edges in method like Canny.

Edge detection methods of this type are robust to low-level noise, but tend to mistakenly detect fake
edges created by excessive noise/artifacts. To enhance the robustness to noise/artifacts, one can combine
them with local mutual information [16].

2.2. Continuous wavelet based and shearlet edge detectors. Mallat’s wavelet based method [30]
can not only detect the location of edges but can also characterize the types (step, Dirac, fractal, smooth)
of edges through analyzing changes in Lipschitz regularity across different scales. We first review definition
of Lipschitz regularity and wavelet transform, followed by presenting a theorem that helps relate the two of
them.

Definition 2.1 (Lipschitz regularity). Let 0 ≤ α ≤ 1. A function f(x) is uniformly Lipschitz α over an
interval (a, b) if there exists a constant K such that for any x0, x1 ∈ (a, b), |f(x0)− f(x1)| ≤ K|x0 − x1|α.

Lipschitz regularity is difficult to verify directly and is thus not practically useful. However, the following
theorem relates local Lipschitz regularity with the dyadic wavelet transform in an explicit form. Let θ(x)
be a smoothing function that satisfies

∫∞
−∞ θ(x) = 1, lim

x→−∞
θ(x) = 0, and lim

x→∞
θ(x) = 0. Let ω(x) := θ′(x),

which is a wavelet since
∫∞
−∞ ω(x)dx = 0. The continuous wavelet transform of f at scale s is defined as

Wsf(x) := f ∗ ωs(x), where ωs(x) =
ω(x/s)

s is the scaled wavelet. For dyadic wavelet transforms, the scale s
is chosen as s = 2j , j = 1, 2, · · · .

Theorem 2.2. [30, 10] Let 0 < α < 1. A function f(x) is uniformly Lipschitz α over (a, b) if and
only if there exists a constant K > 0 such that the wavelet transform satisfies |W2jf(x)| ≤ K(2j)α, for all
x ∈ (a, b), and j = 1, 2, · · · .

According to this theorem, if supx∈(a,b) |W2jf(x)| strictly decreases as j increases, then −1 ≤ α < 0,
and there is an impulse (Dirac edge) at x; if the maximum increases with scale, then 0 < α ≤ 1, and the
signal/image intensity changes gradually and thus is smooth at x. When the maximum does not change
much across scales, α = 0, and there is a step edge at x. These form a base for using continuous wavelet for
edge detection.

However, continuous wavelet based edge detector [30] has difficulty in distinguishing close edges and
has poor angular accuracy. It is due to the well known fact that wavelets are perfect in describing isotropic
structures, but not so well dealing with anisotropic phenomena. A more recent work in this direction of
research is to use shearlet [14, 21] for edge detection and analysis [45]. It claims to be effective in detecting the
location, orientation of edges and the number of edges at each point. Shearlet transform decomposes an image
with respect to scale, location and orientation. The orientation information at each scale is directly available.
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Computationally, shearlet transform applies kernels with trapezoidal support along various directions to the
high frequency component of the input image using multiple scales. The locations of the edges of the
image are then characterized by observing the change of shearlet transform coefficients across scales. The
orientations of edges are extracted from the directions along which the shearlet transform coefficients are
significant while the number of edges at each point is determined by the number of peaks in absolute shearlet
transform coefficients.

2.3. Segmentation based edge detectors. One can also extract edges from segmentation results.
Image segmentation [32, 2, 4] partitions image domain into different subregions, each of which is homogeneous
with respect to some characteristics such as intensity. The borders of those subregions form the edges. To give
more mathematical details, we take 2-phase Mumford-Shah method as an example. Let g be the intensity
function of an input image, it separates the image domain into two parts Ω1 and Ω2, one inside the edge
contour Γ and one outside, such that g can be approximated by functions f1, f2 that are C1 smooth in Ω1,Ω2

respectively. This is done by minimizing

E(f1, f2,Γ) =
1

2
[

∫
Ω1

(g − f1)
2 +

∫
Ω2

(g − f2)
2] + α[

∫
Ω1

|∇f1|2 +
∫
Ω2

|∇f2|2] + β · Length(Γ)

with respect to functions f1, f2 and contour Γ. The implementation of Mumford-Shah model is made easy
in Chan-Vese method [4] using level set [34]. More specifically, in the special case when f1, f2 are constant
values c1, c2, it represents the edge contour Γ by the zero level set of a Lipschitz function Φ : Ω → R and the
regions inside and outside of the contour Γ by the regions with positive and negative Φ values respectively.
Let H(·) be Heaviside function defined as H(z) = 1 for positive z and 0 elsewhere. Then the Φ minimizes

1

2

∫
Ω

[H(Φ)(g − c1)
2 + (1−H(Φ))(g − c2)

2] + β

∫
Ω

|∇H(Φ)|

gives the segmentation of the domain and the edge contours. Especially, edges are detected from 0 level set
of Φ.

Though segmentation results can be used to derive edges, it is not a common practice to extract edges
from segmentation algorithms.

2.4. Other methods. Other edge detectors include Mumford-Shah green function [29], morphological
gradient [40, 35, 37], fractal geometry [47, 43], high order and variable order total variation [41] based
methods.

3. Box spline tight wavelet frames. Tight wavelet frames are generalizations of discrete orthonormal
wavelets [38, 39, 7, 8, 9, 11, 33, 27, 25]. Box splines are refinable functions and one can easily choose various
directions to have a box spline function with a desired order of smoothness. Naturally, they have been used
to construct various wavelet functions including wavelet frames. An advantage of using a frame is that it
consists of many redundant functions which can approximate various edges and features better than using
only linearly independent functions. Hence, a tight wavelet frame based on box spline with more redundant
directions is able to find more edges/features from an image than a frame based on a box spline with less
redundant directions, e.g. tensor product of univariate B-spline wavelet frames. In this section, we first
review box spline tight wavelet frames and then present our derivation of the new box spline wavelet frame
based on B8.

3.1. Review on general box spline tight wavelet frames. We begin with the definition of tight
frames based on multi-resolution approximation of L2(R2). Given a function ψ ∈ L2(R2), we set

ψj,k(y) = 2jψ(2jy − k).

Let Ψ be a finite subset of L2(R2) and

Λ(Ψ) := {ψj,k, ψ ∈ Ψ, j ∈ Z, k ∈ Z2}.
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Definition 3.1. We say that Λ(Ψ) is a frame if there exist two positive numbers A and B such that

A∥f∥2L2(R2) ≤
∑

g∈Λ(Ψ)

|⟨f, g⟩|2 ≤ B∥f∥2L2(R2)

for all f ∈ L2(R2). Λ(Ψ) is a tight frame if it is a frame with A = B. In this case, after a renormalization
of the g’s in Ψ, we have ∑

g∈Λ(Ψ)

|⟨f, g⟩|2 = ∥f∥2L2(R2)

for all f ∈ L2(R2).
It is known (cf. [10]) that when Λ(Ψ) is a tight frame, any f ∈ L2(R2) can be represented by g ∈ Λ(Ψ),

i.e.

f =
∑

g∈Λ(Ψ)

⟨f, g⟩g, ∀f ∈ L2(R2).

Let ϕ ∈ L2(R2) be a compactly supported refinable function, i.e.,

ϕ̂(ω) = P (ω/2)ϕ̂(ω/2)

where P (ω) is a trigonometric polynomial in eiω. P is often called the mask of refinable function ϕ. We look
for Qi (trigonometric polynomial) such that

P (ω)P (ω + ℓ) +

r∑
i=0

Qi(ω)Qi(ω + ℓ) =

{
1, if ℓ = 0,

0, ℓ ∈ {0, 1}2π\{0}.
(3.1)

The conditions (3.1) are called the Unitary Extension Principle (UEP) in [38], [39] and [11]. With these Qi’s
we can define wavelet frame generators or framelets ψ(i) defined in terms of the Fourier transform by

ψ̂(i)(ω) = Qi(ω/2)ϕ̂(ω/2), i = 1, . . . , r. (3.2)

Then, if ϕ belongs to Lip α with α > 0, Ψ = {ψ(i), i = 1, . . . , r} generates a tight frame, i.e., Λ(Ψ) is a tight
wavelet frame (cf. [27]).

Furthermore, letting Q be a rectangular matrix defined by

Q =



Q1(ξ, η) Q1(ξ + π, η) Q1(ξ, η + π) Q1(ξ + π, η + π)
Q2(ξ, η) Q2(ξ + π, η) Q2(ξ, η + π) Q2(ξ + π, η + π)
Q3(ξ, η) Q3(ξ + π, η) Q3(ξ + π, η) Q3(ξ + π, η + π)
Q4(ξ, η) Q4(ξ + π, η) Q4(ξ + π, η) Q4(ξ + π, η + π)

...
...

...
...

Qr(ξ, η) Qr(ξ + π, η) Qr(ξ + π, η) Qr(ξ + π, η + π)


, (3.3)

and P = (P (ξ, η), P (ξ + π, η), P (ξ, η + π), P (ξ + π, η + π))⊤, (3.1) is simply

Q∗Q = I4×4 − PP⊤. (3.4)

The construction of tight wavelet frames is to find Q satisfying (3.4) which is an exact reconstruction
condition. It was observed in [27] that Q can be easily found if P satisfies the QMF condition, i.e., PTP = 1.
In this case, Q has a very simple expression. However, the mask P of a refinable function ϕ usually satisfies
the following sub-QMF condition ∑

ℓ∈{0,1}2π

|P (ω + ℓ)|2 ≤ 1. (3.5)
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For example, bivariate box splines on three or four direction mesh or eight direction mesh to be explained
below, the mask will satisfy (3.5). Although there is no Riesz-Féjer theorem in the multivariate setting, we
are able to find additional Laurent polynomials P̃i to have (3.6) for bivariate box spline functions (cf. [27]).
Then we can use the following result (mainly its constructive proof in [27]) to find tight wavelet frame.

Theorem 3.2 (Lai and Stöckler, 2006). Suppose that P satisfies the sub-QMF condition (3.5). Suppose
that there exists Laurent polynomials P̃1, . . . , P̃N such that

∑
m∈{0,1}2

|Pm(ω)|2 +
N∑
i=1

|P̃i(2ω)|2 = 1, (3.6)

where Pm,m ∈ {0, 1}2 are polyphases of P . Then there exist 4+N compactly supported tight frame generators
with wavelet masks Qm,m = 1, . . . , 4 +N such that P,Qm,m = 1, . . . , 4 +N satisfy (3.4).

We next recall the definition of bivariate box spline functions on direction set D. For example, writing
e1 = (1, 0), e2 = (0, 1), e3 = e1 + e2, e4 = e1 − e2, e5 = (2, 1), e6 = (2,−1), e7 = (1, 2), e8 = (1,−2) to be
direction vectors, let D be a set of these vectors with some repetitions. Such D is called a direction set.
Then the box spline ϕD associated with direction set D may be defined in terms of Fourier transform by

ϕ̂D(ω) = PD(
ω

2
)ϕ̂D(

ω

2
), (3.7)

where PD is

PD(ω) =
∏
ξ∈D

1 + e−iξ·ω

2
.

We refer the interested reader to [5] and [12] for many properties of box splines. For explicit polynomial
representation of bivariate box splines, see [22] and [26] which is enable us to evaluate these box splines easily.
Note that it is easy to show that the mask PD satisfies (3.5). To construct the associated tight framelets,
we mainly find additional Laurent polynomials to satisfy (3.6). However, finding these additional Laurent
polynomials may not be an easy task as there is no existence theory nor a constructive procedure except for
box splines on three and four direction mesh.

3.2. The eight direction box spline. When using a box spline wavelet frame, we have the flexibility
to choose a direction set. We can choose a box spline function with as many directions as possible to
increase the redundancy. However, the more directions, the smoother the box spline function is, the longer
the length of the low-pass and high-pass filters is, and hence, the more difficult to find tiny detail of the
image. Empirical results show that the wavelet frame based on box spline with eight directions is the ideal
one for edge/feature/detail detection. In this paper we shall present a tight framelet based on box spline
ϕ8 := ϕD8 with

D8 = {e1, e2, e1 + e2, e1 − e2, 2e1 + e2, 2e1 − e2, e1 + 2e2, e1 − 2e2}. (3.8)

Since D8 contains eight directions, we call the ϕ8 eight direction box spline. The eight direction box spline
ϕ8 is new and has not been studied in the literature. Let us explain it a little bit more. It is a bivariate
spline function of total degree ≤ 6 and is in C5, that is, it is fifth continuously differentiable. Also ϕ8 is
compactly supported and is nonnegative. All integer translates of ϕ8 are linearly dependent. Thus they are
redundant. But they form a partition of unity after a scale. The mask P8 := PD8 can be found easily and is

P8(ξ, η) =

(
1 + eiξ

2

)(
1 + eiη

2

)(
1 + ei(ξ+η)

2

)(
1 + ei(ξ−η)

2

)
(
1 + ei(ξ+2η)

2

)(
1 + ei(2ξ+η)

2

)(
1 + ei(ξ−2η)

2

)(
1 + ei(2ξ−η)

2

)
.

(3.9)

For convenience, we shall write P8(ξ, η) =
∑
j,k

pj,ke
−ijξe−ikη. To use Theorem 3.2, we need to solve the

polynomial equation in (3.6) which is generally not guaranteed to have a solution. However, for box splines
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on three and four direction mesh, it is known that the polynomial equation (3.6) has a solution (cf. [27]
and [24]). Along this general direction, one result is worth mentioning. In [15], (3.6) has a solution if the
inequality in (3.5) is an strict inequality. For box spline ϕ8, we solve (3.6) by using a brute force method.
Indeed, we do not know how many extra Laurent polynomials P̃j we need at the first place. That is, we

do not know N in (3.6). Also we do not know what the degrees of these extra Laurent polynomials P̃j are
although one intuition is that the degrees should be less than or equal to 6, the degree of the 8 direction box
spline ϕ8. We started with one extra Laurent polynomial and (3.6) leads to a system of several multivariate
quadratic equations. We use Maple to set up these equations. However, the system has no solution. We
then try two extra polynomials, three extra polynomials, until ten extra Laurent polynomials which seem
to have a good chance to get the system solved. The system of many multivariate quadratic equations with
more than 50 variables arises from these ten extra polynomials by Maple. These are quadratic equations and
hard to solve. We use Maple to simplify these multivariate quadratic equations and then use our intuition to
decouple these equations and break the system into smaller subsystems to solve. Detail is not shown here.
Eventually we are able to solve the system within a very small tolerance (e.g. 10−10) and find ten Laurent

polynomials P̃j , j = 1, · · · , 10 to have (3.6), i.e.

1−
∑

ν∈{0,π}2

|P8(ω + ν)|2 ≈
10∑
j=1

|P̃j(2ω, 2η)|2, ω = (ξ, η) ∈ [0, 2π]2,

where these ten trigonometric polynomials are given below:

P̃1(ξ, η) =
42

14561
− 542

4269
ei(ξ+4η) +

42

14561
e2iξ +

191

1576
eiξ,

P̃2(ξ, η) =
281

1476
− 51

26513
ei(4ξ+η) +

281

1476
e2iη − 605

1597
ei(ξ+η),

P̃3(ξ, η) =
1

192
− 9

32
ei(2ξ+3η) +

1

192
e4iξ +

283

1152
e2i(ξ+η) +

29

1152
e2iξ,

P̃4(ξ, η) =
192

15731
− 233

19415
ei(3ξ+2η) +

192

1573
e4iη − 172

741
e2iη,

P̃5(ξ, η) =
139

2849
− 278

2849
ei(ξ+3η) +

139

2849
e2iξ,

P̃6(ξ, η) =
76

4195
− 843

3208
ei(3ξ+η) +

76

4195
e2iη +

227

1002
ei(ξ+η),

P̃7(ξ, η) =
412

2807
− 211

1364
ei(ξ+2η) +

412

2807
e2iξ − 263

3788
e2i(ξ+η) − 263

3788
e2iη,

P̃8(ξ, η) =
152

2475
− 288

779
e2i(ξ+η) +

152

2475
e2iη +

494

2001
ei(ξ+η),

P̃9(ξ, η) =
19

15834
− 100

983
e3i(ξ+η) − 19

15834
e3iξ +

100

983
e3iη,

P̃10(ξ, η) =
230

10131
− 230

10131
e3iξ.

By Theorem 3.2, we will have 14 tight wavelet frame generators using the constructive steps in [27].
These 14 tight frames ψℓ in terms of Fourier transform can be expressed by

ψ̂ℓ
8(ξ, η) = Qℓ(ξ/2, η/2) ϕ̂8(ξ/2, η/2), ℓ = 1, · · · , 14, (3.10)

where Qℓ(ξ, η) =
∑
j

∑
k

qℓjke
−ijξe−ikη. Due to the limited space in this article, we list the low pass filter

and one of the high pass filters q1jk in the Appendix. Others are available upon request. With these filters,
we are able to describe how to use them to find edges of images.

3.3. Image decomposition and reconstruction. Our box spline frames based edge detector involves
three steps: 1) image decomposition based on the tight wavelet framelets; 2) zero out low pass parts and
threshold high pass parts; and 3) reconstruction of edge map based on tight wavelet framelets. Specifically,
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we first use the box spline wavelet frame to decompose an image into many levels of subimages which consist
of a low-pass part and several high-pass parts of the image; secondly, we set the low-pass part to be zero
and thresholding high-pass parts, and thirdly, we use the resulting high-pass parts to get the edge map. The
motivation is that edges of an image are represented in high frequencies, while the smoothing parts of an
image are represented in terms of translates and dilations of the refinable box spline function. Thus, we
set the coefficients of the low-pass part in terms of translates and dilations of the box spline to be zero.
Meanwhile, since noise is also represented in high frequencies, we apply a percentage thresholding technique
(see Algorithm 1) to remove noise.

As explained above, using box spline wavelet frame for edge detection is easy. All we need to do is to
explain how to do image decomposition and reconstruction. For convenience, we use the 14 tight wavelet
frame functions: {ψ1, · · · , ψ14} constructed in the previous section based on the box spline function ϕ8 to
illustrate the decomposition and reconstruction. For an image f with finite energy, i.e. f ∈ L2(R2), let aj,k
be the value of the inner product of f with the ϕj,k(·) := 22jϕ8(2

j · −k) for k ∈ Z2 and j ∈ Z. Note that
since ϕ8 is compactly supported and

∫
ϕ(x)dx = 1, aj,k can approximate the grayscale value at k when j

is large enough. Similarly, let bℓj,k be the value of the inner product of f with box spline wavelet framelets

ψℓ
j,k(·) := ψℓ(2j · −k)’s for all j ∈ Z,k ∈ Z2 and ℓ = 1, · · · , 14.

Recall we have

ϕj,m(·) =
∑
k∈Z2

pk−2mϕj+1,k(·) and ψℓ
j,m(·) =

∑
k∈Z2

qℓk−2mϕj+1,k(·)

by using the refinable property (3.9) and wavelet frame construction (3.10) for all integers. Note that the
refinable function ϕ and tight wavelet frames ψ1, · · · , ψN are locally supported, the coefficients {pk−2m} and
{qℓk−2m} are finite sequences for all ℓ = 1, · · · , 14. Here pk−2m’s are associated with the coefficients of P8 and

qℓk−2m are the coefficients of Qℓ as explained in the Appendix. Thus we obtain the following tight wavelet
frame decomposition algorithm by taking the inner products on both sides of the above two equations with
image function f :

aj,m =
∑
k∈Z2

pk−2maj+1,k and bℓj,m =
∑
k∈Z2

qℓk−2maj+1,k (3.11)

for all j ∈ Z,m ∈ Z2 and ℓ = 1, · · · , 14. Let Xj be the matrix associated with the (j)th level image containing
aj,k = ⟨f, ϕj,k⟩, ∀k ∈ Z2

+ with |k| ≤ N (e.g., N = 512) for all j ∈ Z. Suppose that j is an integer large
enough such that the given image f is approximately Xj+1, i.e. the pixel value fk ≈ aj+1,k. Then the image
decomposition procedure is to compute 2D convolution of P and each Qℓ, ℓ = 1, · · · , 14 with the matrix
Xj+1, i.e., find

P ∗Xj+1, Qℓ ∗Xj+1, ℓ = 1, · · · , 14,

where ∗ stands for 2D convolution and then downsample by deleting all the odd number of rows and columns
of resulted matrices to obtain matrices Xj and Yj,ℓ for ℓ = 1, · · · , 14 due to the indices in (3.11).

Next let us describe the reconstruction procedure. Due to the exact reconstruction, we have

ϕj+1,m(·) =
∑
k∈Z2

{pm−2kϕj,k(·) +
8∑

ℓ=1

qℓm−2kψ
ℓ
j,k(·)} (3.12)

by using the perfection condition (3.4). By taking inner products on both sides of the above equation we
have the tight wavelet frame reconstruction algorithm

aj+1,m =
∑
k∈Z2

{pm−2kaj,k +
N∑
ℓ=1

qℓm−2ka
ℓ
j,k}. (3.13)

Again these computation can be done by upsampling the image Xj , Yj,ℓ by 2, i.e., adding zero columns in
between columns of Xj and Yj,ℓ, ℓ = 1, · · · , 14 and then add zero rows in between rows of the resulting
matrices and then convolve with P and Qℓ, ℓ = 1, · · · , 14.
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Fig. 3.1. Eight testing images.

Usually, Xj ’s are called low-pass part of the image Xj+1 and Yj,i, i = 1, · · · , ℓ are high-pass parts of the
image since the low-pass sub-image has low-pass (smooth) parts of the image and the high-pass sub-images
have high frequency (detail) parts of the image Xj+1. If necessary, we can repeat the decomposition process
several times by convoluting low-pass filter P and high-pass filters Qℓ’s with the low-pass image Xj to get
Xj−1 and Yj−1,ℓ, ℓ = 1, · · · , 14. In order to detect a fractal edge, we need to apply such a decomposition two
or more times.

3.4. Noise removal before edge detection. Images are usually contaminated by noise. It is some-
times necessary to remove noise from images before computing the edges. A classic method for image
denoising is the wavelet shrinkage method which consists of using a hard or soft thresholding algorithm to
trim the wavelet coefficients. In the following, we propose another approach based on the so-called weak
orthogonal greedy algorithm (cf. [42]) to further remove the noise.

The main idea is to look for a sparse representation of a noisy image in a redundant wavelet frame system.
We emphasize that a box spline wavelet frame has one significant advantage: the efficiency in computing
inner products of an image with wavelet framelet functions as well as their integer translations and dilations
as the decomposition and reconstruction explained in the previous subsection. Let Φ = [ϕ1, · · · , ϕn] be a
wavelet frame matrix consisting of the values of framelets functions over pixel locations, i.e. ϕ1, · · · , ϕn
consist of refinable functions ϕ(·+(j, k)), ψ(ℓ)(j, k), ℓ = 1, · · · , 14, (j, k) ∈ [1, N ]× [1, N ] for an integer N > 1
as described in the previous section. Let f be the image, Gk(f) be the kth approximation of f , and Rk(f)
be the residual of the kth iteration.

Algorithm 1 (Percentage Thresholding Algorithm). We begin with Λ0 = ∅, R0(f) = f,G0(f) = 0.
Choose a thresholding sequence {t1, t2, · · · } with all tk ∈ (0, 1].

• Step 1. For k ≥ 1, find Mk = max
i/∈Λk−1

|⟨Rk−1(f), ϕi⟩|;

• Step 2. Let Λk = Λk−1 ∪ {i, |⟨Rk−1(f), ϕi⟩| ≥ tkMk};
• Step 3. Let LΛk

(f) the the best approximation (least squares approximation) of Rk−1(f) in subspace
SΛk

= span{ϕi, i ∈ Λk}.
• Step 4. Update Gk = Gk−1(f) + LΛk

(f) and Rk(f) = Rk−1(f)− LΛk
(f).

• Step 5. If ∥LΛk
(f)∥ is small enough, we stop the algorithm. Otherwise we advance k to k + 1 and

go to Step 1.
This algorithm differs from the weak orthogonal greedy algorithm by choosing more than one component

per iteration. The name for this algorithm will be explained later. In this paper, we report some numerical
results using the wavelet frame based on tensor product of symmetric quartic B-splines constructed in [6].

In our experiment, we first use the classic method of hard thresholding to remove some noise from a
noisy image based on wavelet frame decomposition and reconstruction. Although we can use multi-levels,
for simplicity, we choose to have one level decomposition and reconstruction to demonstrate our algorithm.
That is, we decompose an image into one low-pass part with several high-pass parts and apply the hard
thresholding technique to remove noise from high-pass parts and then reconstruct from the low-pass part
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and resulting high-pass parts to yield a denoised image.

Next we use the denoised image as f and the associated tight wavelet frame to form a wavelet frame
matrix Φ and then apply Algorithm 1 for further noise removal. In this experiment, we use a thresholding
sequence t = {t0, t1, t2, t3, · · · } with ti = rt0 with e.g. r = 0.78 and t0 = 0.9 for i = 1, 2, · · · , 5. That is, we
do five iterations in Algorithm 1. Note that a wavelet frame provides an efficiency in computing the inner
products of the denoised image f with column vectors in Φ. Since ϕi, i = 1, · · · , n are just various wavelet
framelets and their integer translates, the inner products ⟨Rk, ϕi⟩ are just convolution of ϕi with the image
or the (k − 1)th residual. In each iteration of Algorithm 1, we use tk to form a thresholding ϵj = tkMj

with Mj being the largest inner product in absolute value in the jth kind of framelets for j = 1, · · · , 14.
Choosing those inner products which are larger than ϵj is equivalent to using the hard thresholding in
percentage. This is the reason we call this algorithm the percentage thresholding algorithm. Computing the
best approximation in Algorithm 1 is the same as reconstructing image using the resulting wavelet framelet
coefficients. In short, using Algorithm 1 for image denoising is similar to the classic image denoising using
wavelet framelets with this percentage thresholding technique.

The performance of Algorithm 1 is tested on the eight images shown in Figure 3.1. All images have
intensity range [0, 255] and are added white Gaussian noise with σ = 20. We use the eight images in Figure
3.1 and apply the hard-thresholding method based on the wavelet frame mentioned above to denoise and
find the best denoised image in terms of the standard Peak-Signal-to-Noise Ratio (PSNR). Then we use
Algorithm 1 to further remove noise. In the following table, we report the PSNR before and after using
Algorithm 1.

Table 1. PSNR before and after applying Algorithm 1

Peppers Lena512 F16 Bank
Before 30.25 30.66 30.38 29.47
After 30.37 31.14 30.53 29.53
NZC 15.21% 5.43% 21.67% 27.88%

Brain Knee MRI Saturn
Before 32.08 30.12 32.48 35.28
After 32.50 30.23 32.80 35.65
NZC 7.62% 23.73% 4.99% 0.523%

Certainly, when using a multi-level decomposition and reconstruction of wavelet frames, one may get
slightly better PSNR values than those in Table 1. We leave them to the interested reader. An advantage
of using this approach for image denoising is that one only needs about 25% or less nonzero coefficients of a
tight wavelet frame to represent a denoised image. In Table 1, we list the percentage of nonzero coefficients
(NZC) in a wavelet frame representation for each image. Here the NZC is a percentage of the number of
nonzero coefficients over the size of images after denoising.

3.5. Image edge detection. The classic image edge detection is to set the low-pass part subimage
into zero and reconstruct from the zero low-pass part together with high-pass parts. What is new in this
paper is that we reconstruct the edges of an image based on the zero low-pass part and the high-pass parts
after the percentage thresholding technique. That is, for each high-pass part, we use only the largest, say
50% of the all coefficients. Here is the outline of image edge detection procedure.

Algorithm 2 (Box Spline Edge Detector). We apply the following steps for an input image f :

• Remove noise to get a cleaner image f̃ by using Algorithm 1.
• Apply the tight wavelet frame to decompose the image f̃ into one low-pass and various high-pass
subimages.

• Set the low-pass part to be zero matrix and choose the lower 50% of the high-pass parts.
• Reconstruct image f̂ from zero low pass and thresholded high pass components.
• Using k-means classification with two classes to automatically classify f̂ into two categories: either
0 or 1.

• Clean up by removing all isolated edge, i.e., a location with value 0 which is surrounded by 1 or a
location with value 1 surround by 0.
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(a) Input image (b) ground truth edges (c) Prewit edges, FOM = 0.73

(d) CV edges, FOM = 0.50 (e) wavelet edges, FOM = 0.63 (f) box spline edges, FOM = 0.76

Fig. 4.1. Comparison of four edge detectors on a synthetic image.

The only parameter in the proposed Algorithm is the 50%. We understand that fine tuning of this
threshold might lead to better results, but to make it simple, we just use 50%, and it turns out the numerical
results are consistently satisfying already.

Note noise exists in both high frequency and low frequency parts. Though cutting off portion of the
high frequency part as we do in the third step of the above edge detection algorithm does remove some high
frequency noise, there is still some high frequency noise left. To avoid noise and also faked edges in edge
results due to noise, we apply box spline wavelet frames based denoising to more sophisticatedly remove
noise in the first step before edge detection.

4. Numerical experiments. This section consists of three sets of experimental results: one is a
comparison of box spline edge detector with some selected edge detectors: Prewit, Canny, Chan-Vese,
wavelet [30] and shearlet [45]; one is to test the scale invariance of the proposed method; one is the numerical
results of edges/features/details from noisy images by using the proposed edge detector, and the other is the
application of box spline based edge detection to object identification. Note, the wavelet [30] and shearlet
[45] methods detect edges by analyzing the change of transform coefficients across different scales. These
methods are more sophisticated than inserting kernels in discrete wavelet and shearlet into the proposed
edge detection methods. We have tested discrete wavelets such as Haar, D4, D6 and biorthogonal 9/7 in the
proposed algorithm to compute edges. The performance is not so good and we thus did not show them in
this paper. We have also inserted discrete shearlet kernels from fast finite shearlet transform (FFST) toolbox
[17] into the proposed edge detection, but the results are not as good as that in [45].

4.1. Comparison of several edge detection methods. We demonstrate the advantage of the pro-
posed box spline edge detection method through comparing with some methods mentioned in Section 2.
While there has been some attempts on proposing quantitative measures for the performance of an edge
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Fig. 4.2. Compare probability of detection of the four edge detectors on various parameters. The test image is the one
shown in Figure 4.1(a).

detector, there seems to be no consensus on which one is the best. We select two popular ones: Pratt’s figure
of merit (FOM) [36] and probability of detection (PD) [1], the probability for an edge detector to find true
edges. Computation of both of these measures require ground truth edges. Thus, we create one image with
ground truth edges by hand as shown in Figure 4.1.

Pratt’s figure of merit is basically a measure describing the distance from the detected edges to the
ground truth edges. The larger FOM the better. It is related to mis-detection of true edges, detection of
false edges and is defined as

FOM =
1

max(nd, ng)

ng∑
k=1

1

1 + αd(k)

where nd, ng are number points on detected edges and ground truth edges respectively, d(k) is the distance
from the kth detected edge point to the actual ground truth edges. α is a scaling constant that we set as
1/9.

Casting edge detection as a hypothesis testing problem to determine if an image point is on edge or not,
the edge detection process can be described by the probability of correct edge detection PD and probability
of false edge detection PF . Probability of detection describes the ability of an edge detection method to
locate actual edges. Let Md,Mg be the detected and ground truth binary edge maps with 1,0 intensity
implying edge, and no edge. Then PD is defined as

PD = Prob(Md = 1|Mg = 1) =
Prob(Md = 1,Mg = 1)

Prob(Mg = 1)
.

To avoid the intervention of denoising process to the performance evaluation of edge detection methods,
we start with a simulated clean image (shown in Figure 4.1 (a)) with ground truth edges (Figure 4.1 (b)).
It contains objects of various shapes and rectangular boxes with gradually changing intensities. We apply
Prewit, Chan-Vese, wavelet and box spline edge detection methods to (a) under each method’s best parameter
setting and obtain results as shown in (c)-(f). It can be seen that box spline result has the highest FOM
and is thus closest to the ground truth edges shown in (b).

The comparison in Figure 4.1 is done on edges detected under each edge detection method’s best possible
parameter selection. Note that more horizontal lines on the left can be detected by lowering the threshold
value, but due to the fact that those areas have low intensities, and low contrast, one has to set the threshold
value to be extremely low to detect those horizontal lines. As a result, we pay the price of having broken
and/or non-smooth edges almost everywhere at the geometries on the right hand side. We thus presented
the results that have the best overall appearance. In practice and in general, however one might not be able

11



(a) Input image (b) shearlet edges (c) Canny edges

(d) Chan-Vese edges (e) wavelet edges (f) box spline edges

Fig. 4.3. Comparison of five edge detectors on lena image.

to select the best parameter. In Figure 4.2, we compare PD of the four edge detection methods under seven
different parameter setting. One can see that box spline edge detection method has significantly higher PD

that the other four methods except for two out of seven of the wavelet edge detection results.

Next, we compare those edge detectors on natural images with more details and show in Figure 4.3 to
Figure 4.8. No ground truth edges are available for quantitative comparison, but visual comparison shows
that box spline method performs better in catching fine edges. See for instance the edges of Lena’s hair and
eyes in Figure 4.4 and Barbara image’s table cloth, pants and the face as well as the edges of the textures
and plants in Figure 4.8.

From computation time perspective, the proposed algorithm is indeed slower than Canny and Prewitt
algorithms. Canny and Prewitt uses two convolution (x-direction and y-direction) while our algorithm uses
15 convolutions with one low-pass and 14 high-pass box spline filters. And the sizes of our filters are bigger.
The current non-optimized implementation of the proposed algorithm is about 8 times as expensive as Canny
and Prewitt algorithms on average. It is about 8 times and 5 times as expensive as wavelet and shearlet
based method respectively. However, it is comparable with that of Chan-Vese.

4.2. Scale invariance. We have also tested the scale invariance of the proposed edge detector, i.e.,
the invariance of the edge detection results when the object of interest is observed at different scales. The
test image is Lena. Suppose we are interested in edge detection of Lena’s hat decoration, we simulate views
of the hat decoration at three different scales as shown in the top row of Fig. 4.9. The proposed edge
detector is applied to get edges as shown in the bottom row of 4.9. One can observe that the edges of the hat
decoration part are similar across scales. Therefore, the proposed edge detector has the potential of being
scale invariant.
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(a) Input image (b) shearlet edges (c) Canny edges

(d) Chan-Vese edges (e) wavelet edges (f) box spline edges

Fig. 4.4. Zoom in comparison of five edge detectors on the Lena image shown in Figure 4.3.

4.3. Edge detection for noisy images. Next we show the robustness of the proposed edge detector
to noise by exhibiting edges detected from noisy images in Figure 4.10. We first add Gaussian noise with
mean zero and variant σ2 = 20 to each image. The PSNR is around 22. Then we apply a standard wavelet
frame denoising method (hard thresholding) to obtain an denoised image which is fed into Algorithm 1 and
then apply Algorithm 2. Numerical results are shown in Figures 4.10 and 4.11.

It is clear that the edges/features/details of images do not loss much. The faces of Lena and Barbara
are still clearly shown. The letters on the body of airplane F16 can be seen without any mistakes. This
demonstrates the effectiveness of box spline wavelet frames for edge detection.

4.4. Dirac edges. It is well-known that the gradient based edge detectors such as Canny and Prewit
fail to detect Dirac edges, locations with momentary intensity changes, accurately. They mistakenly treat
locations to the left and the right side of Dirac edges as discontinuity in intensity, and thus detect double
step edges instead of Dirac edges. Our box spline wavelet frame detector can find such Dirac edges exactly.
Here is an example. The left panel of Figure 4.12 is a testing image. Our spline edge detector finds the exact
edges appear exactly the same as the left panel of Figure 4.12.

4.5. Application to hidden edges. We now apply the box spline wavelet frame edge detector to
find hidden edges, i.e., locations with some kind of discontinuous derivatives of image intensity. Detecting
such edges has an important application for aircraft surface manufacture. As to reduce the turbulence, the
surface of the body of an aircraft needs to be C2 smooth to avoid generating singularities of airflows. One
way to find defects in the surface of an aircraft body is to find locations with discontinuous first or second
order derivatives, i.e., hidden edges. In this subsection, we artificially create a surface with discontinuous
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(a) Input image (b) shearlet edges (c) Canny edges

(d) Chan-Vese edges (e) wavelet edges (f) box spline edges

Fig. 4.5. Comparison of five edge detectors on Barbara image.

first order derivatives. For example,

z1(x, y) =

{
(x− 1)2 + (y − 1)2 − 0.5, if (x− 1)2 + (y − 1)2 > 0.5

0 otherwise

over (x, y) ∈ [0, 2.55]2. The 3D graph and the 2D intensity image of the function z1(x, y) are shown in the
left and the right panel of Figure 4.13 respectively.

From the 2D intensity image, we hardly see any edges. However, from the 3D surface, we can easily see
the places where the first order derivatives are discontinuous. For another example, let

z2(x, y) =

{
(x+ y − 1.5)2 − 0.5, if (x+ y − 1.5)2 > 0.5

0 otherwise

over (x, y) ∈ [0, 2.55]2. The graph and the image of the function z2(x, y) are shown in Figure 4.14.
To detect these hidden edges in Figures 4.13 and 4.14, we apply our box spline edge detector and

numerical results are shown in Figure 4.15.
We next present an example to detect hidden edges with discontinuous second order derivatives. Our

artificial example is as follows.

z3(x, y) =


((x− 1)2 + (y − 1)2 − 0.35)2, if (x− 1)2 + (y − 1)2 ≥ 0.35

0.125− ((x− 1.05)2 + (y − 1)2)2 if 0.125 ≥ ((x− 1.05)2 + (y − 1)2)2

0 otherwise
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(a) Input image (b) shearlet edges (c) Canny edges

(d) Chan-Vese edges (e) wavelet edges (f) box spline edges

Fig. 4.6. Zoom in comparison of five edge detectors on the Barbara image shown in Figure 4.5.

over (x, y) ∈ [0, 2.55]2. The graph and the image of the function z3(x, y) are shown in Figure 4.16. From
the image as well as the surface shown in Figure 4.16, we can hardly see by naked eyes any irregularities
or defects of the surface. However, our edge detector reveals hidden edges where possible defects may be
located (Figure 4.17).

4.6. Application on object identification. The results of box spline edge detector can be used for
feature extraction, object identification, region segmentation etc. In this subsection, we provide one examples
of practical applications: to segment object of interest from medical images.

As shown in Figure 4.18, starting with a 8-bit gray scale (valued in between 0 and 255) cardiac image
(top left), we first use the proposed box spline edge detector to create a 1-bit (valued 0 or 1) edge mask
(top right), followed by a cleaning up process to remove isolated edges (bottom left). To get the two objects
of interest in the center of the image, we drop a small box inside each of the two objects, and grow the
regions [44] until it touches the borders of the objects. The results are shown in the bottom right panel.
Applying region growing segmentation to the 1-bit 0-1 edge mask is better than to the 8-bit gray scale image
as borders of the objects of interest are more reliable and ready to be used in the 1-bit edge map. One may
calculate the area or the volume of the region of interests afterwards.

5. Conclusion. We present an edge detection algorithm based on a new eight direction box spline
tight frame constructed using theory in [27]. Construction of tight wavelet frames based on this box spline is
nontrivial as there is theory guarantee the existence of a solution to the polynomial equation (3.6) associated
with this eight direction box spline. Also, the mathematical problem for the solution of a general polynomial
equation (3.6) is still open. We use a brute force method to solve it. Once the framelets are found,
computing edges based on these framelets is very simple and does not need complicated optimization criteria.
It applies box splines based wavelet transform to decompose a given image into one low pass and several
high pass components. When there is no noise, edges are only the inverse wavelet transform of the high-
pass components. When noise exists, one needs some threshold values to separate true edges from noise,
both of which belong to high pass components. Quantitative and qualitative comparison with several other
existing edge detectors demonstrate the effectiveness and efficiency of the proposed box spline edge detector in
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(a) Input image (b) shearlet edges (c) Canny edges

(d) Chan-Vese edges (e) wavelet edges (f) box spline edges

Fig. 4.7. Comparison of five edge detectors on a bike image.

detecting step edges. Our edge detector is also able to detect Dirac edges and hidden edges with discontinuous
intensity derivatives. In addition, we show the proposed method is robust to noise. Finally, we apply the
edge detector to object identification. One example is given to show its performance.
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(d) edges from denoised image (e) noisy Image (f) edges from denoised image

Fig. 4.10. Edges detected from noisy images.
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7. Appendix. In this Appendix, we mainly give some ideas about the low pass filter P and one of the
14 tight framelets ψℓ in terms of Fourier transform. That is,

ψ̂ℓ
8(ξ, η) = Qℓ(ξ/2, η/2) ϕ̂8(ξ/2, η/2), ℓ = 1, · · · , 14, (7.1)

where Qℓ(ξ, η) =
∑
j

∑
k

qℓjke
−ijξe−ikη.

The low-pass filter P is 

0 0 0 0 1 1 0 0 0 0
0 0 1 2 2 2 2 1 0 0
0 1 2 4 5 5 4 2 1 0
0 2 4 6 8 8 6 4 2 0
1 2 5 8 10 10 8 5 2 1
1 2 5 8 10 10 8 5 2 1
0 2 4 6 8 8 6 4 2 0
0 1 2 4 5 5 4 2 1 0
0 0 1 2 2 2 2 1 0 0
0 0 0 0 1 1 0 0 0 0


/256.
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(a) noisy Image (b) edges from denoised image (c) noisy Image

(d) edges from denoised image (e) noisy Image (f) edges from denoised image

Fig. 4.11. Edges detected from noisy images.

Fig. 4.12. The proposed box spline edge detector is able to detect Dirac edges.

For Q(1), the coefficient matrix Q1 = [q
(1)
jk ]1≤j,k≤18 is

0 0 0 0 0 0 −1/32768
0 0 0 0 −1/32768 −1/16384 −1/8192
0 0 0 −1/32768 −1/16384 −3/16384 −13/32768
0 0 0 −1/16384 −1/4096 −9/16384 −1/1024
0 0 −1/32768 −3/16384 −1/2048 −37/32768 −63/32768
0 0 −1/16384 −3/8192 −15/16384 −1/512 −27/8192
0 −1/32768 −3/16384 −19/32768 −47/32768 −32/11275 −53/11351
0 −1/16384 −1/4096 −25/32768 −15/8192 −29/8192 −95/16384

−1/32768 −1/16384 −5/16384 −7/8192 −33/16384 −125/32768 −51/8192
−1/32768 −1/16384 −5/16384 −13/16384 −61/32768 −29/8192 −95/16384

0 −1/16384 −3/16384 −5/8192 −47/32768 −32/11275 −53/11351
0 −1/32768 −1/8192 −13/32768 −15/16384 −63/32768 −53/16384
0 0 −1/32768 −3/16384 −1/2048 −9/8192 −63/32768
0 0 0 −1/16384 −3/16384 −1/2048 −15/16384
0 0 0 0 −1/16384 −3/16384 −13/32768
0 0 0 0 0 −1/32768 −1/8192
0 0 0 0 0 0 −1/32768
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Fig. 4.13. A function with discontinuous derivatives around a circle.

Fig. 4.14. Another function with discontinuous derivatives at two lines.

−1/32768 −1/16384 −1/16384 −1/16384 −1/16384 0 0
−3/16384 −1/4096 −9/32768 −1/4096 −3/16384 −1/8192 −1/16384
−19/32768 −13/16384 −7/8192 −25/32768 −5/8192 −3/8192 −3/16384
−3/2048 −15/8192 −1/512 −15/8192 −3/2048 −1/1024 −9/16384

−32/11275 −29/8192 −125/32768 −29/8192 −32/11275 −1/512 −9/8192
−53/11351 −47/8192 −101/16384 −47/8192 −53/11351 −27/8192 −1/512
−217/32768 −133/16384 −33/3821 −72/8903 −27/4096 −53/11351 −32/11275
−72/8903 −81/8192 −43/4096 −72/7327 −72/8903 −47/8192 −29/8192
−33/3821 −78/7387 541/1107 −43/4096 −33/3821 −101/16384 −125/32768

−133/16384 −81/8192 −78/7387 −81/8192 −133/16384 −47/8192 −29/8192
−27/4096 −133/16384 −33/3821 −72/8903 −217/32768 −53/11351 −32/11275
−53/11351 −95/16384 −51/8192 −95/16384 −53/11351 −27/8192 −63/32768
−32/11275 −29/8192 −125/32768 −29/8192 −32/11275 −1/512 −37/32768
−47/32768 −61/32768 −33/16384 −15/8192 −47/32768 −15/16384 −1/2048
−5/8192 −13/16384 −7/8192 −25/32768 −19/32768 −3/8192 −3/16384
−3/16384 −5/16384 −5/16384 −1/4096 −3/16384 −1/16384 −1/32768
−1/16384 −1/16384 −1/16384 −1/16384 −1/32768 0 0
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Fig. 4.15. Locations of hidden edges of Figures 4.13 (left) and 4.14(right).

Fig. 4.16. A function with discontinuous second order derivatives at two circles.

0 0 0 0
0 0 0 0

−1/16384 0 0 0
−1/4096 −1/16384 0 0
−9/16384 −3/16384 −1/16384 0
−1/1024 −3/8192 −1/8192 0
−3/2048 −5/8192 −3/16384 −1/16384
−15/8192 −25/32768 −1/4096 −1/16384
−1/512 −7/8192 −9/32768 −1/16384

−15/8192 −13/16384 −1/4096 −1/16384
−3/2048 −19/32768 −3/16384 −1/32768
−1/1024 −13/32768 −1/8192 −1/32768
−9/16384 −3/16384 −1/16384 0
−1/4096 −1/16384 −1/32768 0
−1/16384 −1/32768 0 0

0 0 0 0
0 0 0 0



.

The remaining high-pass filters (in fact all low and high-pass filters) can be obtained in an electronic form
per request.
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Fig. 4.17. Hidden edges found from Figure 4.16 using the proposed box spline edge detector.

Fig. 4.18. A medical image (top left), the resulting image based on box spline tight-wavelet frame detector (top right),
cleaner edges (bottom left), and the outline of two regions of interest (bottom right).
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