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Abstract

We present a new approach to solve the inverse source problem arising in Fluorescence
Tomography (FT). In general, the solution is non-unique and the problem is severely ill-
posed. It poses tremendous challenges in image reconstructions. In practice, the most
widely used methods are based on Tikhonov-type regularizations, which minimize a cost
function consisting of a regularization term and a data fitting term. We propose an alter-
native method which overcomes the major difficulties, namely the non-uniqueness of the
solution and noisy data fitting, in two separate steps. First we find a particular solution
called the orthogonal solution that satisfies the data fitting term. Then we add to it a
correction function in the kernel space so that the final solution fulfills other regularity and
physical requirements. The key ideas are that the correction function in the kernel has no
impact on the data fitting, so that there is no parameter needed to balance the data fitting
and additional constraints on the solution. Moreover, we use an efficient basis to represent
the source function, and introduce a hybrid strategy combining spectral methods and fi-
nite element methods in the proposed algorithm. The resulting algorithm can dramatically
increase the computation speed over the existing methods. Also the numerical evidence
shows that it significantly improves the image resolution and robustness against noise.

1 Introduction

Fluorescence Tomography (FT) is an emerging, in vivo non-invasive 3-D imaging technique which
reconstructs images that characterize the distribution of molecules that are tagged by fluorophores.
Compared to other medical imaging modalities, such as CT and MRI, FT uses harmless non-ionizing
near-infrared (NIR) radiation (instead of X-ray or powerful magnetic field), and highly specific fluo-
rescent probes to capture molecular specific information that cannot be obtained otherwise [25]. For
this reason, it is considered to be a promising method in early cancer detection and drug monitoring
[24, 39, 5].

In the experimental setup of FT (See Figure 1 for a cartoon demonstration),
NIR radiation (wavelength 650-900 nm) is pumped into the examined biological tissue through

fibers placed on the tissue surface. The light is scattered and absorbed partially in the tissue and the
fluorophores are excited by the diffuse excitation. The excited fluorophores then emit NIR light at
a longer wavelength, which propagates in the tissue. Then the intensity of the fluorescent emission
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Figure 1: An illustration of Fluorescence Tomography.1

is measured by the detectors placed on the tissue surface. The goal of FT is to reconstruct the
distribution of fluorophores from boundary measurements, knowing the scattering and absorption
parameters of the light. The NIR light is strongly scattered in the biological tissue, and this can
be modeled by diffusive photons governed by the Radiative Transfer Equation (RTE) [27]. Although
the RTE has been intensively studied in many other problems, and a number of schemes have been
proposed to solve it numerically, it is still considered expensive to solve due to the high dimension-
ality in FT applications. To ease the challenge, the Diffusion Approximation (DA) to the RTE is
introduced. It is a second order diffusion equation generally accepted as an accurate model in the
regime of highly scattering and low absorptive media, such as the biological tissues [1, 35, 14, 13].
The boundary condition associated with the DA model is Robin (mixed) type [17, 23, 36, 30], which
accounts for the partial reflection and transmission of the light on the boundary.

In this paper, our goal is to design an efficient numerical method to reconstruct the image of the
fluorophore distribution from the boundary measurements.

Mathematically, finding the distribution of the fluorophores can be written as an inverse source
problem,

g = Af + η, (1)

where f represents the distribution of fluorophores which is the unknown. The noise η mainly comes
from inaccurate modeling, which includes estimates of the parameters of the biological tissues and
the approximation errors caused by using DA. The noise also contains the measurement error. It
will be defined by the DA model that A is the operator mapping f to the boundary measurement g,
which can be computed by solving the DA equation. We describe it in detail in the next section.

It is well known that the solution to (1) is non-unique and the problem is severely ill-posed [37].
This leads to many difficulties in its numerical reconstructions. The two major challenges are: 1)
additional physical restrictions become necessary to uniquely determine the solution. Commonly
used restrictions in FT include positivity constrains and certain regularity (stability) requirements.
2) Noise and inevitable rounding perturbations in numerical computations may cause huge artifacts
in the reconstructions.

To cope with these challenges in FT applications, Tikhonov-type regularization is often applied,
which can be written in the following form

f̂ = argmin
f≥0

‖Af − g‖2 + µΨreg(f). (2)

1This illustration was generated by and presented in P. Mohajerani, et al., Proc. of SPIE Vol. 7174 717413-2.
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Here ‖Af − g‖ is the data fitting term to match the boundary measurements, where ‖ · ‖ denotes
the L2 norm by default. Ψreg(f) is the regularization term to impose the regularity of the solution,
which also alleviates the ill-posedness of the numerical computations.

Both smooth and non-smooth functionals are used for the regularization term Ψreg(f). The
original Tikhonov regularization seeks a smooth solution, where Ψreg(f) is the smooth functional.
Recently, some non-smooth regularization terms have become popular, such as L1 norm ‖f‖1, which
promotes the sparsity [18], and total variation (TV) semi-norm ‖f‖TV, which tends to preserve edges
in the image [14, 4]. In order to get the benefits of both, authors in [13, 19] use linear combinations
of L1 norm and TV semi-norm as the regularization term. For each choice of those regularization
terms, Tikhonov regularization (2) defines a unique solution, which can be regarded as a stable
approximation to the original problem (1) [14].

In all Tikhonov regularization methods, the regularization parameter µ plays an important role.
It balances the data fidelity and the regularity of the solution. If µ is relatively small so the data
fidelity is good but the regularization is not strongly enforced. The story is the opposite, when µ is
large: data fidelity is poor but the regularization is well enforced. There are many studies focusing
on how to choose µ. Among different approaches, the L-curve method [22] is a common strategy for
the selection of the parameter µ.

In this paper, we propose a new approach to tackle the challenges. Our main idea is to handle the
two major challenges separately so that each one can be addressed more efficiently. Briefly speaking,
we first find a particular solution that matches the boundary measurements. In this step, there
are many choices, but we choose the one that is robust against noise. After finding the particular
solution, we then add to it a function in the kernel space of A so that the final solution meets the
regularization requirements. Since the correction is only in the kernel space, it does not alter the data
matching property obtained by the particular solution. Moreover, the regularity is achieved only in
the kernel space, which is smaller than the entire space used in Tikhonov regularization methods.

More precisely, the true solution of the inverse source problem (1) can be decomposed as

f = f∗ + f0, (3)

where f∗ is a particular solution used to match the boundary measurements, and f0 is a function in
the kernel space N (A) to fulfill regularity constrains. In the first step, the particular solution f∗ is
chosen to be

f∗ = A∗(AA∗)−1g, (4)

where A∗ is the adjoint operator of A. In theory, f∗ is the solution that is orthogonal to the kernel
N (A). For this reason, we call it the orthogonal solution, which is also known as minimal norm
solution or Moore-Penrose pseudo inverse in the literature [15].

If there is no noise in the measurements and no errors in the modeling, f∗ has the perfect data
fitting property. Otherwise, we cannot solve f∗ exactly. Instead, we compute an approximation to it
by an iterative regularization procedure, e.g, the iterative Tikhonov method [31]. The result produced
by the iterative regularization method is robust against noise, and we use it as a particular solution
which has good data fitting. Obviously, that particular solution may not satisfy some regularity
requirements from physics and prior information in the applications, such as positivity, visually
smooth features, and sparsity. These constrains are addressed in the second step of the method.
We choose a correction f0 in the kernel space N (A) such that the combined solution f given in
(3) satisfies the desirable regularity requirements. We realize this step by solving a constrained
optimization problem

f̂0 = argmin
f0∈N (A)

Ψreg(f∗ + f0) such that f∗ + f0 ≥ 0, (5)

where the regularization functional Ψreg is chosen as L2, or L1 norms, or TV semi-norm. Since f0 is
in the kernel and does not affect the data fitting achieved by f∗, the final solution f preserves the
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correct data fitting of f∗ while having the desired regularity. In addition, there is no regularization
parameter selection needed to balance the data fidelity and regularity.

In this paper, we call the proposed two-step approach the Orthogonal Solution and Kernel Cor-
rection Algorithm (OSKCA). Our contribution is that we select a stable solution f∗ that achieves
data fitting in the first step, and correct it in the kernel space by adding f0 in the second step, so
that the final solution f = f∗ + f0 satisfies other constraints, while preserving good data fitting of
f∗.

The two steps (4) and (5) in our algorithm can be solved by existing methods. For example, several
algorithms can be used to solve (4), such as the gradient based Landweber iterations [3]. However,
the ill-conditioning in A can cause very slow convergence in FT application. To address the problem,
we develop a method to compute (AA∗)−1g by iterative Tikhonov regularization [31]. For the second
step (5), if Ψreg is taken as L2-norm, L1-norm, or TV semi-norm, we can take advantage of existing
fast algorithms such as the Augmented Lagrangian, also known as the split Bregman iteration in the
literature [20] .

In addition, to further speed up the computation, we introduce different bases to represent the
fluorophore distribution f in our algorithms. Most of the existing methods for FT applications use
finite element method (FEM) to solve the differential equations in the model. Naturally, the FEM
basis, consisting of nodal functions (point-wise basis functions), are used to represent the unknown.
We propose to use other more efficient bases, such as Harmonic functions or wavelets, to represent the
unknowns. This dramatically reduces the dimension of the unknowns. It is shown in our numerical
experiments that the new method gains significant speedup over the existing methods.

The organization of the paper is as follows: in Section 2 we present the governing equation for
the light propagation, as well as the forward and inverse problems. In Section 3, we describe the
framework of our proposed algorithm. In Section 4, we discuss the details of the algorithm, including
the computation of orthogonal solution f∗ as well as the correction in the kernel f0. Finally we present
numerical examples including comparison with existing methods in Section 5. A brief conclusion is
given in the last section.

2 Mathematical Models for FT

2.1 The governing equations

As described in the introduction, there are two radiative fields at different wavelengths: the excitation
and the emission photons propagating in the examined tissue. The DA equation is well accepted as
an accurate model when the light propagation is highly scattering and low absorptive, such as the
biological tissues [1]. The DA is given by

∂φ(r, t)

c∂t
+ µaφ(r, t)−∇ · [κ∇φ(r, t)] = q(r, t), (6)

where c is the light speed in the tissue, κ = 1
3(µa+µ′s)

with µ′s being the effective scattering coefficient,

and q(r, t) models the light source.
In the frequency domain, we have the equation for the coefficients corresponding to the modulation

frequency ω [2]:

−∇ · [κ∇Φ(r, ω)] + (µa +
iω

c
)Φ(r, ω) = q(r, ω) in Ω, (7)

where Ω is the region occupied by the examined tissue. We note Φ(r, ω) is called the fluence of
radiation at frequency ω in optics. In intensity-based fluorescence tomography, the modulation
frequency (ω) is zero, resulting in a CW (continuous wave) DA which is written as

−∇ · [κ∇Φ(r)] + µaΦ(r) = q(r) in Ω. (8)
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The above equation is usually accompanied by the partially reflecting and partially absorbing bound-
ary condition, which is given by the following Robin (mixed) boundary condition [36]:

~n · [κ∇Φ(r)] +RΦ(r) = 0 on ∂Ω, (9)

where ∂Ω is the boundary of Ω, and the parameters κ,R are given.
For the simplicity of notations, the DA equation (7) with Robin boundary condition (9) is written

in short as
F (κ, µa, R)Φ = q, or FΦ = q. (10)

From the classical PDE theory [29], Φ in equation (10) has a unique solution in the Sobolev space
H1(Ω) given q(·) ∈ L2(Ω) and Ω is a Lipschitz domain.

2.2 The forward and inverse problems

Let Φm be the fluorophore emission fluence. The mathematical problem in FT is to compute f from
the boundary measurements of Φm in the DA equation

FmΦm(r) = Φx(r)f(r), (11)

where Φx is the excitation fluence and Fm = F (κm, µam, R). The subscript m represents the emission
model. The point-wise product Φx(r)f(r) models the source of fluorophore emission. Φx is excitation
light field induced by the boundary light sources q, which can be modeled by another DA equation

FxΦx(r) = q(r), (12)

where Fx = F (κx, µax, R). The subscript x is for the excitation model.
In FT applications, only the boundary values of Φm, denoted by g, can be obtained from detectors.

Let Tr be the Sobolev trace operator which takes the boundary value of a function in H1(Ω), then

g = TrΦm. (13)

By (11) and (13), the forward model that maps unknown f to measurements g is formulated as

g = TrF
−1
m (Φxf), (14)

where F−1m (Φxf) ∈ H1(Ω) is the solution of (11).
The inverse problem is to find f from given measurement g, the parameters in Tr and Fm, and

precomputed excitation field Φx. Since f is a distribution, it is naturally a non-negative function.

2.3 FT model

In order to improve the conditioning of the forward model in (14), multiple light sources are used
for excitation [12]. Suppose that s is the number of different light sources used in the experiments.

For the i-th light source q(i), the excitation field is Φ
(i)
x and the emission field is Φ

(i)
m . The boundary

measurement of the emission field is g(i). By (14), we have

g(i) = TrF
−1
m (Φ(i)

x f), (15)

where i = 1, . . . , s. By vertically concatenating the above s equations, we write the inverse problem
as finding f in

g = Af, (16)
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where

g =

 g(1)

...

g(s)

 , Af =

 TrF
−1
m (Φ

(1)
x f)

...

TrF
−1
m (Φ

(s)
x f)

 . (17)

In the rest of the paper, A denotes the forward model operator for multiple light sources, and g
represents the concatenation of multiple boundary measurements corresponding to the light sources.

3 Proposed method: Orthogonal Solution with Kernel Correction
Algorithm (OSKCA)

It is shown in [37] that the solution of (16) is non-unique. Also, it is severely ill-conditioned. Because
A is the composition of the Sobolev trace operator and the solution operator for elliptic equations
(which are DA equations in this case), it is a compact operator which has very large condition number
after discretization. Therefore, regularization techniques are often needed to handle the ill-posedness
of the problem. The Tikhonov regularization as in (2) is widely used in the existing methods. How-
ever, there are limitations associated with this approach. For example, the regularization parameter
tuning can be difficult and costly. Also the reconstruction has low resolution, because it may be
overly smooth or too noisy if the regularization parameter is not properly chosen. In order to over-
come such difficulties, we propose OSKCA to compute the solution in two steps. In this section, we
describe the algorithm in detail.

We notice that any solution f to (16) can be decomposed as

f = f∗ + f0, (18)

where f∗ is a particular solution, and f0 is a function in the kernel N (A). Then to solve the equation
(16) we just need to determine f∗ and f0.

First, we choose f∗ such that it satisfies

g = Af∗ and f∗ ∈ N (A)⊥, (19)

where N (A)⊥ refers to the orthogonal complement of N (A). Later we show that such defined f∗

exists, and it is uniquely determined by g and A. We call f∗ the orthogonal solution because it is
perpendicular to the kernel N (A). Once f∗ is determined, we choose f0 ∈ N (A) such that f∗ + f0

satisfies the regularity requirements. We call f0 the kernel correction. In summary, OSKCA is given
as follows:

Algorithm 3.1 Orthogonal Solution and Kernel Correction Algorithm (OSKCA)

1. Formulate A and g for the inverse problem Af = g.

2. Compute the orthogonal solution f∗.

3. Compute the correction in the kernel f0 ∈ N (A) such that f = f∗ + f0 satisfies the
regularity requirements, i.e.,

f̂0 = argmin
f0∈N (A)

Ψreg(f∗ + f0) such that f∗ + f0 ≥ 0, (20)

where Ψreg is a regularization functional.
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In theory, OSKCA is equivalent to solving the optimization problem

f̂ = argmin
f≥0

Ψreg(f) such that Af = g. (21)

Compared with Tikhonov regularization (2), the data fitting in (21) can be enforced without jeop-
ardizing the regularity requirements. This is a desirable property, because A is severely under-
determined. Also, the equality constraint in (21) can be strongly enforced if the noise level is low,
and loosely enforced if the noise level is high.

In the remaining part of this section we describe the orthogonal solution and kernel correction
in more details. We also demonstrate that common regularization techniques (like L2, L1, and TV
minimization) can be incorporated into the proposed framework.

3.1 The orthogonal solution

The orthogonal solution to the inverse problem g = Af is

f∗ = A∗(AA∗)−1g, (22)

if g ∈ R(AA∗), where R(·) denotes the range. We note that the closure of R(A), R(A), is the same
as R(AA∗) by standard results in functional analysis [34].

If g contains noise, it may not be in R(A) or R(AA∗). We can project g onto R(AA∗) so that
(22) is strictly applicable. Though it is not needed in the computation, since the algorithm for (22)
is robust against the noise.

Since A is a compact operator, A∗(AA∗)−1 is unbounded. Therefore, the orthogonal solution may
not depend continuously on the right hand side g. So regularization techniques become necessary to
compute it. We propose a numerical method for the orthogonal solution in Section 4.2.

If g ∈ R(A), then the well-known minimal norm solution is given by

f̄ = A†g,

where A† is the Moore-Penrose (generalized) inverse of A (See [15]). The minimal norm solution and
the orthogonal solution are closely related, and their connection is stated in the following:

Proposition 3.1. 1. For every g ∈ R(AA∗), A†g = A∗(AA∗)−1g.

2. For every g ∈ R(A) \ R(AA∗), A†g 6= A∗(AA∗)−1g.

In short, the minimal norm solution is defined in a larger space than the orthogonal solution in
(22), and the two solutions coincide when g ∈ R(AA∗).

3.2 The kernel correction

The kernel correction f0 is chosen such that f = f∗+f0 satisfies the regularity requirements. Suppose
W = {wi}∞i=1 is an orthonormal basis for N (A), then f0 = Wµ where µ is the auxiliary variable
which denotes the coefficients for f0 under the basis W . The problem of finding the kernel correction
can be written as a constrained optimization problem

µ̂ = argmin
µ

Ψreg(f∗ +Wµ) subject to f∗ +Wµ ≥ 0, (23)

where Ψreg is a regularization functional. Here we note that (23) is equivalent to (21). However, the
auxiliary variable µ has a smaller dimension than f , so the size of the problem is reduced.
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The regularization functional Ψreg can be chosen differently. For instance, if L2 minimization is
used, the problem (23) becomes

µ̂ = argmin
µ
‖f∗ +Wµ‖ subject to f∗ +Wµ ≥ 0. (24)

We can also use some other regularization requirements. For example, the famous total variation
minimization can be applied, which is helpful if sharp transitions such as edges are expected in the
reconstructed image. In that case, we solve the constrained optimization problem

µ̂ = argmin
µ
‖f∗ +Wµ‖TV subject to f∗ +Wµ ≥ 0, (25)

Likewise, other reqularization techniques can be formulated similarly.
The kernel correction is used for enforcing regularity of the solution. Since it is solved in the

kernel space, it does not affect the data fitting of the solution.

3.3 Representation of the solution under a chosen basis

Inspired by the spectral method, other than representing the solution f by its point values, we can
also choose a basis {ξi}∞i=1 for the solution space and write f as

f =
∞∑
i=1

ciξi, (26)

Let c = (c1, . . . , ci, . . .) be the coefficient for f under the basis. Let B denote the linear transformation
from the spectral domain to the physical domain, which is defined by

B : (c1, . . . , ci, . . .) 7→
∞∑
i=1

ciξi. (27)

Then (26) implies the relation
f = Bc. (28)

By (28), the inverse problem in (16) is rewritten as

g = ABc, or g = Mc, (29)

where M denotes the composition of A,B.
The idea of OSKCA still applies to the new formulation (29). c is decomposed as

c = c∗ + c0, (30)

where c∗ is the orthogonal solution to (29) and c0 ∈ N (M) is the kernel correction term. Let K be
an orthonormal basis for N (M). λ is the auxiliary variable for c0, and

c0 = Kλ. (31)

By (28)(30), the solution to (16) is written as

f = B(c∗ + c0). (32)

By (31), (32) is equivalent to
f = B(c∗ +Kλ). (33)

B is determined by the chosen basis functions and K can be computed if M is given. c∗ is
computed by an analogy to (22), which is written as

c∗ = M∗(MM∗)−1g. (34)

We have the following lemma relating c∗ to f∗.
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Lemma 3.2. If the basis functions {ξi}∞i=1 are orthonormal, then

f∗ = Bc∗. (35)

Proof. By the condition in the lemma, B as defined in (27) is an unitary transformation, and
its adjoint operator B∗ satisfies

BB∗ = I(identity). (36)

In this case, c∗ as defined in (29) can be written as

c∗ = (AB)∗(ABB∗A∗)−1g = B∗A∗(AA∗)−1g, (37)

so
Bc∗ = BB∗A∗(AA∗)−1g = A∗(AA∗)−1g = f∗. (38)

In practice, we choose orthonormal basis functions. In general, if the basis functions are not
orthonormal, (35) does not hold. However, (32) is always satisfied.

The computation of the kernel correction term c0 follows the same way as (23). We note the
solution f in the form (33), where λ is obtained by solving the optimization problem

λ̂ = argmin
λ

Ψreg(B(c∗ +Kλ)) subject to B(c∗ +Kλ) ≥ 0. (39)

Here Ψreg(·) also denotes the regularization functional as in (23).
In the following section, we address the implementation issues in detail.

4 Implementations

4.1 Discretization of the forward and inverse problems

In what follows, the matrix form of linear operators are denoted by bold capital letters.
The forward problem involves solving DA equations (11) and (12), which are second order elliptic

differential equations. They can be solved numerically by Finite Element Method (FEM) [6]. Let
np be the number of nodes in the mesh for FEM. Suppose {δ1, . . . , δnp} are the associated shape
functions, which are actually the point-wise basis functions for the solution space in FEM. Under
this basis, f is written as

f =

np∑
j=1

fjδj , (40)

where f1, . . . , fnp are values of f at the mesh nodes.
Under the point-wise basis, the discrete form of the inverse problem is

g = Af , (41)

where f = [f1, . . . , fnp ]>. g is the discrete form of the boundary measurement g as defined in (17). A
is called the forward model matrix, which is the matrix form of the operator A in (16). By (17)(40),
we have

A =

 TrF
−1
m (Φ

(1)
x δ1) . . . TrF

−1
m (Φ

(1)
x δnp)

...
. . .

...

TrF
−1
m (Φ

(s)
x δ1) . . . TrF

−1
m (Φ

(s)
x δnp)

 , (42)
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where δj and Φ
(i)
x are both np-vectors representing their point values at the mesh nodes, and Φ

(i)
x δj

is the point-wise product of the two vectors. F−1m (Φ
(i)
x δj) is represented by an np-vector defined at

the mesh nodes, which is the FEM solution to the DA equation defined in (12):

Fmuij = Φ(i)
x δj , (43)

where uij is the unknown. Tr is the discrete form of the Sobolev trace operator, which is an interpo-

lation of an np-vector defined on the mesh nodes at d detector locations. Then TrF
−1
m (Φ

(i)
x δj) is an

d× 1 vector. Therefore, the forward model matrix A as defined in (42)has the size sd× np.
As discussed in Section 3.3, we can also choose some L2-basis other than the point-wise functions

to represent f . More precisely, we denote the new basis by {ξi}. We recall (26) and truncate it at
the n-th term as

f =
n∑
i=1

ciξi. (44)

Assuming f to have certain regularity, we can choose {ξi} to be an efficient basis such as the harmonic
functions or wavelets, so that n can be much smaller than np, while the accuracy of the representation
is the same as (40).

By (29), the discrete form of the inverse problem is

g = Mc, (45)

where c = [c1, . . . , cn]>, g is the same as in (41), and M is the forward model matrix corresponding
to the new basis. Similar to (42), we write

M =

 TrF
−1
m (Φ

(1)
x ξ1) . . . TrF

−1
m (Φ

(1)
x ξn)

...
. . .

...

TrF
−1
m (Φ

(s)
x ξ1) . . . TrF

−1
m (Φ

(s)
x ξn)

 , (46)

where ξj is represented by a vector of its point values at the mesh nodes, and each Φ
(i)
x ξj (i =

1, . . . , s; j = 1, . . . , n) is the point-wise product of the two np-vectors. Each F−1m (Φ
(i)
x ξj) in (46) is

still obtained by solving the corresponding DA equations using the same FEM solver as (43). Tr has
the same definition as in (42). M as defined above has the size sd× n.

Here we use the spectral method to represent the solution f to the inverse problem, while using
FEM to solve the PDE’s in the forward model. Although f is represented in the spectral domain, it
is not involved in FEM, so there are no convolutions in the computation. This hybrid approach takes
the advantages of the efficient representation of the solution by spectral method, and the flexibility
of handling complicated domains by FEM.

The computation cost is also saved in this approach. We note that there are totally sn PDE’s to
be solved to form M, compared to snp for A. Therefore, by using efficient basis instead of point-wise
basis, we may achieve a speedup of

np

n by solving proportionally fewer PDE’s when forming the
forward model matrix. Moreover, the dimension of the unknown in f decreases from the number
of mesh nodes np to the number of chosen basis functions n, so the computational complexity for
solving the inverse problem is reduced accordingly.

The linear transformation B as defined in (27) has the discrete form as

B = [ξ1, . . . , ξn], (47)

which is an np × n matrix. Then by (28), we can recover the point-wise representation of f by

f = Bc, (48)

where c is the solution to (45). In the implementation, we use the formulation (45) for the discrete
form of the inverse problem (16) and the final solution f is expressed by (48).
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4.2 Computation of the orthogonal solution

The orthogonal solution to (45) is given by (34) after discretization. As mentioned earlier, regular-
ization is needed to compute the orthogonal solution. Various regularization methods are proposed
to compute the minimal norm solution [15], which is the orthogonal solution in our problem. We
present first the Landweber iteration that is used in inverse scattering problems [3]. Then we describe
a more robust approach that we use to solve this problem.

Landweber iteration is a popular choice for linear as well as nonlinear inverse problems, which
has the form

c(k) = c(k−1) + ωM∗(g −Mc(k−1)), (49)

where 0 < ω < (‖M∗‖2‖M‖2)−1 is a relaxation parameter which ensures that (49) defines a con-
traction mapping. By the Banach fixed-point theorem, if g ∈ R(M), then (49) produces a sequence
{c(k)} converging to a fixed-point, which turns out to be the orthogonal norm solution to (45).

Landweber iteration converges to the true solution as the number of iterations go to infinity, but
when it is applied to the problem (45) in the FT applications, the convergence is slow due to the
ill-conditioning of M. Also, if noise presents in g, the iterations do not converge correctly, or even
diverge [15].

Iterated Tikhonov regularization is another well-known approach [31] to compute the or-
thogonal solution. It iteratively refines the current solution by applying Tikhonov regularization to
the residual equation. The iteration scheme is as follows:

c(0) = 0, r(0) = g, (50)

and for k = 1, 2, . . .

c(k) = c(k−1) + M∗(MM∗ + h2I)−1r(k−1), r(k) = g −Mc(k), (51)

where h is the regularization parameter, and I is the identity matrix. There are two layers of iterations
in (51). The outer iterations update c(k) directly, where the number of iterations is usually small
in practice. The first outer iteration is equivalent to the standard Tikhonov regularization, and a
few more iterations can improve the accuracy of the solution. In each outer iteration, (MM∗ +
h2I)−1 is actually implemented by iterative methods such as GMRES or CG [21] that form the inner
iterations, which converge linearly. Unlike Landweber iteration which converges to the exact solution,
iterative Tikhonov regularization computes a smooth approximation to it. It has the benefit of being
robust against noise, which is inherited from Tikhonov regularization. We adopt it to compute the
orthogonal solution defined in (22).

4.3 Computation of the kernel space

Let K be a matrix with columns an orthonormal basis for N (M). Suppose the size of K is n ×m,
where n is equal to the number of columns of M. n is always larger than m. We use K to represent
the computed kernel space. However, it is unstable to compute K by solving N (M) directly. We
note that each row of M represents the measurements generated by all basis functions at the location
of one detector. Nearby detectors have almost the same measurements, so their corresponding rows
of M are nearly identical, which makes M not (numerically) full rank in rows. The numerical rank is
defined to be the number of singular values that are larger than machine epsilon, or more generally
a prescribed small threshold. If large number of detectors are in use, the numerical rank of M is
much smaller than the number of rows in M. It is very unstable to compute N (M) directly if M is
numerically rank deficient.

In order to handle the numerical stability issue, we find a low rank approximation of M, denoted
by M̃, which has the same size (sd×n) as M. Then we take N (M̃) as the approximation to N (M).
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To compute the low rank approximation of M, we adopt a fast algorithm based on singular value
thresholding [7]. It is formulated as the convex optimization problem

M̃ = argmin
X∈Rsd×n

τ‖X‖∗ +
1

2
‖M−X‖2F , (52)

where ‖ · ‖∗ denotes the nuclear norm, which is the sum of singular values. ‖ · ‖F is the Frobenius
norm. It is a convex relaxation of the combinatorial problem

M̃ = argmin
X∈Rsd×n

rank(X) +
ρ

2
‖M−X‖2F , (53)

which is intractable. In contrast, the problem (52) can be solved very efficiently. Suppose

M = UΣV> (54)

is the singular value decomposition (SVD) of M, where Σ = diag({σi}), and {σi} are the singular
values of M. Define the soft-thresholding of singular values by

Dτ (Σ) = diag({(σi − τ)+}), (55)

where
(σi − τ)+ = max(σi − τ, 0). (56)

Then the problem (52) has the explicit solution

M̃ = UDτ (Σ)V> = ŨΣ̃Ṽ>, (57)

where Ṽ is the sub-matrix of V whose columns correspond to the nonzero singular values of Dτ (Σ).
Let K be the n×m matrix whose columns are complement to Ṽ in V, so M̃K = 0. Let col(K) be
the column space of K, which has dimension m. col(K) is considered to be a good approximation to
N (M) if ‖MK‖F is sufficiently small. The following theorem gives an estimate of ‖MK‖F .

Theorem 4.1. Suppose M has r nonzero singular values, then K satisfies

‖MK‖F
‖M‖F

≤
√∑r

i=1 min(σi, τ)2√∑r
i=1 σ

2
i

. (58)

Proof.

‖MK‖2F ≤ ‖(M− M̃)K‖2F + ‖M̃K‖2F
= ‖(M− M̃)K‖2F (M̃K = 0)

≤ ‖(M− M̃)‖2F (K has orthonormal columns)

≤
r∑
i=1

min(σi, τ)2 (by definition of M̃ in ((57)).

Note that

‖M‖2F =
r∑
i=1

σ2i , (59)

the inequality in this theorem follows.
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In practice, we select τ to be

τ = ε

√√√√1

r

r∑
i=1

σ2i = ε

√
1

r
‖M‖2F , (60)

where ε is a small number. By Theorem 4.1, K satisfies

‖MK‖F
‖M‖F

≤ ε. (61)

Then col(K) is a good approximation to N (M).

4.4 Kernel correction

We note that the algorithm for kernel correction depends on the specific regularization requirement.
For some popular regularization techniques like L2, L1 and TV minimization, people have developed
fast algorithms, which can be used in OSKCA. Here we present two examples to illustrate this idea.

4.4.1 The positivity constraint for the kernel correction

One important regularity requirement of the solution is the positivity constraint. By (33), after
discretization, the point-wise representation of f is

f = B(c∗ + Kλ). (62)

Then the positivity constraint can be written as discrete form

B(c∗ + Kλ) ≥ 0, (63)

where B ∈ Rnp×n is computed in (47), c∗ ∈ Rn is computed by (51), K ∈ Rn×m is given by the
algorithm described in Section 4.3. λ ∈ Rm is the unknown.

The feasible points of (63) may not be easy to find. The Algebraic Reconstruction Technique
(ART) [26] is a common algorithm to find one feasible point from any given initial point, by suc-
cessively projecting the point onto the half-spaces defined by each line of inequality in (63). In the
following, we apply ART to (63).

Denote H = −BK and b = Bc∗. For Hλ ≤ b, in j-th iteration λ is updated via

λj+1 =

{
λj if bi ≥ (hi,λj)

λj + αj
bi−(hi,λj)
‖hi‖2 hi if bi < (hi,λj)

(64)

where (·, ·) denotes the inner product. hi is the i’th row of H, bi is the i’th entry of b, and αj ∈ (0, 1)
is preselected. In practice, the initial value for λ is the zero vector. The iterations are terminated
when the change of λ is smaller than a prescribed value.

Due to the noise in the measurements, (63) may be infeasible. In that case, the cyclic convergence
of ART will happen [8].

4.4.2 The TV minimization for the kernel correction

TV minimization has been demonstrated to have edge-preserving property in image recovery [33].
This approach can be incorporated in our framework, which is addressed in (25). After discretization
and change of basis (39), it can be proposed as the optimization problem

argmin
λ
‖B(c∗ + Kλ)‖TV subject to B(c∗ + Kλ) ≥ 0, (65)
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where the computation of c∗ and K are described before. Inspired by the operator splitting technique
[38], we introduce two auxiliary variables f and w. f is defined in (62) and w is given by w = Df
(D is the finite difference operator used to approximate the gradient). By introducing these two
auxiliary variables, an equivalent formulation of (65) is

argmin
λ,f≥0,w

‖w‖1 subject to

{
f = B(c∗ + Kλ)
w = Df

(66)

Let wi be the value of w at i-th node, then ‖w‖1 =
∑

i ‖wi‖.
The Augmented Lagrangian method uses the unconstrained objective for (66), which is written

as [40]

L (λ, f ,w,µ1,µ2) = α‖w‖1 + (µ1,Df −w) +
ρ1
2
‖Df −w‖2+

(µ2, f −B(c∗ + Kλ)) +
ρ2
2
‖f −B(c∗ + Kλ)‖2, (67)

which is called the augmented Lagrangian functional. The equivalent saddle point problem for (66)
is written as

min
λ,f≥0,w

max
µ1,µ2

L (λ, f ,w,µ1,µ2) (68)

Here α, ρ1, ρ2 are the regularization parameters that are selected by the user, and µ1,µ2 are the
Lagrange multipliers. The saddle point problem (68) can be solved iteratively [16], which is described

in Algorithm 4.1. If the iteration is terminated in l steps by some criteria such as ‖f
(l)−f (l−1)‖
‖f (l−1)‖ ≤ ε0,

where ε0 can be a small number, then f = f (l) is the final solution.

Algorithm 4.1 OSKCA with TV minimization for kernel correction (OSCKA-TV)

Input: B,K, c∗, α, ρ1, ρ2, ε0
Output: f

Initialization: f (0) = 0,λ(0) = 0,µ
(0)
1 = 0,µ

(0)
2 = 0

while ‖f
(k)−f (k−1)‖
‖f (k−1)‖ ≤ ε0 do

1. w(k+1) = argmin
w

α‖w‖1 + ρ1
2 ‖Df (k) −w +

µ
(k)
1
ρ1
‖2.

2. f (k+1) = argmin
f≥0

ρ1
2 ‖Df −w(k+1) +

µ
(k)
1
ρ1
‖2 + ρ2

2 ‖f −B(c∗ + Kλ) +
µ

(k)
2
ρ2
‖2.

3. λ(k+1) = argmin
λ
‖f (k+1) −B(c∗ + Kλ) +

µ
(k)
2
ρ2
‖2.

4. µ
(k+1)
1 = µ

(k)
1 + ρ1(Df (k+1) −w(k+1)).

5. µ
(k+1)
2 = µ

(k)
2 + ρ2(f

(k+1) −B(c∗ + Kλ(k+1))).

end while

We note that in each iteration of Algorithm 4.1, Step 1 is solved by soft thresholding [20]. Step 2
is a constraint quadratic program, which can be solved by Projected Barzilai-Borwein (PBB) method
[10, 9]. It is an iterative method based on the gradient of the object function. The computation cost
for the gradient is dominated by the matrix-vector multiplication with the np × np matrix

ρ1
ρ2

D>D + I. (69)
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It can be computed in O(np) time, since D>D is a discrete Laplacian matrix with only O(np) nonzero
entries. PBB is shown to have R-linear convergence [11]. Therefore the overall cost for Step 2 is
O(np). Step 3 is a Least-Squares (LS) problems, where the variable λ is an m-vector, and the
computation cost O(mnp). Moreover, if an orthonormal basis is chosen to represent the solution,
then by (47), B is orthogonal. We also note that K has orthonormal columns, so BK is an orthogonal
matrix as well. Then this step has the explicit solution

λ(k+1) = (BK)>(f (k+1) −Bc∗ +
µ
(k)
2

ρ2
), (70)

which has complexity O(mnp). Step 4 and 5 are simple matrix-vector computations, and the com-
putation cost are np and O(mnp) respectively. So the overall complexity is O(mnp).

4.4.3 Comparison with direct Augmented Lagrangian method

As a comparison, we may also apply Augmented Lagrangian method directly to the problem

f̂ = argmin
f≥0

‖f‖TV such that Af = g, (71)

which is a special case of (21). After discretization and change of basis, it is proposed as the
optimization problem

argmin
c
‖Bc‖TV subject to Bc ≥ 0 andMc = g, (72)

where the final solution is given by f = Bc. By introducing another auxiliary variable w = Df ,(72)
has the un-constraint formulation as

min
w,f≥0,c

max
µ1,µ2,µ3

γ‖w‖1 + (µ1,Df −w) +
β1
2
‖Df −w‖2 + (µ2,Bc− f) +

β2
2
‖Bc− f‖2

+ (µ3,Mc− g) +
β3
2
‖Mc− g‖2, (73)

which can be solved in the same way as Algorithm 4.1. w, f are updated by the same formulas as
in 4.1. The major difference is that in (73), c ∈ Rn instead of λ ∈ Rm is updated in each iteration,
which has the formulation

c(k+1) = argmin
c

β2
2
‖Bc− f (k+1) +

µ
(k)
2

β2
‖2 +

β3
2
‖Mc− g +

µ
(k)
3

β3
‖2. (74)

It is another LS problem similar to Step 3 in Algorithm 4.1, but the unknown is larger in size. The
system matrix in the normal equation for (74) is

β2
β3

B>B + M>M. (75)

It is an n× n dense matrix, and cannot be inverted by fast transforms to our knowledge. Compared
to formula (70) in Algorithm 4.1, solving this LS problem is more computationally involved. In fact,
formula (70) has only one matrix vector multiplication with time complexity O(mnp). For (74), a
matrix vector multiplication is needed to form the normal equation. In addition, another cost of
O(n2) is needed for solving the normal equation if iterative method is used. So the total cost is
O(nnp) + O(n2), compared to O(mnp) for OSKCA. Here we note m < n < np, so OSKCA has
smaller complexity.
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Besides having more computation cost for each iteration, the direct Augmented Lagrangian
method converges slower, which is demonstrated in one of the numerical studies in the next sec-
tion.

We also note that the proposed new method OSKCA is closely related to the Augmented La-
grangian method for ROF model as described in [40]. OSKCA uses augmented Lagrangian functional
to transform the constrained minimization problem (66) to an unconstrained saddle point problem
(68). However, in OSKCA, the data fitting constraint (Mc = g) is treated separately, which does
not appear in the augmented Lagrangian functional. We show that OSCKA is more efficient if the
data fitting constraint is severely under-determined (m� n).

5 Numerical Examples

5.1 Comparison between OSKCA and Tikhonov regularization

In our first simulation, we consider a square domain with two fluorescent inclusions in it, which is
shown in Figure 2a. The domain has the size w × h, where the width w is 91.6mm and the height
h is 71.5mm. The parameters are µs = 1mm−1, µa = 0.01mm−1, and R = 1.4. 40 light sources and
60 detectors are put on the boundary. Each time we turn on one source with others off and get the
measurements from all detectors, which is illustrated in Figure 2b. Totally we have 40× 60 = 2400
measurements. Different levels of noise are added to the simulated measurements for comparison.

(a)
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2

2.5
x 10
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(b)

Figure 2: (a) An illustration of the fluorophore distribution. (b) The boundary measurement
of the emission field for one light source. All detectors are arranged counter-clockwise, and
their measurements form a 1D signal. We can see that the 1D signal is very smooth, with
many places nearly zero, and decays exponentially away from the peak value points.

In this example, a FEM mesh with 7938 triangles and 4096 nodes is generated for the formulation
of the forward problem, and a mesh with 4352 triangles and np = 2253 nodes is generated for solving
the inverse problem. The two meshes are different to avoid the “inverse crime” known in the literature
[28]. The linear equation for FEM is solved by an implementation of the Algebraic Multi-grid Method
[32].

We apply Tikhonov regularization and OSKCA to solve this problem respectively.
For Tikhonov regularization, nodal basis functions are used to represent the reconstruction result.

We use ART for L2 regularization, and Bregman Operator Splitting (BOS) for TV regularization.
For OSKCA, the basis functions are chosen as

{cos(2π(p
x

w
+ q

y

h
)), sin(2π(p

x

w
+ q

y

h
))}, (76)
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Figure 3: Reconstructed fluorescent distributions for 2D simulated data.

where |p|, |q| ≤ 10. After removing those duplicates, we actually have n = 441 basis functions. We
generate matrix M in the inverse problem (45). And then apply iterative Tikhonov regularization
(51) with parameter h = 10−2 for the computation of the orthogonal solution. Algorithm described
in Section 4.3 provides a basis for the kernel of M, where parameter τ = 10−4 × ‖M‖F . The ART
is used if the positivity constraint is applied for the kernel correction. Algorithm 4.1 is used if TV
minimization requirement is used.

Figure 4: The final reconstruction by OSKCA is decomposed into the orthogonal solution and
the kernel correction. Noise of 30dB is added in the synthetic boundary measurement.

We compare the results obtained by OSKCA and by Tikhonov regularization methods. Figure 3
shows the reconstructed images. As one can see that OSKCA has an advantage of achieving cleaner
images and being more robust against noise. As the noise level increase, Tikhonov regularization
method needs to penalize the regularization term more, which results in a blurry reconstruction.
In OSKCA, the orthogonal solution is computed so that it fits the data and is robust against the
noise, though it is quite blurry, as shown in Figure 4. The kernel correction, which is done in the
kernel space, regularizes the solution without affecting the data fidelity, so that the regularization
requirement for the solution can be better satisfied. Figure 4 illustrates the effect of kernel correction.

We also compare the computation time in Table 1. All the computations are performed on a
laptop with 2.53GHz Intel Core2 Duo CPU. The programming interface is MATLAB with C++
subroutines. It shows OSKCA gains a dramatic speedup. This is partly due to the much smaller
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number of basis functions in use for OSKCA, and reduced size of the system matrix by the compression
of measurement data.

Table 1: CPU time of different methods (in seconds)

Tikhonov + L2 Tikhonov + TV OSKCA + positivity OSKCA + TV

2812 5919 320 230

5.2 The effect of using more detectors

In the following examples, we consider the experiment setup with different number of detectors. The
domain has the size 50mm×50mm, and the parameters are µs = 1mm−1 throughout the domain and
µa = 0.01mm−1.

In the first example illustrated in Figure 5, three circular inclusions of different sizes and inten-
sities are implanted in the homogeneous medium. We compare the reconstruction when different
numbers of detectors around the boundary are used to collect measurements. We can see that by

Figure 5: Three circular inclusions of different sizes and intensities. More detectors are helpful
to achieve better resolutions.

increasing the number of detectors, hence collecting more boundary measurements, the resolutions
in the reconstructions are improved.

5.3 Comparison between OSKCA and direct Augmented Lagrangian method

In the next example, a 50mm×50mm medium is implanted with two circular inclusion. Their radius
are 3mm and 4mm respectively, and their center-to-center distance is 10mm (see Figure 6a). The
optical properties are the same as the previous example. The basis for the solution space is the same
as (76). The mesh for the forward model has 7839 nodes and the mesh for the inverse problem has
4096 nodes. We apply Augmented Lagrangian method directly to the problem (71) by solving the
formulation (73). We also use OSKCA-TV (Algorithm 4.1) to solve the same problem. For OSKCA-
TV, we use the set of parameters as α = 10−5, ρ1 = ρ2 = 1. And for direct Augmented Lagrangian
method, the parameters are γ = 10−5, β1 = β2 = 1, β3 = 104. The maximum numbers of iterations
are both 1000. The reconstructed distribution f from these two approaches are shown in Figures
6(b)(c). We can see that OSKCA has better resolution than the direct Augmented Lagrangian
method.

We also compare the relative error of the data fitting term ‖Mc−g‖
‖g‖ in these two methods, as shown

in Figure 7. We can see that OSKCA has significantly better data fidelity in 200 iterations. The main
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(a) (b) (c)

Figure 6: (a) Ground Truth. (b) Augmented Lagrangian with TV minimization regularization.
(c) OSKCA with TV minimization regularization.
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Figure 7: The plot of ‖Mc− g‖/‖g‖ against the number of iterations.

Table 2: CPU time (in seconds) of OSKCA and Augmented Lagrangian

Augmented Lagrangian OSKCA

kernel space 0.58
orthogonal solution N/A 0.39

kernel correction 2.66

total 27.24 3.63
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reason is that the initial value for f in OSKCA is the orthogonal solution, which is intended to satisfy
the data fitting requirement. Later changes in the data fitting are caused by the numerical error in
the computed kernel space, which is controlled by τ in (58). τ can be chosen small enough, so that
the changes are negligible. In this example, the kernel correction actually improves the data fidelity,
and the relative error decreases monotonically. In comparison with OSKCA, the direct Augmented
Lagrangian method starts with relative error ‖Mc−g‖

‖g‖ = 0 for c = 0. The relative error is oscillatory
in the iterations, and the overall convergence rate is low. We also have a time comparison of these two
methods in Table 2. The cost for the formulation of the forward model is not included, which is the
same for both these methods. We can see that OSKCA is much faster than Augmented Lagrangian.

5.4 The resolution of the reconstruction with respect to the depth of the source

We consider a 50mm×50mm homogeneous medium implanted with two circular fluorescent inclusions
with radius 3mm, and their center-to-center distance is 7mm. The optical parameters are µs =
1mm−1 throughout the domain and µa = 0.01mm−1. By varying the depth of the inclusions, we
compare the reconstruction results, which are shown in Figure 8. In each case, the forward model
is computed on a fine mesh with 1789305 nodes so that it can be considered as the physical truth,
and the inverse problem is solved on a coarse mesh with only 4096 nodes, which models the situation
when the modeling error is not negligible.

Figure 8: The first row are the images of the ground truth, and the second row are the
reconstructions on a mesh with 4096 nodes.

We can see that as the depth of the source increases, the resolution of the reconstruction gets
worse. As shown in Figure 8, when the centers of the fluorescent inclusions are 20mm deep, the two
inclusions become indistinguishable. This is partly due to the diffusive nature of light propagation.
Also the mesh for the inverse problem is not fine enough, so that the PDE solver is not accurate
and the modeling error is large. It can be improved if a finer mesh and a better PDE solver are
used for the reconstruction of the solution. To demonstrate this, we use a mesh with 262144 nodes
for the same inverse problem as illustrated in the third column of Figure 8. The resolution of the
reconstructed image is significantly better, which is shown in Figure 9b.
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(a) Ground truth (b) Reconstruction

Figure 9: The fluorescent inclusions are 20mm deep. Reconstruction is done on a mesh with
262144 nodes.

6 Conclusions

As demonstrated in the numerical examples, the proposed OSKCA has advantages over the Tikhonov
type regularization methods in two ways. First, in OSKCA, the regularization can be enforced
better than that in the Tikhonov regularization methods. OSKCA solves regularization without the
constraint of data fitting, while in Tikhonov regularization, the regularization term is minimized
together with the data fitting term. Two terms compete with each other in the minimization process
and a compromise has to be taken between them. Therefore, the reconstruction results of OSKCA
have more regularity and less artifacts than that of Tikhonov regularization. Second, in Tikhonov
regularization, the point source basis is used, and it is not necessarily an efficient basis to represent
the reconstructed source distribution. In OSKCA, the reconstructed source term is expressed under
a more efficient basis. In this way, the dimension of the unknowns is greatly reduced. As a result,
a considerable speedup is gained in both the formulation of the forward model matrix and the
reconstruction process. Also, we can increase the resolution of the reconstruction by adding more
basis functions or changing the basis locally.

There are several interesting features of OSKCA. It is known that error and artifacts are con-
sidered as the bottleneck for the existing methods for FT applications. But for OSKCA, besides
its computational efficiency, we demonstrate through our numerical studies that it is robust against
noise and perturbations, while having the potential to improve the resolution in image reconstructions
dramatically.

Since OSKCA does not depend on the imaging modality, it may be applied to solve other inverse
source problems in imaging.
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